CEN 340: Signals & Systems

- **Credit Hours** (Lectures, Lab, Tutorial): 3 (3 + 0 + 1).
- **Prerequisites**: Math 204

Course Outline

- **Introduction to MATLAB**
 - Introduction.
 - Characteristics of MATLAB.
 - MATLAB System.
 - Manipulating Matrices.
 - Graphics.
 - Generating M-file.
 - Summary.

- **Signals & Systems**
 - Introduction: What are Signals & Systems?
 - Basic types of signals.
 - Representation of CT & DT.
 - Basic Signal Operations.
 - Signals characteristics.
 - Some Basic Signals.
 - Sinusoidal Signals.
 - Complex Exponential Signals.
 - Continuous-Time Unit Step & Unit Impulse Functions.
 - Discrete-Time Unit Impulse & Unit Step Sequences.
 - Signal Energy & Power.
 - Continuous-Time and Discrete-Time Systems.
 - Basic System Properties.
 - Summary.

- **Linear Time-Invariant Systems**
 - Introduction.
 - Discrete-Time LTI Systems.
 - Continuous -Time LTI Systems.
 - Graphical Interpretation of Convolution.
 - Properties of LTI systems.
 - Causal LTI Systems Described by Differential and Difference Equations.
 - Summary.

- **Fourier Series Representation of Periodic Signals**
 - Introduction.
 - The response of LTI Systems to Complex Exponentials.
 - Fourier Series Representation of Continuous-Time Periodic Signals.
 - Convergence of the Fourier series.
 - Properties of Continuous-time Fourier series.
 - Fourier Series Representation of Discrete-Time Periodic Signals.
 - Properties of Discrete-time Fourier series.
 - Filtering.
 - Summary.

Continuous-Time Fourier Transform
- Introduction.
- Representation of Aperiodic Signals: Continuous-time Fourier Transform.
- Fourier Transform for Periodic Signals.
- Properties of the continuous-time Fourier Transform.
- Convolution Property.
- Tables of Fourier Properties and of Basic Fourier Transform Pairs.
- Systems Characterized by Linear Constant – coefficient Difference Equations.
- Summary.

Discrete-Time Fourier Transform
- Introduction.
- Representation of Aperiodic Signals: Discrete-time Fourier Transform.
- Fourier Transform for Periodic Signals.
- Properties of Discrete-time Fourier Transform.
- Convolution Property.
- Systems Characterized by Linear Constant – coefficient Difference Equations.
- Summary.

Sampling Theorem
- Introduction.
- Representation of a Continuous-time Signal by its Samples: Sampling Theorem.
- Reconstruction of a Signal from its Samples Using Interpolation.
- The Effect of Undersampling: Aliasing.
- Discrete-Time Processing of Continuous-Time Signals.
- Sampling of Discrete-time Signals.
- Summary.

Laplace Transform
- Introduction.
- Laplace Transform.
- Region Of Convergence “ROC” for L.T.
- Inverse L.T.
- Properties of L.T.
- Some L.T. Pairs.
- Analysis & Characterization of LTI System Using L.T.
- System Function Algebra & Block Diagram Representations.
- Unilateral L.T.
- Summary.

z-Transform
- Introduction.
- z-Transform.
- The Region of Convergence for the z-Transform.
- Inverse z-Transform.
- Properties of the z-Transform
- Some common z-Transform Pairs.
- LTI Systems Characterized by Linear Constant-Coefficient Difference Equations.
- System Function Algebra and Block Diagram Representations.
- Unilateral z-Transform.
- Summary.