The Arrows in the symbols indicate the normal direction of current flow and it indicates the Source terminal.
Current-voltage characteristics: \(i_D - v_{DS} \)

\[i_D = i_D(i_G, v_{DS}, v_{GS}) \]

Saturation Region

Triode Region

\(V_{DS} \leq V_{GS} - V_t \)

\(V_{DS} \geq V_{GS} - V_t \)

\(V_{GS} = V_t + 1 \)

\(V_{GS} = V_t + 2 \)

\(V_{GS} = V_t + 3 \)

\(V_{GS} = V_t + 4 \)

\(V_{GS} = V_t + 5 \)

\(V_{SD} \leq V_{GS} - V_t \)

\(V_{SD} \geq V_{GS} - V_t \)

\(V_{GS} = V_t - 1 \)

\(V_{GS} = V_t - 2 \)

\(V_{GS} = V_t - 3 \)

\(V_{GS} = V_t - 4 \)

\(V_{GS} = V_t - 5 \)
Three distinct regions of operation:

1. **Cut-off Region**
2. **Triode Region**
3. **Saturation Region**
 - Saturation region: used for amplifier applications
 - Cut-off & Triode Region: used for Switch applications

Relative terminal voltage of the enhancement type NMOS and PMOS for operation in the # regions
NMOS

I - $v_{GS} \leq V_t$
No channel **cut-off Region**

\[i_D = 0 \]

II - $v_{GS} > V_t$
Induced channel

1) $v_{DS} \leq v_{GS} - V_t; \ (v_{GD} \geq V_t)$
 (continuous channel) **Triode Region**

\[i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_t) \cdot v_{DS} - \frac{1}{2} v_{DS}^2 \right] \]

$k_n' \equiv$ Process Transconductance Parameter

$\frac{W}{L} \equiv$ Aspect Ratio

For v_{DS} very small, Linear relation \Rightarrow
Operation like resistor r_{DS}

2) $v_{DS} \geq v_{GS} - V_t; \ (v_{GD} \leq V_t)$
 (pinched-off channel) **Saturation Region**

\[i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2 \]

PMOS

I - $v_{GS} \geq V_t$
No channel **cut-off Region**

\[i_D = 0 \]

II - $v_{GS} < V_t$
Induced channel

1) $v_{DS} \geq v_{GS} - V_t; \ (v_{GD} \leq V_t)$
 (continuous channel) **Triode Region**

\[i_D = k_p' \frac{W}{L} \left[(v_{GS} - V_t) \cdot v_{DS} - \frac{1}{2} v_{DS}^2 \right] \]

$k_p' \equiv$ Process Transconductance Parameter

$\frac{W}{L} \equiv$ Aspect Ratio

For $|v_{DS}|$ very small, Linear relation \Rightarrow
Operation like resistor r_{DS}

2) $v_{DS} \leq v_{GS} - V_t; \ (v_{GD} \geq V_t)$
 (pinched-off channel) **Saturation Region**

\[i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2 \]
Role of the Substrate Body Effect

In many application Source and Body are connected \Rightarrow Substrate does not have any role

All the above characterization is valid with no change

In Integrated Circuit (IC) the body is common to many MOS transistors:

- In NMOS the body is connected to the lowest voltage
- In PMOS the body is connected to the highest voltage

The resulting reverse bias between Source and Body V_{SB} will have an effect on the operation:

This effect can be simply represented by a change in the threshold voltage:

$$V_t = V_{t0} + \gamma \left(\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right)$$

V_{t0} \equiv Threshold at $V_{SB} = 0$;

ϕ_f \equiv Physical parameter; typically $(2\phi_f) \sim 0.6 \text{ V}$

$\gamma = \frac{\sqrt{2qN_A \epsilon_s}}{C_{ox}}$ \equiv is a fabrication process parameter; typically $\gamma \sim 0.4 \text{ V}^{1/2}$