Outline

» Threats and Attacks
 – Dealing with Attacks
 – Preventative Measures

» Worked Examples
 – Isolated Workstations
 – Intranet Servers and Mainframes
 – Encryption and VPNs
 – Internet Browsing
 – Public Key Cryptography
 – Internet Servers
An attempt to steal or harm the assets is an **attack**.
Attacks and Defenses Evolve

<table>
<thead>
<tr>
<th>ATTACK</th>
<th>DEFENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Access</td>
<td>• User IDs ✓</td>
</tr>
<tr>
<td>Masquerade</td>
<td>• Passwords ✓</td>
</tr>
<tr>
<td>Steal Password List</td>
<td>• Encryption or Hashing ✓</td>
</tr>
<tr>
<td>Guessing</td>
<td>• Encryption or Hashing ✓</td>
</tr>
<tr>
<td>Dictionary Attack</td>
<td>• Guess Detection ✓</td>
</tr>
<tr>
<td>Interception</td>
<td>• Password Rules ✓</td>
</tr>
<tr>
<td>Interception</td>
<td>• One Time Passwords ✓</td>
</tr>
</tbody>
</table>

Dealing with Attacks

- Deterrence
- Detection Methods
- Responses
- Preventative Measures
Deterrence

- Accountability is the principal deterrent
 - People are more likely to behave if their activities may be individually monitored
 - Occasional monitoring is often enough
 - Example: Web browser logs at schools, businesses
- Laws, regulations, and legal penalties
 - Increases the risk to the perpetrator
 - Example: Melissa virus writer was arrested

Detection Methods

- The first step in dealing with an attack
- Can be very difficult: 5% detection rates
 - Example: Victims in military infowar games often assume it’s just software “glitches”
- Keep records of attack-like behavior
 - Invalid access attempt, login failures
 - Remote probes: Internet port scans
- Be familiar with “normal” behavior
 - Example: Aldrich Ames with shopping bags
Responses

- Limit immediate effects of attack
 - Break attacker’s connection
 - Shut down subverted processes
- Post-attack procedures
 - Monitors and logs for future attacks
 - Restore lost data, restart systems
 - Reports to managers, outside agencies
 - Investigations

Attack Responses in Practice

- Internet Worm (1988)
 - Disconnect from network, abort and delete offending software, patch known holes
 - FBI tracked down the perpetrator
- Melissa (1999)
 - Same, with “patching” of anti-virus software
- Sniffer incidents (mid 1990s)
 - Monitor repeated attacks, forensic analysis
Preventative Measures

- Mechanisms to block attacks
 - Physical Protection
 - always the starting point for security
 - Procedural Measures
 - Roles, responsibilities, operating rules
 - Technical Measures
 - User authentication - who is trying to use it
 - Access control - give different people different capabilities

Physical Security

- Computer based security measures rely on physical protection
- Given enough time and the right hardware, attackers will succeed
- Distinguish between people with physical access and those without
- Difficult to provide security when untrusted people have physical access
Insiders versus Outsiders

» Outsiders
 • Not members of your organization, not specially committed to its success.
 • Members of the general public, customers, competitors.
 • Outsiders must “intrude” to access your resources

» Insiders
 • Members of your organization that are generally committed to its success.
 • Have physical access to enterprise resources and assets
 • Insider attacks: abuse or expand legitimately granted permissions

Users and Administrators

» Users
 • People who use computing resources to get jobs done
 • Access granted to do their job: no more, no less
 • Physical and technical security restricts their capabilities

» Administrators
 • People charged with maintaining the integrity of your computing systems
 • In theory they can make any change to a computer within their realm of responsibility and completely cover their tracks.
The Insider Threat

- Most computer intrusions and most fraud is perpetrated by insiders
- Preventative mechanisms work best against outsiders, not insiders
- Computer systems can keep records that may deter fraud
 » Example: bank reconciles accounts weekly; embezzler caught by deadline

Recommendations

» Insiders have work to do - balance security measures against real threat of loss
 – Strongest measures that don’t interfere
» Put heavy restrictions on systems with a high risk of attack or embezzlement
 – Make insiders into outsiders
 – Keep logs of transactions, and audit them
» Don’t mix system administrator duties with other business responsibilities
For Further Information

» Dorothy Denning, *Information Warfare and Security*, Addison Wesley
» Dorothy Denning and Peter Denning, *Internet Besieged*, Addison Wesley
» Donn Parker, *Fighting Computer Crime*, Wiley

Worked Examples

- Isolated Workstations
- Intranet Servers and Mainframes
- Encryption and VPNs
- Internet Browsing
- Public Key Cryptography
- Internet Servers
Isolated Workstations

Protection is Based Mostly on Physical Access

“Lock screens” and authentication devices

- Resists unsophisticated attacks
- Prevent some crimes of opportunity- if the attacker doesn’t steal or penetrate the physical machine

File and Disk Encryption
File and Disk Encryption

» Can resist refined and even innovative attacks, if built correctly
 – Transforms your data into unreadable text
 – Snooper can’t read, and probably can’t reliably change

» Double Edged Sword
 – If encryption is weak, then a trained attacker can easily breach it
 – If encryption is strong and you lose your password or key, then the data is lost forever

Computer Viruses

» Computer Virus Behavior
 – Most viruses are merely nuisances and cause no intentional damage
 – Some viruses intentionally cause damage, but this is rare because it reduces the likelihood that the virus will continue to spread and thrive

» Virus Countermeasures
 – Careful behavior isn’t practical in most environments
 – Anti-virus software finds and repairs damage
 • Updates by subscription for latest viruses
Virus Examples

- Application viruses (games),
 » Michaelangelo “time bomb” virus
- Operating system viruses
 » Mac window frame, boot sector
- MS Word macro viruses
 » Melissa - word macro distributed by e-mail
- Network virus: Internet “Worm”
 » Others: e-mail Trojan programs

Workstation Summary

- Physical Protection is essential
 » Anti-Virus Measures are essential in most situations
 » Systematic procedures for workstation data backup
- Other security measures
 » “Lock” screens with password protection
For Further Information

» Russell and Gangemi, *Computer Security Basics*, O'Reilly
 – A classic introductory work

» Davis and Lewis, *Computer Security for Dummies*, IDG Books
 – Practical introduction and reams of basic advice

» Cohen, A *Short Course on Computer Viruses*, John Wiley
 – Technical background on viruses

Intranet Servers and Mainframes
Server Security Defenses

» Physical Access Control
 – Server machines reside in a physically secure machine room
 – Risk of unauthorized administration (mingled machine room)
 – Terminals reside in physically safe environments

» Identification and Authentication “I&A”
» Computer Based Access Control
» Auditing

Identification/ Authentication

● Who are you? Can you give me evidence?
● Computer Based I&A Relies on 1 or more of these “factors”:
 » Something You Know (a password or PIN)
 » Something You Have (a card or token)
 » Something You Are (a physical feature, voice, fingerprint)
I&A in Practice

- Often tied to records of what you do
 - Audit records tagged with user names
- Authentication is essential for remote access
 - War Dialer Attacks, 1980s
 - ("WarGames" movie)
- Users Generally Hate It
 - Requires something Lost, Forgotten, or Injured.

 Attacks on Passwords

- Interactive Password Guessing
 - Passwords should be easy to remember but hard to guess
 - Server should detect bad password attempts and raise an alarm
- Password “Sniffing”
 - Shoulder Surfing, Wiretapping, Bugs, etc.
 - Example: Pennsylvania Students in 1987
More Attacks

– Stealing the Password File
 • “Ancient” trick dating back to CTSS
 • Solved by storing encrypted or “hashed” passwords
 » 1. Collect the plaintext password
 » 2. Encrypt or hash it in an irreversible fashion
 » 3. Compare against hashed version in the password database

– Dictionary Attack on Encrypted Passwords
 • Computer based guessing of encrypted passwords -- extremely fast, undetectable.
 • Easy to remember passwords become easy to attack

One Time Password Systems

» Ideal for remote access - uses a secret to generate a new password for each login
 – Eliminate the risk of password sniffing

» Software OTP implementations
 – Examples: Windows NT, 2000

» Hardware OTP implementation: Tokens
 – Examples: Safeword, SecurID, WatchWord
 – Eliminates intentional sharing
 – Only authorized users are issued tokens
 • Citibank example: international embezzling
Generating OTPs

» Event or Clock Driven
 – Token generates a password for each login attempt
 – Client increments the time or a counter
 – Client encrypts it with the secret
 – Server repeats the process with same secret

» Challenge-Response Passwords
 – Server sends a random number “challenge”
 – Client encrypts it with secret value
 – Server repeats the process

Using Multiple Factors

» Single Factor Authentication with Passwords
 – Vastly popular, but vulnerable to Common attacks

» Two Factor Authentication
 – usually Smart Cards or Tokens with PINs
 – used in Sophisticated environments

» Three Factor is rarely used
 – Biometric activated Cards with PINs, or other combinations
Session Authentication

- Traditionally, I&A is applied at the beginning of an interactive session
 - Can subvert authentication by subverting the session

- Attacks on Sessions
 - Wiring attacks are possible but rare
 - Attacks on dial-up connection
 - Mitnick, 1980s

Computer Based Access Control

- Controlling what people can do on the server
 - Controlled access to computer’s resources: files, printers, other Services
 - Often left fairly loose for convenience

- Access Control is Hard to Manage
 - Sophisticated settings get “stale” as programs evolve and staff changes
 - Requires systematic maintenance to remain effective
Attacks on Access Controls

» Access Control in Commercial Computers Rarely Stops a Trained Attacker
 – Convenience sells better -- even potentially strong computers are sold with protections disabled

» Modern systems are very complex

» it’s extremely costly to “lock down” a sophisticated operating system completely
 – 10-15 hours of work

Activity Audit Records

» A “Log” of security relevant events
 – Seeks to deter abuse by increasing Accountability
 – Consequences of Enforcement
 - Educational measures, Penalties, Policy changes

» The log is often too big for casual use
 – Thousands of records for days of activity
 – Usually reviewed as a last resort

» Intrusion Detection Systems: detect attacks by watching audit records in real time
Server Security Summary

- Essentials
 - Rigidly restrict all outside access
 - Authenticate all outside users

- Other measures
 - Use stronger measures if a lot is at risk
 - Save your audit records if trouble occurs

- For Further Information
 - Check local computer bookstore and Internet news groups about your server