King Saud University
College of Engineering
Department of Civil Engineering

FINAL EXAM
GE201 Statics – First Semester 1433- 34H
Safar 1434 H – January 2013
Time allowed: 3 hrs

Student name (in Arabic)
Student number
Student serial number in the class
Section / Instructor

Attempt all questions

<table>
<thead>
<tr>
<th>Questions</th>
<th>Maximum Marks</th>
<th>Marks obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. # 1</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Q. # 2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Q. # 3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q. # 4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q. # 5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total marks 50

Marks in words: ……………………………

Name and Signature of Instructor: ………………………………………………………………………
Question # 1 (12 Marks)

1-a (2 Marks)
Compute the magnitude of the moment about point \(A \) produced by the three forces and couple.

\[\mathbf{F} = 2\mathbf{i} + 2\mathbf{j} \text{kN} \]
\[\mathbf{A}(2,2) \]
\[10 \text{ kN.m} \]

1-b (2 Marks)
If the resulting force-couple system acting on the plate at point \(O \) is as shown in the figure, then replace the system by a single force \(\mathbf{R} \). Sketch the location of the force and find its intersection with \(x \)- and \(y \)-axes.

\[\mathbf{R} = -3\mathbf{i} + 2\mathbf{j} \text{kN} \]
\[3 \text{ kN.m} \]

1-c (2 Marks)
i) Write \(\mathbf{F} \) as a vector.
ii) Determine the moment of the force \(\mathbf{F} \) about point \(O \), and express it as a vector.

\[(2, 3, 0) \text{ m} \quad \mathbf{F} = 30 \text{kN} \quad (6, 3, 0) \text{ m} \]

\[\mathbf{O} \]
\[\mathbf{z} \]
Question # 1 (Contd.)

1-d (2 Marks)
Compute the magnitude of the resultant of the two forces shown below.

\[F_2 = 40i + 90k \text{ kN} \]
\[F_1 = 50j + 70k \text{ kN} \]

Solution

\[R = 24 \text{ kN} \]

1-e (2 Marks)
Determine the angle \(\theta \), if the resultant \(R \) is vertical.

Solution

\[\theta \]

1-f (2 Marks)
Write the vector expression of tension force \(T \)

Solution

\[T = 24 \text{ kN} \]
Question # 2 (12 Marks)

2-a (2 Marks)
Compute T.

Solution

2-b (2 Marks)
Identify the zero force members.

Solution

2-c (2 Marks)
Determine the tension in the rope CDE.

Solution
Question # 2 (Contd.)

2-d (3 Marks)
Compute the force in member BC

![Force Diagram]

Solution

2-e (3 Marks)
Determine the moment of inertia about x-axis (I_x) for the shaded area using a vertical element as shown.

![Shaded Area Diagram]

Solution
Question # 3 (10 Marks)

For the section shown in the figure:

a) Locate the centroid \(\overline{X} \) and \(\overline{Y} \) of the shaded area from the \(y \)-and \(x \)-axes respectively.

b) Calculate the moment of inertia of the shaded area about \(x \)-axis (\(I_x \)).

c) Calculate the moment of inertia of the shaded area about that centroidal \(x_0 \) – axis which is parallel to \(x \)-axis (i.e. \(I_{x_0} \)).

Hint: Moment of inertia of a rectangular section about centroidal \(GG \)-axis is \(\frac{1}{12}bh^3 \) and about line \(AA \) is \(\frac{1}{3}bh^3 \).

Solution
Question # 4 (10 marks)

In the loaded beam shown in figure:

(a) Calculate the support reactions at A and I.

(b) Determine the shear force (V) and bending moment (M) values at the sections passing through
 i. point B; and
 ii. point G

Assume self-weight of the beam is negligible, and supports A and I are roller and pin, respectively.

Solution
Question # 5 (6 Marks)

The 100-kg block rests on the horizontal surface and a force P is applied to the block at an angle of 30°. Determine the magnitude of force P needed to start the block to slip (i.e. impending motion). The coefficient of static friction (μ_s) between the block and the surface is 0.25.

![Diagram of block and force P](image)

$\mu_s = 0.25$