Question One (Dr. asmaa+dr.azza)

a) Prove the following:

i) Every Euclidean domain is a principal ideal domain.

ii) Let R be Euclidean domain with valuation δ, an element $0 \neq a \in R$ is a unit if and only if $\delta(a) = \delta(1_R)$.

iii) Every finite integral domain is a field.

iv) Let R be a commutative ring with an identity. Show that $1 + ax$ is an invertible in $R[x]$ if and only if $\exists n > 0$ with $a^n = 0$

b) Find the following:

i) The factorization of the polynomial $x^4 + 3x^3 + 2x + 4$ in $\mathbb{Z}_5[x]$.

ii) $q(x)$ and $r(x)$ as described by the division algorithm so that $f(x) = g(x)q(x) + r(x)$ with $\deg(r(x)) < \deg(g(x))$ where $f(x) = x^5 - 2x^4 + 3x - 5$ and $g(x) = 2x + 1$ in $\mathbb{Z}_{11}[x]$.

Question Two

a) i) Define maximal ideal in a ring.

ii) Let R be a principal ideal domain. Prove that a nontrivial ideal $<a>$ of R is a prime ideal in R if and only if it is a maximal ideal in R.

b) Let F be a field of quotients of D and let L be any field containing D. Then prove that there exists a map $\psi : F \rightarrow L$ that gives an isomorphism of F with a subfield of L such that $\psi(a) = a$ for $a \in D$.

[Hint define ψ by $\psi(a b) = \psi(a) \psi(b)$].

⇒ Please turn the page
Question Three

a) (i) Define an irreducible element in a ring.

(ii) Let R be a principal ideal domain. Prove that a nonzero element $p \in R$ is irreducible if and only if it is a prime element in R.

b) Let a, b, c be the elements of the principal ideal ring R. If $c \mid ab$ with a and c relatively prime, then prove that $c \mid b$.

c) Make true or false with reasons

(i) If f be a homomorphism from the field F into the field F', then either f is the trivial homomorphism or else f is one-to-one.

(ii) Any two irreducibles in any unique factorization domain are associates.

(iii) Every quotient ring of an integral domain is an integral domain.

(iv) $2x + 4$ is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{Z}[x]$.

(v) Every nonzero element of an integral domain D is a unit in a field F of quotient of D.

Question Four

a) i) Define primitive polynomial in $R[x]$, the ring of all polynomials over a ring R.

ii) Let R be a unique factorization domain. If $f(x), g(x)$ are both primitive polynomials in $R[x]$, then prove that their product $f(x)g(x)$ is also primitive in $R[x]$.

b) Let R be an integral domain and $f(x) \in R[x]$ be a nonzero polynomial of degree n. Prove that $f(x)$ can have at most n distinct roots in R.

⇒ With best wishes

Dr. Asma and Dr. Azza
Question One

a) Find the following:
i) The factorization of the polynomial \(x^4 + 3x^3 + 2x + 4 \) in \(\mathbb{Z}_5[x] \).
ii) \(q(x) \) and \(r(x) \) as described by the division algorithm so that
\(f(x) = g(x) q(x) + r(x) \) with \(\text{deg}(r(x)) < \text{deg}(g(x)) \) where
\(f(x) = x^5 - 2x^4 + 3x - 5 \) and \(g(x) = 2x + 1 \) in \(\mathbb{Z}_{11}[x] \).
iii) A commutative ring \(R \) with an identity for which \(R[x] \) has zero divisors.

b. Determine whether the polynomial \(8x^3 + 6x^2 - 9x + 24 \) in \(\mathbb{Z}[x] \)
satisfies an Eisenstein test for irreducibility over \(\mathbb{Q} \).

Question Two

Prove the following:

a) If \(R \) be a unique factorization domain, with field of quotients \(K \)
and if \(f(x) \in K[x] \) be a nonconstant polynomial with \(\text{deg} f(x) > 0 \)
then there exist non zero elements \(a, b \in R \) and a primitive polynomial
\(f_1(x) \in R[x] \) such that \(f(x) = ab^{-1}f_1(x) \).
Furthermore, \(f_1(x) \) is unique up to invertible elements of \(R \) as factors.

b) If \(R \) is a principal ideal domain then every noninvertible element
\(0 \neq a \in R \) has a unique factorization into a finite product of primes.

c) If \(F \) is a field then \(f(x) \) is an irreducible polynomial in \(F[x] \) if and
only if the quotient ring \(F[x]/<f(x)> \) forms field.
Question Three

Determine (giving a proof or a counter example) which of the following statements are true.

i) Every quotient ring of an integral domain is an integral domain.

ii) The invertible elements in an integral domain form a cyclic group under multiplication.

iii) If $R = M_{2 \times 2}(\mathbb{R})$ is not a commutative ring then the nilpotent elements do not necessarily form an ideal in R.

iv) If $f(x) \in R[x]$ has constant term 1, then $f(x)$ is not a zero divisor in $R[x]$?

Question Four

Prove the following:

i) If R be a commutative ring with an identity then $1+ax$ is an invertible in $R[x]$ if and only if $\exists n > 0$ with $a^n = 0$.

ii) Every Euclidean domain is a principal ideal domain.

iii) If $f(x) \in \mathbb{R}[x]$ with $\deg f(x) > 0$ then $f(x)$ can be factored into linear and irreducible quadratic factors.

iv) If R is an integral domain then $0 \neq p \in R$ is an irreducible element of R if and only if $\langle p \rangle$ is a maximal principal ideal.