Chapter 8: Fundamental Sampling Distributions and Data Descriptions:

8.1 Random Sampling:
Definition 8.1:
A population consists of the totality of the observations with which we are concerned. (Population=Probability Distribution)

Definition 8.2:
A sample is a subset of a population.

Note:
- Each observation in a population is a value of a random variable X having some probability distribution f(x).
- To eliminate bias in the sampling procedure, we select a random sample in the sense that the observations are made independently and at random.
- The random sample of size n is:
 \[X_1, X_2, \ldots, X_n \]
 It consists of n observations selected independently and randomly from the population.

8.2 Some Important Statistics:
Definition 8.4:
Any function of the random sample X_1, X_2, \ldots, X_n is called a statistic.

Central Tendency in the Sample:
Definition 8.5:
If X_1, X_2, \ldots, X_n represents a random sample of size n, then the sample mean is defined to be the statistic:

\[
\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n} \quad \text{(unit)}
\]

Note:
- \bar{X} is a statistic because it is a function of the random sample X_1, X_2, \ldots, X_n.
- \bar{X} has same unit of X_1, X_2, \ldots, X_n.
- \bar{X} measures the central tendency in the sample (location).
Variability in the Sample:

Definition 8.9:
If X_1, X_2, \ldots, X_n represents a random sample of size n, then the sample variance is defined to be the statistic:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \cdots + (X_n - \bar{X})^2}{n-1} \text{ (unit)}^2$$

Theorem 8.1: (Computational Formulas for S^2)

$$S^2 = \frac{n}{n-1} \frac{\sum_{i=1}^{n} X_i^2 - n \bar{X}^2}{n} = \frac{n}{n-1} \left(\frac{S^2}{n} - \frac{(\sum_{i=1}^{n} X_i)^2}{n(n-1)} \right)$$

Note:
- S^2 is a statistic because it is a function of the random sample X_1, X_2, \ldots, X_n.
- S^2 measures the variability in the sample.

Definition 8.10:
The sample standard deviation is defined to be the statistic:

$$S = \sqrt{S^2} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}} \text{ (unit)}$$

Example 8.1: Reading Assignment
Example 8.8: Reading Assignment
Example 8.9: Reading Assignment

8.4 Sampling distribution:

Definition 8.13:
The probability distribution of a statistic is called a sampling distribution.

- Example: If X_1, X_2, \ldots, X_n represents a random sample of size n, then the probability distribution of \bar{X} is called the sampling distribution of the sample mean \bar{X}.

8.5 Sampling Distributions of Means:

Result:
If X_1, X_2, \ldots, X_n is a random sample of size n taken from a normal distribution with mean μ and variance σ^2, i.e. $N(\mu, \sigma)$,
then the sample mean \overline{X} has a normal distribution with mean

$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

and variance

$$Var(\overline{X}) = \sigma^2_{\overline{X}} = \frac{\sigma^2}{n}$$

- If X_1, X_2, \ldots, X_n is a random sample of size n from $N(\mu, \sigma)$, then $\overline{X} \sim N(\mu_{\overline{X}}, \sigma_{\overline{X}})$ or $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

- $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}}) \iff Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$

Theorem 8.2: (Central Limit Theorem)

If X_1, X_2, \ldots, X_n is a random sample of size n from any distribution (population) with mean μ and finite variance σ^2, then, if the sample size n is large, the random variable

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

is approximately standard normal random variable, i.e.,

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

approximately.

- $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) \iff \overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$

- We consider n large when $n \geq 30$.

Department of Statistics and O.R. – 71 – King Saud University
• For large sample size \(n \), \(\bar{X} \) has approximately a normal distribution with mean \(\mu \) and variance \(\frac{\sigma^2}{n} \), i.e.,

\[
\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})
\]

approximately.

• The sampling distribution of \(\bar{X} \) is used for inferences about the population mean \(\mu \).

Example 8.13:
An electric firm manufactures light bulbs that have a length of life that is approximately normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 16 bulbs will have an average life of less than 775 hours.

Solution:
\(\bar{X} \) = the length of life

\(\mu = 800 \), \(\sigma = 40 \)

\(\bar{X} \sim N(800, 40) \)

\(n = 16 \)

\(\mu_{\bar{X}} = \mu = 800 \)

\(\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = \frac{40}{\sqrt{16}} = 10 \)

\(\bar{X} \sim N(\mu_{\bar{X}}, \frac{\sigma}{\sqrt{n}}) = N(800, 10) \)

\[
\Rightarrow Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = Z = \frac{\bar{X} - 800}{10} \sim N(0, 1)
\]

\[
P(\bar{X} < 775) = P \left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < \frac{775 - \mu}{\sigma / \sqrt{n}} \right)
\]

\[
= P \left(\frac{\bar{X} - 800}{10} < \frac{775 - 800}{10} \right)
\]

\[
= P \left(Z < \frac{775 - 800}{10} \right)
\]

\[
= P(Z < -2.50)
\]

\[
= 0.0062
\]
Sampling Distribution of the Difference between Two Means:
Suppose that we have two populations:
- 1-st population with mean μ_1 and variance σ_1^2
- 2-nd population with mean μ_2 and variance σ_2^2
- We are interested in comparing μ_1 and μ_2, or equivalently, making inferences about $\mu_1 - \mu_2$.
- We independently select a random sample of size n_1 from the 1-st population and another random sample of size n_2 from the 2-nd population:
 - Let \overline{X}_1 be the sample mean of the 1-st sample.
 - Let \overline{X}_2 be the sample mean of the 2-nd sample.
- The sampling distribution of $\overline{X}_1 - \overline{X}_2$ is used to make inferences about $\mu_1 - \mu_2$.

Theorem 8.3:
If n_1 and n_2 are large, then the sampling distribution of $\overline{X}_1 - \overline{X}_2$ is approximately normal with mean
$$E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$$
and variance
$$Var(\overline{X}_1 - \overline{X}_2) = \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$
that is:
\[X_1 - X_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}) \]

\[\Leftrightarrow \]

\[Z = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1) \]

Note:

\[\sigma_{X_1-X_2} = \sqrt{\sigma_{X_1-X_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}} \]

Example 8.15: Reading Assignment

Example 8.16:
The television picture tubes of manufacturer \(A \) have a mean lifetime of 6.5 years and standard deviation of 0.9 year, while those of manufacturer \(B \) have a mean lifetime of 6 years and standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer \(A \) will have a mean lifetime that is at least 1 year more than the mean lifetime of a random sample of 49 tubes from manufacturer \(B \)?

Solution:

Population \(A \) \hspace{1cm} Population \(B \)

\[\mu_1=6.5 \hspace{1cm} \mu_2=6.0 \]

\[\sigma_1=0.9 \hspace{1cm} \sigma_2=0.8 \]

\[n_1=36 \hspace{0.5cm} (n_1>30) \hspace{1cm} n_2=49 \hspace{0.5cm} (n_2>30) \]

- We need to find the probability that the mean lifetime of manufacturer \(A \) is at least 1 year more than the mean lifetime of manufacturer \(B \) which is \(P(\overline{X}_1 \geq \overline{X}_2 + 1) \).
- The sampling distribution of \(\overline{X}_1 - \overline{X}_2 \) is

\[\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}) \]

- \(E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2 = 6.5 - 6.0 = 0.5 \)

- \(Var(\overline{X}_1 - \overline{X}_2) = \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{(0.9)^2}{36} + \frac{(0.8)^2}{49} = 0.03556 \)
\[
\sigma_{\bar{X}_1-\bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{0.03556} = 0.189
\]

- \(\bar{X}_1 - \bar{X}_2 \sim N(0.5, 0.189) \)

- Recall \(Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1) \)

\[
P(\bar{X}_1 \geq \bar{X}_2 + 1) = P(\bar{X}_1 - \bar{X}_2 \geq 1)
\]

\[
= P\left(\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \geq \frac{1 - (\mu_1 - \mu_2)}{0.189} \right)
= P\left(Z \geq \frac{1 - 0.5}{0.189} \right)
= 1 - P(Z < 2.65)
= 1 - 0.9960
= 0.0040
\]

8.7 t-Distribution:
- Recall that, if \(X_1, X_2, \ldots, X_n \) is a random sample of size \(n \) from a normal distribution with mean \(\mu \) and variance \(\sigma^2 \), i.e. \(N(\mu, \sigma) \), then

\[
Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)
\]

- We can apply this result only when \(\sigma^2 \) is known!

- If \(\sigma^2 \) is unknown, we replace the population variance \(\sigma^2 \) with the sample variance \(S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n - 1} \) to have the following statistic

\[
T = \frac{\bar{X} - \mu}{S / \sqrt{n}}
\]

Result:
If \(X_1, X_2, \ldots, X_n \) is a random sample of size \(n \) from a normal
distribution with mean μ and variance σ^2, i.e. $N(\mu, \sigma)$, then the statistic

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has a t-distribution with $v = n - 1$ degrees of freedom (df), and we write $T \sim t(v)$ or $T \sim t(n-1)$.

Note:
- t-distribution is a continuous distribution.
- The shape of t-distribution is similar to the shape of the standard normal distribution.

Notation:
- t_{α} = The t-value above which we find an area equal to α, that is $P(T > t_{\alpha}) = \alpha$
- Since the curve of the pdf of $T \sim t(v)$ is symmetric about 0, we have $t_{1 - \alpha} = - t_{\alpha}$
- Values of t_{α} are tabulated in Table A-4 (p.683).

Example:
Find the t-value with $v = 14$ (df) that leaves an area of:
- (a) 0.95 to the left.
- (b) 0.95 to the right.

Solution:
$v = 14$ (df); $T \sim t(14)$
(a) The t-value that leaves an area of 0.95 to the left is $t_{0.05} = 1.761$

(b) The t-value that leaves an area of 0.95 to the right is $t_{0.95} = -t_{1-0.95} = -t_{0.05} = -1.761$

Example:
For $\nu = 10$ degrees of freedom (df), find $t_{0.10}$ and $t_{0.85}$.

Solution:
$t_{0.10} = 1.372$
$t_{0.85} = -t_{1-0.85} = -t_{0.15} = -1.093 \quad (t_{0.15} = 1.093)$
Sampling Distribution of the Sample Proportion:
Suppose that the size of a population is \(N \). Each element of the population can be classified as type \(A \) or non-type \(A \). Let \(p \) be the proportion of elements of type \(A \) in the population. A random sample of size \(n \) is drawn from this population. Let \(\hat{p} \) be the proportion of elements of type \(A \) in the sample.

Let \(X = \) no. of elements of type \(A \) in the sample

\[p = \text{Population Proportion} = \frac{\text{no. of elements of type } A \text{ in the population}}{N} \]

\[\hat{p} = \text{Sample Proportion} = \frac{\text{no. of elements of type } A \text{ in the sample}}{n} = \frac{X}{n} \]

Result:
(1) \(X \sim \text{Binomial} (n, p) \) \{E(\(X\))=np , Var(\(X\))=npq\}
(2) \(E(\hat{p}) = E(\frac{X}{n}) = p \)
(3) \(\text{Var}(\hat{p}) = \text{Var}(\frac{X}{n}) = \frac{pq}{n} ; q = 1 - p \)
(4) For large \(n \), we have
 \[\hat{p} \sim N(p, \sqrt{\frac{pq}{n}}) \] (Approximately)
 \[Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \sim N(0,1) \] (Approximately)
Sampling Distribution of the Difference between Two Proportions:

Suppose that we have two populations:

- p_1 = proportion of the 1-st population.
- p_2 = proportion of the 2-nd population.
- We are interested in comparing p_1 and p_2, or equivalently, making inferences about $p_1 - p_2$.
- We independently select a random sample of size n_1 from the 1-st population and another random sample of size n_2 from the 2-nd population:
 - Let X_1 = no. of elements of type A in the 1-st sample.
 - Let X_2 = no. of elements of type A in the 2-nd sample.
 - $\hat{p}_1 = \frac{X_1}{n_1}$ = proportion of the 1-st sample
 - $\hat{p}_2 = \frac{X_2}{n_2}$ = proportion of the 2-nd sample
 - The sampling distribution of $\hat{p}_1 - \hat{p}_2$ is used to make inferences about $p_1 - p_2$.

Result:

1. $E(\hat{p}_1 - \hat{p}_2) = p_1 - p_2$
2. $Var(\hat{p}_1 - \hat{p}_2) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$; $q_1 = 1 - p_1$, $q_2 = 1 - p_2$
(3) For large n_1 and n_2, we have

$$
\hat{p}_1 - \hat{p}_2 \sim N(p_1 - p_2, \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}) \quad \text{(Approximately)}
$$

$$
Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0, 1) \quad \text{(Approximately)}
$$
Critical Values of the t-distribution (t_α)

<table>
<thead>
<tr>
<th>ν</th>
<th>0.40</th>
<th>0.30</th>
<th>0.20</th>
<th>0.15</th>
<th>0.10</th>
<th>0.05</th>
<th>0.025</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.325</td>
<td>0.727</td>
<td>1.376</td>
<td>1.963</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
</tr>
<tr>
<td>2</td>
<td>0.289</td>
<td>0.617</td>
<td>1.061</td>
<td>1.386</td>
<td>1.866</td>
<td>2.920</td>
<td>4.303</td>
</tr>
<tr>
<td>3</td>
<td>0.277</td>
<td>0.584</td>
<td>0.978</td>
<td>1.250</td>
<td>1.638</td>
<td>2.353</td>
<td>3.182</td>
</tr>
<tr>
<td>4</td>
<td>0.271</td>
<td>0.569</td>
<td>0.941</td>
<td>1.190</td>
<td>1.533</td>
<td>2.122</td>
<td>2.777</td>
</tr>
<tr>
<td>5</td>
<td>0.267</td>
<td>0.559</td>
<td>0.920</td>
<td>1.156</td>
<td>1.476</td>
<td>2.015</td>
<td>2.571</td>
</tr>
<tr>
<td>6</td>
<td>0.265</td>
<td>0.553</td>
<td>0.906</td>
<td>1.134</td>
<td>1.440</td>
<td>1.943</td>
<td>2.447</td>
</tr>
<tr>
<td>7</td>
<td>0.263</td>
<td>0.549</td>
<td>0.896</td>
<td>1.119</td>
<td>1.415</td>
<td>1.895</td>
<td>2.365</td>
</tr>
<tr>
<td>8</td>
<td>0.262</td>
<td>0.546</td>
<td>0.889</td>
<td>1.108</td>
<td>1.397</td>
<td>1.860</td>
<td>2.306</td>
</tr>
<tr>
<td>9</td>
<td>0.261</td>
<td>0.543</td>
<td>0.883</td>
<td>1.100</td>
<td>1.383</td>
<td>1.833</td>
<td>2.262</td>
</tr>
<tr>
<td>10</td>
<td>0.260</td>
<td>0.542</td>
<td>0.879</td>
<td>1.093</td>
<td>1.372</td>
<td>1.812</td>
<td>2.228</td>
</tr>
<tr>
<td>11</td>
<td>0.260</td>
<td>0.540</td>
<td>0.876</td>
<td>1.088</td>
<td>1.363</td>
<td>1.796</td>
<td>2.201</td>
</tr>
<tr>
<td>12</td>
<td>0.259</td>
<td>0.539</td>
<td>0.873</td>
<td>1.083</td>
<td>1.356</td>
<td>1.782</td>
<td>2.179</td>
</tr>
<tr>
<td>13</td>
<td>0.259</td>
<td>0.537</td>
<td>0.870</td>
<td>1.079</td>
<td>1.350</td>
<td>1.771</td>
<td>2.160</td>
</tr>
<tr>
<td>14</td>
<td>0.258</td>
<td>0.537</td>
<td>0.868</td>
<td>1.076</td>
<td>1.345</td>
<td>1.761</td>
<td>2.145</td>
</tr>
<tr>
<td>15</td>
<td>0.258</td>
<td>0.536</td>
<td>0.866</td>
<td>1.074</td>
<td>1.341</td>
<td>1.753</td>
<td>2.131</td>
</tr>
<tr>
<td>16</td>
<td>0.258</td>
<td>0.535</td>
<td>0.865</td>
<td>1.071</td>
<td>1.337</td>
<td>1.746</td>
<td>2.120</td>
</tr>
<tr>
<td>17</td>
<td>0.257</td>
<td>0.534</td>
<td>0.863</td>
<td>1.069</td>
<td>1.333</td>
<td>1.740</td>
<td>2.110</td>
</tr>
<tr>
<td>18</td>
<td>0.257</td>
<td>0.534</td>
<td>0.862</td>
<td>1.067</td>
<td>1.330</td>
<td>1.734</td>
<td>2.101</td>
</tr>
<tr>
<td>19</td>
<td>0.257</td>
<td>0.533</td>
<td>0.861</td>
<td>1.066</td>
<td>1.328</td>
<td>1.729</td>
<td>2.093</td>
</tr>
<tr>
<td>20</td>
<td>0.257</td>
<td>0.533</td>
<td>0.860</td>
<td>1.064</td>
<td>1.325</td>
<td>1.725</td>
<td>2.086</td>
</tr>
<tr>
<td>21</td>
<td>0.257</td>
<td>0.532</td>
<td>0.859</td>
<td>1.063</td>
<td>1.323</td>
<td>1.721</td>
<td>2.080</td>
</tr>
<tr>
<td>22</td>
<td>0.256</td>
<td>0.532</td>
<td>0.858</td>
<td>1.061</td>
<td>1.321</td>
<td>1.717</td>
<td>2.074</td>
</tr>
<tr>
<td>23</td>
<td>0.256</td>
<td>0.532</td>
<td>0.858</td>
<td>1.060</td>
<td>1.319</td>
<td>1.714</td>
<td>2.069</td>
</tr>
<tr>
<td>24</td>
<td>0.256</td>
<td>0.531</td>
<td>0.857</td>
<td>1.059</td>
<td>1.318</td>
<td>1.711</td>
<td>2.064</td>
</tr>
<tr>
<td>25</td>
<td>0.256</td>
<td>0.531</td>
<td>0.856</td>
<td>1.058</td>
<td>1.316</td>
<td>1.708</td>
<td>2.060</td>
</tr>
<tr>
<td>26</td>
<td>0.256</td>
<td>0.531</td>
<td>0.856</td>
<td>1.058</td>
<td>1.315</td>
<td>1.706</td>
<td>2.056</td>
</tr>
<tr>
<td>27</td>
<td>0.256</td>
<td>0.531</td>
<td>0.855</td>
<td>1.057</td>
<td>1.314</td>
<td>1.703</td>
<td>2.052</td>
</tr>
<tr>
<td>28</td>
<td>0.256</td>
<td>0.530</td>
<td>0.855</td>
<td>1.056</td>
<td>1.313</td>
<td>1.701</td>
<td>2.048</td>
</tr>
<tr>
<td>29</td>
<td>0.256</td>
<td>0.530</td>
<td>0.854</td>
<td>1.055</td>
<td>1.311</td>
<td>1.699</td>
<td>2.045</td>
</tr>
<tr>
<td>30</td>
<td>0.256</td>
<td>0.530</td>
<td>0.854</td>
<td>1.055</td>
<td>1.310</td>
<td>1.697</td>
<td>2.042</td>
</tr>
<tr>
<td>40</td>
<td>0.255</td>
<td>0.529</td>
<td>0.851</td>
<td>1.050</td>
<td>1.303</td>
<td>1.684</td>
<td>2.021</td>
</tr>
<tr>
<td>60</td>
<td>0.254</td>
<td>0.527</td>
<td>0.848</td>
<td>1.045</td>
<td>1.296</td>
<td>1.671</td>
<td>2.000</td>
</tr>
<tr>
<td>120</td>
<td>0.254</td>
<td>0.526</td>
<td>0.845</td>
<td>1.041</td>
<td>1.289</td>
<td>1.658</td>
<td>1.980</td>
</tr>
<tr>
<td>∞</td>
<td>0.253</td>
<td>0.524</td>
<td>0.842</td>
<td>1.036</td>
<td>1.282</td>
<td>1.645</td>
<td>1.960</td>
</tr>
</tbody>
</table>
Critical Values of the t-distribution (t_{α})

<table>
<thead>
<tr>
<th>ν</th>
<th>α</th>
<th>0.02</th>
<th>0.015</th>
<th>0.01</th>
<th>0.0075</th>
<th>0.005</th>
<th>0.0025</th>
<th>0.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>15.895</td>
<td>21.205</td>
<td>31.821</td>
<td>42.434</td>
<td>63.657</td>
<td>127.322</td>
<td>636.590</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.482</td>
<td>3.896</td>
<td>4.541</td>
<td>5.047</td>
<td>5.841</td>
<td>7.453</td>
<td>12.924</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.999</td>
<td>3.298</td>
<td>3.747</td>
<td>4.088</td>
<td>4.604</td>
<td>5.598</td>
<td>8.610</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2.757</td>
<td>3.003</td>
<td>3.365</td>
<td>3.634</td>
<td>4.032</td>
<td>4.773</td>
<td>6.869</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2.517</td>
<td>2.715</td>
<td>2.998</td>
<td>3.203</td>
<td>3.499</td>
<td>4.029</td>
<td>5.408</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>2.449</td>
<td>2.634</td>
<td>2.896</td>
<td>3.085</td>
<td>3.355</td>
<td>3.833</td>
<td>5.041</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2.398</td>
<td>2.574</td>
<td>2.821</td>
<td>2.998</td>
<td>3.250</td>
<td>3.690</td>
<td>4.781</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2.359</td>
<td>2.527</td>
<td>2.764</td>
<td>2.932</td>
<td>3.169</td>
<td>3.581</td>
<td>4.587</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2.328</td>
<td>2.491</td>
<td>2.718</td>
<td>2.879</td>
<td>3.106</td>
<td>3.497</td>
<td>4.437</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2.303</td>
<td>2.461</td>
<td>2.681</td>
<td>2.836</td>
<td>3.055</td>
<td>3.428</td>
<td>4.318</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>2.282</td>
<td>2.436</td>
<td>2.650</td>
<td>2.801</td>
<td>3.012</td>
<td>3.372</td>
<td>4.221</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>2.264</td>
<td>2.415</td>
<td>2.624</td>
<td>2.771</td>
<td>2.977</td>
<td>3.326</td>
<td>4.140</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2.249</td>
<td>2.397</td>
<td>2.602</td>
<td>2.746</td>
<td>2.947</td>
<td>3.286</td>
<td>4.073</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2.235</td>
<td>2.382</td>
<td>2.583</td>
<td>2.724</td>
<td>2.921</td>
<td>3.252</td>
<td>4.015</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>2.224</td>
<td>2.368</td>
<td>2.567</td>
<td>2.706</td>
<td>2.898</td>
<td>3.222</td>
<td>3.965</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>2.214</td>
<td>2.356</td>
<td>2.552</td>
<td>2.689</td>
<td>2.878</td>
<td>3.197</td>
<td>3.922</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2.205</td>
<td>2.346</td>
<td>2.539</td>
<td>2.674</td>
<td>2.861</td>
<td>3.174</td>
<td>3.883</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2.197</td>
<td>2.336</td>
<td>2.528</td>
<td>2.661</td>
<td>2.845</td>
<td>3.153</td>
<td>3.850</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>2.189</td>
<td>2.328</td>
<td>2.518</td>
<td>2.649</td>
<td>2.831</td>
<td>3.135</td>
<td>3.819</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>2.183</td>
<td>2.320</td>
<td>2.508</td>
<td>2.639</td>
<td>2.819</td>
<td>3.119</td>
<td>3.792</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>2.177</td>
<td>2.313</td>
<td>2.500</td>
<td>2.629</td>
<td>2.807</td>
<td>3.104</td>
<td>3.768</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2.172</td>
<td>2.307</td>
<td>2.492</td>
<td>2.620</td>
<td>2.797</td>
<td>3.091</td>
<td>3.745</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>2.167</td>
<td>2.301</td>
<td>2.485</td>
<td>2.612</td>
<td>2.787</td>
<td>3.078</td>
<td>3.725</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>2.162</td>
<td>2.296</td>
<td>2.479</td>
<td>2.605</td>
<td>2.779</td>
<td>3.067</td>
<td>3.707</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>2.158</td>
<td>2.291</td>
<td>2.473</td>
<td>2.598</td>
<td>2.771</td>
<td>3.057</td>
<td>3.690</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>2.154</td>
<td>2.286</td>
<td>2.467</td>
<td>2.592</td>
<td>2.763</td>
<td>3.047</td>
<td>3.674</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>2.150</td>
<td>2.282</td>
<td>2.462</td>
<td>2.586</td>
<td>2.756</td>
<td>3.038</td>
<td>3.659</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>2.147</td>
<td>2.278</td>
<td>2.457</td>
<td>2.581</td>
<td>2.750</td>
<td>3.030</td>
<td>3.646</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>2.125</td>
<td>2.250</td>
<td>2.423</td>
<td>2.542</td>
<td>2.704</td>
<td>2.971</td>
<td>3.551</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>2.099</td>
<td>2.223</td>
<td>2.590</td>
<td>2.504</td>
<td>2.660</td>
<td>2.915</td>
<td>3.460</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>2.076</td>
<td>2.196</td>
<td>2.358</td>
<td>2.468</td>
<td>2.617</td>
<td>2.860</td>
<td>3.373</td>
</tr>
<tr>
<td>∞</td>
<td></td>
<td>2.054</td>
<td>2.170</td>
<td>2.326</td>
<td>2.432</td>
<td>2.576</td>
<td>2.807</td>
<td>3.291</td>
</tr>
</tbody>
</table>