العمليات الأيضية

هضم الكربوهيدرات والglycogenolysis
العمليات الأيضية

تعريف:

- هي المجموع الكلي لكافة التفاعلات الأنزيمية التي تحدث في الخلية.

الوظائف النوعية للعمليات الحيوية:

- يوجد أربع وظائف نوعية:
 1- استخلاص الطاقة الكيميائية من الأغذية العضوية أو أشعة الشمس.
 2- تحويل المواد الغذائية من المحيط إلى مواد بنائية أو مواد أولية للجزيئات الكبيرة المكونة للخلايا.
 3- تجميع المواد البنائية للبروتينات، الأحماض الأمينية، الدهون، السكريات المتعددة والمكونات الأخرى المتميزة في الخلية.
 4- تكوين أو تحطيم هذه الجزيئات الحيوية الضرورية كوظيفة معينة في الخلايا.
العمليات الأيضية

تتكون العمليات الأيضية من شبكتين:

1- شبكة تعمل لإنتاج الطاقة الكيميائية من تحلل جزيئات الوقود أو من أشعة الشمس.

2- شبكة تسخر الطاقة الكيميائية لغرض صنع مكونات خلوية جديدة.

ATP
التمثيل الغذائي للكربوهيدرات

Glycolysis
Krebs Cycle
Glycogenolysis
Glycogenesis
Gluconeogenesis

تحليل الجلوكوز
دوره كربس
تحليل الجلايكوجين
بناء الجلايكوجين
استحداث الجلايكوجين
التمثيل الغذائي للكربوهيدرات

في الفم:
- يتم تحلل النشا إلى مالتوز وسلاسل من عديدات السكريات بواسطة أنزيم أمييليز اللعاب وذلك بكسر الرابطة الجلايكوسيدية (1→4).
- يتوقف عمل هذا الأنزيم عند وصوله مع الطعام إلى المعدة شديدة الحموضة.

في المعدة:
- لا يوجد هضم.

في الأمعاء:
- يوجد أنزيم الأمييليز الأمعاء الذي يكمل ما بدأه أمييليز اللعاب ويخرج المزيد من الرابطة الجلايكوسيدية وينتج منها خليط من السكريات ثنائية.
- تفرز الأنزيمات الخاصة بحمض السكريات الثنائية مثل أنزيم اللاكتيز ، السكريز ، مالتيز.
- لا يمكن هضم السيليزوز لعدم وجود الأنزيمات المخصصة لذلك.
- يكون الناتج سكريات أحادية.
امتصاص الكربوهيدرات

في الأمعاء يتم امتصاص السكريات الأحادية خلال الغشاء الطلائي المبطن للأمعاء الدقيقة، وبعد الامتصاص يتم نقلها في الدم إلى الكبد، ويعمل الكبد على تحليل السكاكير الأحادية مثل الفركتوز و الجلاكتوز إلى جلوكوز و تشغله في الأنسجة عن طريق صلب الأنسجة، وتشتمل الأنسجة على القطاعات التي تحتوي على صلب الأنسجة. ومنها باقي الخلايا.
مصير الجلوكوز في الدم

1- يتم نقله بواسطة الدم إلى الأنسجة المختلفة في الجسم.

2- يتم استغلاله في الأنسجة المختلفة بالطرق الآتية:

- أكسدة الجلوكوز لإنتاج الماء، ثاني أكسيد الكربون، والطاقة عن طريق الجلايكولisis ودورة كربس.
- تحويل الجلوكوز إلى مكونات أخرى ذات أهمية بيولوجية مثل:
 أ- الريبوس والديوكسي رابوز لتصنيع الأحماض النووية.
 ب- الفركتوز يدخل في تكوين السائل المنوي.
 ت- حمض الجلوكويرونك في الكبد وهو هام للتفاعلات التي يتم فيها تحويل المواد السامة إلى مواد غير سامية.
 ج- سكريات أمينية لصنع السكريات المتعددة المخاطية.
تابع مصير الجلوكوز في الدم

3- التخزين:

- يتم تخزين الجلوكوز في الكبد والعضلات على هيئة جلوكوجين بواسطة عملية glylogenesis.
- يتم تخزينه في الكبد والنسيج الشحمي على هيئة دهون متعادلة عن طريق عملية lipogenesis.
Glycolysis

- The process that occurs in the cell by breaking down glucose and then converting it into biophenol and then:
 - 1- In the absence of oxygen in the environment, the fungal and yeast cells convert ethanol into this process by this reaction:

\[
\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow 2 \text{CH}_3\text{CHOHCOOH}
\]

- 2- In the presence of oxygen and the enzyme A, the process is as follows:

\[
\text{C}_6\text{H}_{12}\text{O}_6 \rightarrow 2 \text{Acetyle CoA}
\]
مصائر البيروفيت الناتج من تحلل الجلوكوز

شكل (1-21): مسارات أيض البيروفيت الناتج من تحلل الجلوكوز في كائنات مختلفة.
تابع تحلل السكر (الجللايكوليسس)

عند تحويل الجلوكوز إلى البيروفيت:

- تتم هذه العملية في السيتوبلازم.
- بشكل عام، جميع المركبات الوسطية بين الجلوكوز والبيروفيت ترتبط برابط استري مع مجموعة الفوسفات واحدة على الأقل.
- مجموعة الفوسفات تساعده على عدم خروج المركبات الوسطية إلى الخارج بسبب وجود الشحنات السالبة.
- يمكننقل مجموعة الفوسفات ذات الطاقة العالية من المركبات الوسطية إلى ADP مباشرة لإعطاء ATP.
- تحتوي على عشر خطوات وتقسم إلى مرحلتين.

المرحلة الأولى: تبدأ بالجلوكوز وتنتهي بالجليسرالدهيد-3-فسوفسيت وتستخدم (تستهلك) فيها طاقة ATP.

المرحلة الثانية: تبدأ بالجليسرالدهيد-3-فسوفسيت وتنتهي بالبيروفيت وتنتج فيها طاقة ATP.
تابع تحلل السكر (الجلايكوليمينس)

المرحلة الأولى:

- جلايكوز → 6 C
- ATP → ADP
- HK

التفاعل الأول:

- جلايكوز-6-فسفستيت
- PGI

التفاعل الثاني:

- جلايكوز-6-فسفستيت
- PFK1

التفاعل الثالث:

- جلايكوز-6،1-ثنائي الفوسفستيت
- ألفولير

التفاعل الرابع:

- ثنائي هيدروكس كسي استيون + 3 C
تابع تحلل السكر (الجللايكوليسين)

تابع المرحلة الأولى:

- تحويل ثنائي هيدروكسي استون إلى الجليسر ألدهيد-3- فوسفิต عن طريق أنزيم تريوز فوسفات أيسوميريز.

ثنائي هيدرو كسي استون

تريرز فوسفات أيسوميريز

التفاعل الخامس

التفاعلات الخامسة

جليرس ألدهيد-3- فوسفيت
تابع تحلل السكر (الجالايكوليسين)

- تبدأ بتجمع السكريات البسيطة وتنتهي بتحويلها إلى الجليسر ألدريد-3-الفسفات.

في التفاعل الأول:
- أنزيم الهكسوسوكيناز يحفز التفاعلات في جميع الأنسجة أما أنزيم الجلوكوكييناز يعمل في الكبد.
- تفاعل غير عكسي، تفاعل منتظم يثبط بالزيادة في الجلوكوز-6-فوسفات.
- تفاعل يحتاج إلى طاقة ATP، تفاعل فسفرة يحتاج إلى المغنيسيوم كعامل مساعد.

في التفاعل الثاني:
- أنزيم الفسفوجلوكوأيزوميريز تفاعل عكسي.
- يتحول من ألدوز إلى كيتوز.

في التفاعل الثالث:
- تفاعل يحتاج إلى طاقة، تفاعل فسفرة يحتاج إلى المغنيسيوم كعامل مساعد.
- تفاعل غير عكسي
تابع تحلل السكر (الجلاليكوليسوس)

التفاعل الرابع:
- يتم كسر جزيء الفركتوز 6-1 فوسفات (سداسي الكربون) إلى مركبين الجليسرألدهيد-3 فوسفات وثنائي هيدرو كسي اسيتون (ثلاثيات الكربون).

تفاعل عكسي.

التفاعل الخامس:
- تحويل ثنائي هيدرو كسي اسيتون إلى جزيء ثاني من الجليسرألدهيد-3-فوسفات.

تنتهي المرحلة الأولى:
- بجزيئين من الجليسرألدهيد-3-فوسفات، جزيئين ثلاثيث الكربون.
- استهلاك جزيئين من الطاقة على شكل ADP وتحويلها إلى ATP.
تابع تحلل السكر (الجالايكوليبليسس)

المرحلة الثانية:

التفاعل السادس:

\[2 \text{Glyceraldehyde-3-Phosphate} + \text{NAD}^+ \rightarrow \text{Glyceraldehyde-3-Phosphate} + 2 \text{NADH} + 2 \text{ATP}\]

التفاعل السابع:

\[\text{G3PDH} \rightarrow \text{PGK} \rightarrow \text{Glyceraldehyde-3-Phosphate} \rightarrow \text{Pyruvate} \rightarrow \text{Acetyl-CoA} \]

التفاعل الثامن:

\[\text{Acetyl-CoA} + 2 \text{NAD}^+ + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2 \text{NADH} + 2 \text{ATP}\]

التفاعل التاسع:

\[\text{ADPATP} \rightarrow \text{H}_2\text{O}\]
تابع تحلل السكر (الجللايكوليسس)

تابع المرحلة الثانية:

2ADP + 2ATP → 3 C

التفاعل العاشر: بيروفيتن كاينير

جزئين من بيروفيتن
تابع تحلل السكر (الجلاليكوليسس)

- تتضمن خطوات الأكسدة والاختزال والفسفرة وإنتاج الطاقة.
- هذه التفاعلات تكون جزئين.
- في التفاعل السادس:
 - تتأكسد مجموعة الكربونيل إلى مجموعة كربوكسيل.
 - الطاقة تختزن على شكل مجموعة فوسفات الكربوكسيل.
 - يتم نزع هيدروجين واحترزال جزيء NADH إلى NAD+ (مركب طاقة).
- في التفاعل السابع:
 - ATP تنقل الطاقة من مجموعة الفسفات إلى ADP وتنتج.
- في التفاعل الثامن:
 - إعادة ترتيب مجموعة الفسفات من الكربونات الطرفية الثالثة إلى ذرة الكربون الثانية.
تابع تحلل السكر (الجللايكوليسس)

- في التفاعل التاسع:
 - يتم نزع جزيء ماء.
 - ينتج مركب غير مشبع.
 - يحتوي على مجموعة فسفات عالية الطاقة.

- في التفاعل العاشر:
 - ATP تنقل الطاقة من مجموعة الفسفات إلى ADP وتنتج.
نقاط التحكم في التحلل الجلايكولي

توجد ثلاثة نقاط يتم التحكم من خلالهم بمسار التحلل الجلايكولي حسب احتياجات الخلايا للطاقة:

- تحول الجلوكوز إلى جلوكوز 6- فوسفات (الخطوة 1).
- تحول الفركتوز 6- فوسفات إلى فركتوز 1-6 ثنائي الفوسفات (الخطوة 3).
- تحول الفوسفو إينول بيروفيت إلى بيروفيت (الخطوة 10).

إذا زاد تركيز جلوكوز 6- فوسفات المنتج فإنه يثبط إنزيم الهكسوكيناز. لذلك فهو يمثل أحد نقاط التحكم في التحلل الجلايكولي.
تنظيم الجلايكوليسس

- يتم التنظيم من خلال:
- تثبيط هذه الأنزيمات بالتغذية المرتدة بواسطة النتائج النهائية للمسار.

ADP/ATP

- إذا كانت نسبة ADP/ATP مرتفعة (قليلة) ذلك يحفر الجلايكوليسس لتزويد ATP بالطاقة.
- إذا كانت نسبة ATP منخفضة (مرتفعة) ذلك يثبط الجلايكوليسس.
- الهرمونات كذلك تقوم بدور تنظيمي.
العدد الكلي لجزيئات الطاقة ATP

- من التفاعلات أيض جزيء واحد من الجلوكوز:
 يتم استهلاك جزيئتين من الطاقة ATP وإنتاج أربعة جزيئات من الطاقة ATP، وتكون المحصلة النهائية إنتاج جزيئتين من الطاقة ATP.

- إنتاج جزيئين من NADH الذي تتم أكسدته في الميتوكوندريا ليعطي ATP.

- كل جزيء من ATP يعطي ثلاث جزيئات من NADH. [ATP] الناتجة هي ثمانية جزيئات ATP.

العدد الكلي لجزيئات الطاقة ATP مباشرة في الستوبلازم وستة في الميتوكوندريا.
ATP → ADP

فسفوركلوكو أيزومراز

فسفوركلوkosز-6-فسفريت
فسفوركلوkosز-1,6-ثنائي الفسفريت
الدالينز

ألفاميند-3-فسفريت + ثانوي هيدرو كسي أميتون

فسفوركليستير كابيناز
فسفوركليستير ميوريز
فسفوركليستير كابيناز
الدالينز

G3PDH

2 (Pi + NADH) → 2 NADH

فسفوركليستير كابيناز
فسفوركليستير ميوريز

فسفوركليستير كابيناز
الدالينز

2 H2O → أليبيترويل

فسفوركليستير كابيناز
فسفوركليستير ميوريز

فسفوركليستير كابيناز