
An empirical study of the evolution of an agile-developed software system

A. Capiluppi
University of

Lincoln
acapiluppi@lincoln.ac.uk

J. Fernandez-
Ramil

The Open
University

j.f.ramil@open.ac.uk

J. Higman
Independent Agile

Coach
London, UK

jhigman@pobox.com

H. C. Sharp
The Open
University

h.c.sharp@open.ac.uk

N. Smith
The Open
University

n.smith@open.ac.uk

Abstract

We have analyzed evolution patterns over two and a
half years for a system developed using eXtreme
Programming. We find that the system shows a smooth
pattern of growth overall, that (McCabe) code
complexity is low, and that the relative amount of
complexity control work (e.g. refactoring) is higher
than in other systems we have studied. To interpret
these results, we have drawn on qualitative data
including the results of an observational study, records
of progress and productivity, and comments on our
findings from team members.

1. Introduction

Approaches to software development include both
agile and plan-driven methods [1]. Agile methods [2]
emphasise flexibility, informal collaboration and
working code. Plan-driven approaches emphasise
large-scale planning, formal communications and
documentation. Boehm & Turner [1, 3] proposed five
critical risk dimensions (size, criticality, dynamism,
personnel and culture) that organisations should
consider when deciding which method to use. While
the focus of Boehm & Turner appears to be the
situation before and during initial development,
surveys suggest that the majority of developer effort
occurs in maintenance and evolution [4]. Hence, an
additional dimension that needs to be studied is what
happens during maintenance and evolution. (For
simplicity, we consider ‘maintenance’ and ‘evolution’
to be synonymous terms for all work performed after
the first release of the software.) Empirical evidence
about evolution may help organisations to decide what
type of method to pursue.

There have been studies [e.g. 5, 6, 7] of the
evolution of software developed using some form of
plan-driven methods (e.g. following the waterfall
process and its variants). Topics such as the laws of
software evolution have been discussed over more than
30 years [8, 5, 7]. For example, it is argued that, as

changes accumulate, complexity growth is inevitable in
evolving software [e.g. 8, 9]. It is also argued that a
level of complexity reduction work (e.g. refactoring
[10]) is required in order to sustain long-term
evolution. However, little is empirically known about
evolution using agile methods.

Proponents of agile processes argue that such
processes should be able to respond to change and to
withstand the continual pressures driving software
evolution better than plan-driven approaches.
Sustainability of the evolution of code is an explicit
objective in agile teams, and refactoring is seen as
something necessary and positive. These claims need
to be tested through studies of software evolved using
agile methods. This requires both qualitative and
quantitative observations whose collection and study is
difficult.

We are aware of only two publications discussing
the evolution of agile software, neither of which used
measurements from agile processes as empirical
evidence. Wernick & Hall [11] argued that pair
programming should be beneficial for long-term
evolution. Chapin [12] considers the different types of
stakeholders and concludes that the effects of agile
methods may be more positive for some than for
others. To our knowledge, the findings presented here
forms the first measurement-based study of the
evolution of software developed using an agile
approach in an industrial setting.

In this paper, we present findings from an initial
exploratory investigation into the evolution of one code
base developed using eXtreme Programming (XP)
[13], an agile method, over the period October 2002 to
March 2005. The aim of the study was to describe the
evolution of a commercial software system developed
with an agile approach. It was not our intention to draw
lessons of best practice from this single observation. In
our analysis, we use measurements and time series
displays that we have used in previous studies of non-
agile object-oriented systems [e.g. 14].

To complement this analysis and to contextualise
the quantitative data, we draw on several sources of

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

qualitative data: the team’s records of progress and
productivity; notes from their retrospectives [15], an
observational study of the team conducted at the
beginning of 2002 [16], and comments from team
members responding to the results of our analysis.

1.1 eXtreme Programming

XP is an agile development method, and all agile
methods conform to the agile manifesto [2]. The
emphasis of the agile manifesto is different from
traditional software development: individuals and
interactions are valued over processes and tools,
working software is valued over comprehensive
documentation, customer collaboration is valued over
contract negotiation, and responding to change is
valued over following a plan.

Some may dispute the detail but the sense of XP
practice is captured in this description by Cockburn
[17, p29, original emphasis]:

“It calls for all the developers to sit in one large
room, for there to be a usage expert or 'customer'
on the development staff full time, for the
programmers to work in pairs and develop
extensive unit tests for their code that can be run
automatically at any time, for those tests always to
run at 100% of all code that is checked in, and for
code to be developed in nano-increments, checked
in and integrated several times a day. The result is
delivered to real users every two to four weeks1

“In exchange for all this rigor in the development
process, the team is excused from producing any
extraneous documentation. The requirements live
as an outline on collections of index cards, and the
running project plan is on the whiteboard. The
design lives in the oral tradition among the
programmers, in the unit tests, and in the oft-tidied-
up code itself.”

While its acceptability is contested, many organisations
have successfully adopted the approach, and its
popularity is growing.

1.2 The case study organization

The case study organization is a small company
developing web-based intelligent advertisements for
paying customers. The software analyses the content of
the current web page to determine the user’s interest.
The software then displays an advert relevant to this
interest. For example, if the reader is looking at a page
about childcare then an advert for the latest baby buggy

1 This chunk of development is called an 'iteration'; many

companies have one-week iterations

might be displayed; if they are reading about home
improvements then an advert about power tools might
be displayed.

The company started in May 1999, and has used all
12 practices (see Table 1), originally proposed in
Beck’s seminal book [13], since they first formed. This
was verified during an observational study of the team
during 2002 [16].

During the time covered by the code base, the team
consisted of between 2 and 10 developers, one graphic
designer and one person who looked after the
infrastructure. The company employed around four
marketing personnel who determined what was
required in collaboration with clients. Marketing
personnel were regarded as being, in effect, the
customer. Throughout the study period, the code base
was being constantly updated, extended, developed,
and maintained. The developers made no distinction
between these activities.

At the time of writing, the company is still
operating, but has changed considerably since these
observations. However, the software is still in active
commercial use and the company remains profitable.

2. Source code evolution analysis

This application was implemented in Java, initially

using the Visual Age IDE before migrating to the
Eclipse IDE [18] in October 2002. Source code is only
available from this date. As standard change
management practice, a configuration management
(CVS) code repository was integrated with Eclipse and
used by the team to store the code and keep control of
versions and changes. A full copy of the entire code
repository was provided to us for this study. The code
base consists of approximately 130,000 lines of
original source code. Of these, 90,000 lines of code
(approximately 70% of the methods) consist of unit
tests. Because we are interested in the output of this
agile team, only the software developed by this team
was considered. The third-party code libraries used for
this product (some 400,000 lines of code) were
excluded from our analysis.

We analyzed the code and extracted metrics using
our own tools. The information about the code check-
ins made by the pairs and the code base, including unit
tests, were sampled with four observations per month.
For each sample, the code’s size and other metrics
were measured. This data spans about 2.5 years of the
evolution of this product.

In the quantitative data displays below we use
relative numbers to keep confidential the actual
characteristics of the product.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

In order to analyse quantitatively the evolution of
the system we used the typical measurements in this
type of studies such as size [19, 5], elements handled
(touched) [5], complexity [20], and the amount of anti-
regressive work [8, 21, 22, 23].

2.1 Size of the system

Size was measured by counting the number of

source items. Figures 1a and b show the relative size of
the agile system, over time, measured in number of
files and number of lines of code (LOC). Growth is
positive during most of the period studied. There is a
decrease in growth rate between March and May 2003,
depending on the measurement (files, LOC) used. In
April 2003 the company reorganized and the number
of developer pairs dropped from 3 to 1. Growth rate
recovers towards the end of the period studied. In a

'classic study' with limited contextual inputs this
growth pattern would have been interpreted as 'growth
constrained by increasing complexity with
superimposed stabilization ripples' [e.g. 24]. However,
as we will see in section 4.1.1 below, the interpretation
here is quite different.

Figure 2 presents the amount of work measured as
the number of files handled (i.e. added or changed)
over time. The linear trend resembles that of the
‘classical’ behaviour [5] in which cumulative evolution
work appears to follow a predictable constant linear
rate.

2.2 Measurement of complexity

There are a number of different ways of measuring
software complexity [25]. We used the McCabe
cyclomatic number [20] as a measure of complexity
and used the accepted threshold value of 15 [26] to
differentiate between high and low complexity
methods. This measure does not address software
complexity arising from inter-method sources, such as
coupling. We have previously studied a number of
open source systems, including some developed in
Java, and we have found that in all of these systems
between 5% and 10% of the methods have high
complexity [23]. In this system, there were at most two

Size (# of files)

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

14/10/02 14/04/03 14/10/03 13/04/04 13/10/04 13/04/05

Date (dd/mm/yy)

of

 F
ile

s
(re

la
tiv

e
to

 m
ax

)

Size (LOC)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

14/10/02 14/04/03 14/10/03 13/04/04 13/10/04 13/04/05

Date (dd/mm/yy)

of

 L
O

C
 (r

el
at

iv
e

to
 m

ax
)

..

Figures 1a (top) and 1b (bottom). Total system

size including unit tests, in number of files (top)
and LOC (bottom) over time, relative to the
maximum size achieved in period studied

Table 1. XP Practices
The Planning Game – Quickly determine the scope of
the next release by combining business priorities and
technical estimates. As reality overtakes the plan,
update the plan.
Small releases – Put a simple system into production
quickly, then release new versions on a very short
cycle.
Metaphor – Guide all development with a simple
shared story of how the whole system works.
Simple design – The system should be designed as
simply as possible at any given moment. Extra
complexity is removed.
Testing – Programmers continually write unit tests,
which must run flawlessly for development to
continue. Customers write tests demonstrating that
features are finished.
Refactoring – Programmers restructure the system
without changing its behavior to remove duplication,
improve communication, simplify, or add flexibility.
Pair programming – All production code is written
with two people at one machine.
Collective ownership – Anyone can change code
anywhere in the system at any time.
Continuous integration – Integrate and build the
system many times a day, every time a task is
completed.
40-hour week – Work no more than 40 hours a week as
a rule. Never work overtime a second week in a row.
On-site customer – Include a real, live user on the
team, available full-time to answer questions.
Coding standards – Programmers write all code in
accordance with rules emphasizing communication
through code.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

complex methods, a tiny proportion of the whole, from
October 2002 to January 2004, with none after that.

We estimated the cumulative of complexity control
work by comparing every method between two
consecutive releases (or weeks) and by counting how
many of them experienced a reduction in their
cyclomatic complexity number. In this way, the
number of methods that experienced a reduction
becomes a surrogate for the amount of complexity
control work. From a quantitative analysis, Figure 3
illustrates the rate at which the amount of complexity
control work accumulates. The trend in figure 3
approximately follows the trend of the total work in
figure 2, suggesting that the amount of complexity
control is roughly constant and similar to the level of
work. This is similar to what we have found in other
non-agile systems [27, 23].

In order to estimate the relative level of complexity
control work, we divided the number of complexity
decreases observed by the number of files handled (see
figure 4). The level of complexity control work is
about 46% of the total work on average, but the
amount varies widely over time. The 46% figure is
higher than what we have measured in any other
system that we have studied; it is typically below 10%
of the total [22, 23].

3. Analysis of the wiki records

During the early phases of the system evolution

(September 1999 to March 2004) the developers used a
wiki (see figure 5 for an example) to maintain a record
of activity in each iteration. Wikis are often used
within agile teams to maintain information about
source code, or about development processes.
Maintenance of the wiki was usually delegated to one
member of the team at the end of each iteration. We
focus our analysis on the entries that overlap with the
code base availability. The data collected were:
1. Stories implemented in this iteration, including

implementation time;

2. Dates of iteration start and end;
3. Number of pairs working;
4. Project velocity (the number of productive days of

work in each iteration), expected and actual;
5. Load factor, expected and actual. This is the ratio

between estimated and actual times to complete
each story. This was rarely reported for our period
of focus.

Figure 6 displays two of the extracted time series,
the number of programming pairs and velocity over the
77 weeks of data overlap. After the company
restructured in April, much less data was captured and
the wiki data should be considered less reliable.
However, the apparent velocity of the project does not
seem to change after this restructuring. The outlier
value for velocity of 20.5 recorded at this same time is
the result of velocity being recalibrated and apparently
being recorded inaccurately for that iteration, i.e. for
the whole three-week iteration rather than for each
week, as previously.

Total work (cumulative files handled)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

14/10/02 14/04/03 14/10/03 13/04/04 13/10/04 13/04/05

Date (dd/mm/yy)

of

 fi
le

s
ha

nd
le

d
 (r

el
at

iv
e

to
 m

ax
)

..

Figure 2. Cumulative work in number of files

handled per week

Relative level of complexity control work

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

14/10/02 14/04/03 14/10/03 13/04/04 13/10/04 13/04/05

Date (dd/mm/yy)

ra
tio

 (0
 to

 1
)

..

Figure 4. Portion of file handling events
resulting in method complexity reduction

Cumulative complexity control work

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

14/10/02 14/04/03 14/10/03 13/04/04 13/10/04 13/04/05

Date (dd/mm/yy)

of

 it
em

s
 (r

el
at

iv
e

to
 m

ax
)

..

Figure 3. Cumulative complexity control work

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

4. Discussion

4.1 Results from combining quantitative and
qualitative analyses

The main findings from the analysis of code base
were the following:
1. Smooth growth (with small perturbations) was

seen in the evolution of this agile system.
2. In relative terms, the rate at which complexity-

control work progresses averages to 46% the total
work rate.

3. There are almost no highly complex items.
4. Growth rate measured in lines of code is higher

than growth rate measured in files or directories
Each of these is discussed below, drawing on our

qualitative data to provide contextual information and
to help explain our findings.

4.1.1 Smooth growth with small perturbations. One
of the key findings from the wiki records is that the
team underwent a considerable restructuring in April
2003. The reduction and re-organisation is not
reflected in the analysis of the code base except that

there is a temporary drop in growth rate at this time.
However the growth rate picks up and continues at a
similar rate (although with more ‘ripples’ than before).
Given that the staffing is reduced from 3 pairs to one
over the course of one iteration, this is a finding worthy
of explanation.

We put this question to the chief technical officer at
the time and his responses shows that although the
team reduced, the nature of the work they were
performing also changed:

“In terms of growth rates being high with one pair,
it's possible that there were clearer product
development targets in that period, where we had
latched onto an idea, and were building the
platform as quickly as we could…. the product had
become more defined, with a "workbench" web
application that grew quite rapidly (that would have
included quite a lot of html templates and other
non-code artifacts)

“Alternatively, it's possible that fewer pairs leads to
less refactoring, which leads to more lines of code
for the same amount of functionality (less time
spent stripping out redundant or duplicate code).”

We hypothesized that the other slight changes in
growth rate may have been caused by business cycles
or other reasons, but this has been refuted by team
members.

“There was some seasonality in campaigns that we
ran for clients - for example, [some] clients tend to
wind down their advertising a bit over the summer,
when there's less [activity] happening - but I'm not
sure why October, November and December would
be significant.”

Another suggestion is that the rate is more sensitive
to the particular circumstances of one pair. For
example, if one of the pair is unwell, or is needed to
work on other matters, this would affect the growth
rate of the system. However we have no evidence to
support or refute this idea.

Figure 5. An example wiki page showing
the data for one iteration

Wiki-extracted metrics

0

5

10

15

20

25

28/10/02 28/04/03 28/10/03

Date (dd./mm/yy) Pairs
Velocity

Figure 6. Wiki-extracted measurements from
Oct 2002 to March 2004 (77 weeks)

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

4.1.2 Complexity control work. From our qualitative
data, we know that the team was committed to coding
and code quality, and that they took refactoring
seriously [16]. As refactoring often acts to reduce the
complexity of individual methods [10], it is not
surprising that complexity of code was kept low and
that the level of complexity control work is high.

Notes recorded during the observational study
provide two sets of evidence. First, the team members
actively discussed how and when to perform
refactoring as part of their daily stand-up meetings.
Second, an episode was recorded where a team
member became frustrated because the estimate
allowed for the current piece of code being developed
did not allow for refactoring of existing code, hence
the refactoring had to be postponed. In fact, other pairs
of developers were carrying out changes that affected
related classes and it was agreed that refactoring
should wait until all of the changes had been
implemented.

There is also evidence for the team’s attitude to
refactoring in the retrospective notes. The
retrospectives invited team members to discuss four
questions relative to the preceding iteration: what we
did well, what we learned, what puzzles us and what
we can improve. For the iteration in August 2001
refactoring is noted as having been done well (although
refactoring of tests could be improved). During
September of the same year, refactoring of one
particular class is highlighted as something to improve.

4.1.3 Lack of complex items. The measure of
complexity we have used may not be ideal for object-
oriented systems. However, we have used the same
measures for other object-oriented systems developed
through traditional plan-based [27] and open source
methods [23]. When comparing this agile-developed
system with results from our other studies, we find that
the level of complex items is noticeably lower. For
example, the open source systems we analyzed (also
written in Java) have, on average, some 5% to 10%
highly-complex functions [21]. Other commercial code
bases (mostly C++ and Delphi) analyzed recently
shows similar results [27]. The almost complete lack of
complex methods in this system is striking.

4.1.4 Growth rate in lines of code. One interpretation
of the difference in growth rate between measurements
in LOC and files may be that methods tended to be
long, and that more classes should have been
developed. However, when we put this point to one of
the team members, they described their coding style
thus:

“We typically used short methods so might have
more private methods as a result of refactoring.
Also we used verbose coding style and no
comments.”

Hence, the increase may be due to the ‘verbose
coding style’

4.2 Relating evolution at the technical and
business level

Overall, the quantitative measurements presented in
section 2 suggest smooth evolution (apart from the
reduction in growth rate in April 2003 due to company
restructuring) with a stable rate of growth and work
(growth and change), even though the team never used
these or similar measurements. The low number of
complex methods and high level of complexity control
work is what one would expect from a software
evolved using agile methods. Despite the decrease in
system growth rate, the sustained rate of work towards
the end of the period studied, with only one pair
working at that time, is surprising (could have not been
predicted by simple extrapolation of past
measurements) and deserves further investigation. The
qualitative analysis provided some clues.

Evidence for success of the team as an XP team is
available from the observational study [16]. For
example, the managing director reported that their
clients were impressed with the agile approach because
of the responsiveness of the team to their needs.

From a business point of view, the product studied
in this paper was a success commercially in that it
survived well in the market for 6 years, continuing to
use XP for the whole of that time. The original
company has now been taken over, but the products
continue to be marketed. The downsizing in April 2003
was a deliberate strategy to release funds that were tied
up in salaries to allow the product to be marketed more
effectively and hence to grow the business. Without the
previous intense development and evolution efforts
they would not have had a product to market.

5. Threats to validity

Any empirical study confronts threats to the validity
of the results. We include below a list of the threats
that appear to be relevant to this study:
1. This study has only looked at one software system.

It is an initial, exploratory study which hopefully
will be followed by others. As this is a single
study of a single system, care must be taken when
attempting to generalise the observations made
here to other situations.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

2. We extracted the data using our own software
tools. Despite our best efforts, errors in the data
gathering and measurement extraction are possible
and we cannot guarantee that our tools are error-
free.

3. For various practical reasons, the qualitative data
collected do not coincide exactly with the period
of development covered by the code base.
However, through continued contact with the
organisation and individual members we know
that the team membership and company culture
remained consistent over the period of code
development.

4. The use of McCabe for measure the complexity of
object oriented software may not reflect the
delocalisation [28] of functionality and, because
of this, it may underestimate the real complexity.
There is a need for measures of complexity that
address this issue.

6. Conclusions and Further Work

To our knowledge, this paper presents the first

measurement-based study of the evolution of a
successful agile system. A strength of this study is the
combined use of quantitative and qualitative evidence
so that one informs and provides context for the other.

This experience report provides hard evidence that
an agile method allows smooth evolution while
avoiding the problems of increasing complexity or
decreasing customer satisfaction. It seems that this is
due to the high level of complexity control work
(witness the almost total lack of complex methods in
the system) and the high rate of iteration, with
customers quickly receiving the requested
functionality. More agile-developed systems will need
to be studied to see if these conclusions are generally
true.

To fully consider the efficacy of evolution, both
technical characteristics and the impact and
contribution of stakeholders must be considered. [12].
This is not easy and to some extent this and all
previous studies of evolution have been limited.
However, this study has been strengthened by the
combined use of quantitative measures of the technical
evolution and the qualitative results of a previous
observational study of the same system [16]. In future
work, we want to explore more systematic ways of
combining quantitative and qualitative observation for
building a richer and fuller picture of software
evolution. We also plan to use simulation models [23]
in order to explore the possible relationships between
growth, complexity control and other attributes during
evolution

Acknowledgements

We would like to express our gratitude to all

employees up until June 2005 of the company that
provided us with their data for their help and co-
operation in collecting the data and helping us to
perform the analysis presented here. In particular,
thank you to John Nolan, Rachel Davies and Ivan
Moore.

References

[1] Boehm, B. and Turner, R., (2003) ‘Using risk to balance
agile and plan-driven methods’, IEEE Computer, 36(6), June:
57 – 66

[2] The Agile manifesto, http://www.agilemanifesto.org/

[3] Boehm B. and Turner R., (2004) ‘Balancing agility and
discipline: evaluating and integrating agile and plan-driven
methods’, Proc. ICSE 2004, 23-28 May: 718 – 719

[4] Pfleeger, S. (2001), ‘Software Engineering – Theory and
Practice’, 2nd edition, Prentice Hall, Upper Saddle River, NJ,
659 pp.

[5] Lehman M.M. and Belady L.A. eds. (1985), ‘Software
evolution – processes of software change’, Academic Press,
London, 538 pp.

[6] Bennett K.H. and Rajlich V.T. (2000) ‘Software
maintenance and evolution: a roadmap”, in A. Finkelstein
(ed.), The Future of Software Engineering 2000, in
conjunction with ICSE 22, June 4-11, Limerick, Ireland,
ACM Order Nr. 592000-1: 75 – 87

[7] Madhavji N., Fernandez-Ramil J. and Perry D.E. eds
(2006) ‘Software evolution and feedback – theory and
practice’, Wiley

[8] Lehman M.M. (1974) ‘Programs, cities, students, limits
to growth?’, Inaugural Lecture, in Imperial College of
Science and Technology Inaugural Lecture Series, v. 9, 1970,
1974: 211 – 229. Also in ‘Programming Methodology’, Gries
D (ed.), Springer Verlag, 1978: 42 – 62. Reprinted as Chapter
7 in [Lehman & Belady 1985]

[9] Parnas D.L. (1994) ‘Software aging’, Proc. ICSE 16, May
16-21, 1994, Sorrento, Italy: 279 – 287

[10] Fowler M., Beck K., Brant J., Opdyke W., Roberts D.
(1999) ‘Refactoring: improving the design of existing code’,
Addison-Wesley

[11] Wernick P. and Hall T. (2004), ‘The Impact of Using
Pair Programming on System Evolution: a Simulation-Based
Study’, Proc. ICSM 2004, 11-14 Sept: 422 – 426.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

[12] Chapin, N. (2004), ‘Agile methods’ contributions in
software evolution’, Proc. ICSM 2004, 11-14 Sept: 522—
522.

[13] Beck, K. (2000, 2005), ‘Extreme Programming
explained: embrace change’. San Francisco: Addison-
Wesley. 1st ed, 2000, 2nd ed. 2005.

[14] Capiluppi A. and Ramil J.F. (2004), ‘Multi-level
empirical studies: an approach focused on open source
software’, Late Breaking Paper, 10th International Software
Metrics Symposium, September 14-16, 2004, Chicago,
Illinois, USA, http://swmetrics.org/ <as of Sept. 2004>

[15] Kerth, N. (2001), Project Retrospectives: A Handbook
for Team Reviews, Dorset House Publishing

[16] Sharp, H. and Robinson, H. (2004), 'An ethnographic
study of XP practices', Empirical Software Engineering, 9(4)
353-375.

[17] Cockburn A. (2001), ‘Agile software development’,
Addison-Wesley

[18] De Rivieres J. and Beaton W., (2006) ‘Eclipse platform
technical overview’, available online at
http://www.eclipse.org/articles/Whitepaper-Platform-
3.1/eclipse-platform-whitepaper.html (as of Sept 2006).

[19] Boehm B.W. (1981) 'Software Engineering Economics',
Prentice-Hall, Englewood Cliffs, NJ

[20] McCabe T. (1976), ‘A complexity measure’, IEEE
Transactions on Software Engineering, 2(4): 308 – 320

[21] A. Capiluppi and J.F. Ramil (2004), Studying the
Evolution of Open Source Systems at Different Levels of
Granularity: Two Case Studies, 7th International Workshop
on Principles of Software Evolution (IWPSE 2004), 6-7

September 2004, Kyoto, Japan. IEEE Computer Society
2004, ISBN 0-7695-2211-4, pp.113-118.

[22] Capiluppi, A., Faria, A. E., and Ramil, J. F. (2005):
‘Exploring the relationship between cumulative change and
complexity in an Open Source system’, Proc. 9th European
Conference on Software Maintenance and Reengineering
(CSMR 2005), 21-23 March 2005, Manchester, UK,
Proceedings: 21 - 29.

[23] Smith, N, Capiluppi, A, Fernández-Ramil, J, (2006)
‘Agent-based simulation of open source evolution’, Journal
of Software Process – Improvement and Practice, ProSim
2005 Special Issue, in press.

[24] Lehman M.M., Perry D.E., Ramil J.F., Turski W.M. and
Wernick P. (1997), 'Metrics and Laws of Software Evolution
- The Nineties View', Proc. Metrics '97, Albuquerque, NM, 5
- 7 Nov. 1997: 20-32. Also as Chapter 17 in El Eman K. and
Madhavji N.H. (eds.), 'Elements of Software Process
Assessment and Improvement', IEEE CS Press, Los
Alamitos, CA, 1999: 343 – 368

[25] Zuse, H. (1991) Software complexity: Measures
and methods, Berlin: W. de Gruyter

[26] McCabe T.J. and Butler C.W. (1989), ‘Design
complexity measurement and testing’, Comm. of the ACM,
32(12): 1415 -- 1425

[27] Capiluppi, A., Millen, J. and Boldyreff, C. (2006) How
outsourcing affects the quality of mission critical software,
13th Working Conference on Reverse Engineering (WCRE
2005), 23-27 October 2006, Benevento, Italy.)

[28] Dunsmore, A., Roper, M. and Wood, M. (2003)
‘Practical code inspection techniques for object-oriented
systems: an experimental comparison’, IEEE Software,
July/August: 21 – 29

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: KING SAUD UNIVERSITY. Downloaded on October 4, 2009 at 07:34 from IEEE Xplore. Restrictions apply.

