
Empir Software Eng (2006) 11: 583–611
DOI 10.1007/s10664-006-9024-2

An evaluation of combination strategies
for test case selection

Mats Grindal · Birgitta Lindström · Jeff Offutt ·
Sten F. Andler

Published online: 20 October 2006
© Springer Science + Business Media, LLC 2006
Editor: Per Runeson

Abstract This paper presents results from a comparative evaluation of five com-
bination strategies. Combination strategies are test case selection methods that
combine “interesting” values of the input parameters of a test subject to form
test cases. This research comparatively evaluated five combination strategies; the
All Combination strategy (AC), the Each Choice strategy (EC), the Base Choice
strategy (BC), Orthogonal Arrays (OA) and the algorithm from the Automatic
Efficient Test Generator (AETG). AC satisfies n-wise coverage, EC and BC satisfy 1-
wise coverage, and OA and AETG satisfy pair-wise coverage. The All Combinations
strategy was used as a “gold standard” strategy; it subsumes the others but is usually
too expensive for practical use. The others were used in an experiment that used
five programs seeded with 128 faults. The combination strategies were evaluated
with respect to the number of test cases, the number of faults found, failure size,
and number of decisions covered. The strategy that requires the least number of
tests, Each Choice, found the smallest number of faults. Although the Base Choice
strategy requires fewer test cases than Orthogonal Arrays and AETG, it found as
many faults. Analysis also shows some properties of the combination strategies that
appear significant. The two most important results are that the Each Choice strategy
is unpredictable in terms of which faults will be revealed, possibly indicating that

M. Grindal (B) · B. Lindström · S. F. Andler
School of Humanities and Informatics, University of Skövde, Skövde, Sweden
e-mail: mats.grindal@his.se

B. Lindström
e-mail: birgitta.lindstrom@his.se

S. F. Andler
e-mail: sten.f.andler@his.se

J. Offutt
Department of Information and Software Engineering, George Mason University, Fairfax,
VA 22030, USA
e-mail: offutt@ise.gmu.edu

584 Empir Software Eng (2006) 11: 583–611

faults are found by chance, and that the Base Choice and the pair-wise combination
strategies to some extent target different types of faults.

Keywords Combination strategies · Orthogonal arrays · AETG ·
Test case selection · Testing experiment

1 Introduction

The input space of a test problem can be generally described by the parameters of
the test subject.1 Often, the number of parameters and the possible values of each
parameter result in too many combinations to be useful. Combination strategies is a
class of test case selection methods that use combinatorial strategies to select test sets
that have reasonable size.

The combination strategy approach consists of two broad steps. In the first step,
the tester analyzes each parameter in isolation to identify a small set of “interesting”
values for each parameter. The term “interesting” may seem insufficiently precise
and a little judgmental, but it is common in the literature. In order not to limit the
use of combination strategies, this paper defines “interesting values” to be whatever
values the tester decides to use. In the second step, the combination strategy is used
to select a subset of all combinations of the interesting values based on some coverage
criterion.

Some papers have discussed the effectiveness of combination strategies (Brownlie
et al., 1992; Cohen et al., 1997; Kropp et al., 1998). These papers indicate the
usefulness of combination strategies, but many questions still remain. For instance,
few papers compare the different combination strategies. Thus, it is difficult to decide
which combination strategy to use. This paper presents results from an experimental
comparative evaluation of five combination strategies.

Our previous paper surveyed over a dozen different combination strategies
(Grindal et al., 2005). Five of these were chosen for this study. In this paper, a
criterion is a rule for selecting combinations of values, and a strategy is a procedure
for selecting values that satisfy a criterion.

The 1-wise coverage criterion requires each interesting value of each parameter
to be represented at least once in the test suite. The Each Choice strategy satisfies
1-wise coverage directly by requiring that each interesting value be used in at least
one test case. The Base Choice strategy satisfies 1-wise coverage by having the tester
declare a “base” value for each parameter, a base test case that includes all base
values, and then varies each parameter through the other values.

The pair-wise coverage criterion requires every possible pair of interesting values
of any two parameters be included in the test suite. The Orthogonal Arrays and
Automatic Efficient Test Generator strategies use different algorithms (described
later) to satisfy pair-wise coverage.

The All Combinations strategy generates all possible combinations of interesting
values of the input parameters. Thus, AC subsumes all the other strategies and

1In testing the object being tested is often called “program under test” or “system under test.”
However, since this paper reports the results of an experiment, it uses the term test subject instead.

Empir Software Eng (2006) 11: 583–611 585

requires the most test cases. It is considered to satisfy the n-wise criterion, where n
is the number of parameters. AC is used as a “gold-standard” reference. It is usually
too expensive for practical use, but provides a convenient reference for experimental
comparison.

This paper evaluates and compares the combination strategies with respect to the
number of test cases, number of faults found, failure size, and number of decisions
covered in an experiment comprising five programs that were seeded with 128 faults.

Two joint combination strategies (BC+OA and BC+AETG) were created by
taking the unions of the respective test suites and these are also evaluated on the
same grounds as the others.

That is, the independent variable in the experiment is the selection strategy, and
it has seven values. There are four separate dependent variables, test cases, faults,
decisions, and failure size.

The remainder of this paper presents our experimental procedure and results.
Section 2 gives a more formal background to testing, test case selection methods,
and how they are related to the combination strategies evaluated in this work.
Section 3 describes each combination strategy that was investigated. Section 4
contains the details of the experiments conducted, Section 5 describes the results
of the experiment, and Section 6 analyzes the results achieved. This analysis leads
to the formulation of some recommendations about which combination strategies to
use. In Section 7, the work presented in this paper is contrasted with the work of
others and future work is outlined in Section 8.

2 Background

Testing and other fault revealing activities are crucial to the success of a software
project (Basili and Selby, 1987). A fault in the general sense is the adjudged or
hypothesized cause of an error(Anderson et al., 1994). Further, an error is the part of
the system state that is liable to lead to a subsequent failure(Anderson et al., 1994).
Finally, a failure is a deviation of the delivered service from fulfilling the system
function.

These definitions are similar to typical definitions in empirical software testing
research. In particular, the number of faults found is a common way to evaluate test
case selection methods (Briand and Pfahl, 1999; Ntafos, 1984; Offutt et al., 1999;
Zweben and Heym, 1992). These definitions are also consistent with the definitions
used in the paper that first described the test subjects used in this experiment (Lott
and Rombach, 1996).

A test case selection method is a way to identify test cases according to a selection
criterion. Most test case selection methods try to cover some aspect of the test
subject, assuming that coverage will lead to fault detection. With different test case
selection methods having different coverage criteria, an important question for both
the practitioner and the researcher is: given a specific test problem, which test case
selection methods should be used? In the general test problem some properties of a
software artefact should be tested to a sufficient level. Thus, the choice of test case
selection method depends on the properties that should be tested, the associated
coverage criteria of the test case selection method, and the types of faults that the
test case selection method targets.

586 Empir Software Eng (2006) 11: 583–611

With focus on combination strategies, this research targets the question of finding
a suitable test case selection method to use.

A common view among researchers is that experimentation is a good way to
advance the common knowledge of software engineering (Harman et al., 1999; Lott
and Rombach, 1996). For results to be useful it is important that the experiments are
controlled and documented in such a way that the results can be reproduced (Basili
et al., 1999). Thus, a complete description of the work presented here can be found
in a technical report (Grindal et al., 2003).

3 Combination Strategies

A prerequisite for all combination strategies is the creation of an input parameter
model of the test subject. The input parameter model represents the parameters of
the test subject with a set of interesting values for each parameter. The tester may
select all or some values to be interesting, she may use a test case selection method
such as Equivalence Partitioning (Myers, 1979) or Boundary Value Analysis (Myers,
1979), or she may use an operational profile (Musa, 1993) if one is available. To avoid
limiting the combination strategies, this paper defines “interesting” to be whatever
values the tester decides to use.

The five combination strategies investigated in this study are Each-Choice (EC),
Base Choice (BC), Orthogonal Arrays (OA), the strategy used by the tool Automatic
Efficient Test Generator (AETG), and All-Combinations (AC). The main reason to
choose these five combination strategies is to get diversity with respect to coverage
levels. These five represent four different levels of coverage. OA and AETG both
generate test suites with 100% pair-wise coverage, but their fundamentally different
approaches to reach this goal motivates the inclusion of both.

AC requires every combination of values to be covered. Due to the number of test
cases required for AC it has been excluded from the experimental part of this study
and is only used as a reference in terms of the number of test cases for the different
test subjects in the study.

To illustrate the strategies and their associated coverage levels, the next few sub-
sections use a running example that has three parameters. Parameter P1 has three in-
teresting values, 1, 2 and 3, P2 has two values, 1 and 2, and P3 has two values, 1 and 2.

3.1 Each Choice (EC)

The Each Choice (EC) combination strategy requires each value of each parameter
to be included in at least one test case (Ammann and Offutt, 1994). This is also the
definition of 1-wise coverage.

Figure 1 shows a test suite generated by the EC combination strategy. Test cases
are identified by combining the next unused value of each parameter. In the third
test case, there are no unused values for parameters P2 and P3, thus repeated values
are used.

An important property of combination strategies is the number of test cases
required to satisfy the associated coverage criterion. Let a test subject be represented
by an input parameter model with N parameters P1, P2, ..., PN , where parameter

Empir Software Eng (2006) 11: 583–611 587

Fig. 1 EC test suite for the
example test problem Parameter

test case P1 P2 P3

1 1 1 1
2 2 2 2
3 3 1 2

Pi has Vi values. Then, a test suite that satisfies 1-wise coverage must have at least
MaxN

i=1Vi test cases.

3.2 Base Choice (BC)

The algorithm for the Base Choice (BC) combination strategy (Ammann and Offutt,
1994) starts by identifying one base test case. The base test case may be determined by
any criterion, including simplest, smallest, or first. A criterion suggested by Ammann
and Offutt is the “most likely value” from an end-user point of view. This value could
be determined by the tester or based on an operational profile if one exists.

From the base test case, new test cases are created by varying the interesting values
of one parameter at a time, keeping the values of the other parameters fixed on the
base test case. If the base test case is [1, 1, 2], Fig. 2 shows the resulting test suite for
the example test problem.

A test suite that satisfies base choice coverage will have at least 1 + ∑N
i=1(Vi − 1)

test cases, where N is the number of parameters and parameter Pi has Vi values in
the input parameter model. Note that this test suite is larger than the corresponding
EC test suite.

Base Choice includes each value of every parameter in at least one test case, so it
satisfies 1-wise coverage. The semantic information of the base choice also affects the
values chosen. Assume that the values of the different parameters can be classified as
either normal or error values. Normal values are input values that will cause the test
subject to perform some of its intended functions. Error values are values outside
the scope of the normal working of the test subject. If the base test case contains only
normal values, the test suite will, in addition to satisfying 1-wise coverage, also satisfy
a criterion that we call single error coverage. Single error coverage requires that for
each error value in the input parameter model, there is at least one test case that
combines that value with a normal value from each of the other parameters. Single
error coverage will be satisfied if the base choice is based on the most likely value, as
mentioned above.

Fig. 2 BC test suite for the
example test problem Parameter

test case P1 P2 P3

1 (base test case) 1 1 2
2 2 1 2
3 3 1 2
4 1 2 2
5 1 1 1

588 Empir Software Eng (2006) 11: 583–611

3.3 Orthogonal Arrays (OA)

The Orthogonal Arrays (OA) combination strategy is based on a mathematical
concept with the same name. A Latin Square is an N × N square filled with symbols
such that each symbol occurs exactly once in each row and each column. An
Orthogonal Array combines two or more orthogonal Latin Squares. Orthogonal
arrays have been used in the design of scientific experiments and was first applied to
testing by Mandl (1985). Williams and Probert (1996) described how the OA strategy
can be used in testing. The test suite identified by the OA strategy satisfies pair-
wise (2-wise) coverage, which means that each pair of parameter values of any two
parameters is included in at least one test case.

Based on the input parameter model, the tester identifies an orthogonal array that
is large enough to handle the parameter with the most values. Each position in the
orthogonal array then represents a test case.

For the example test problem, a single 3 × 3 Latin Square containing the symbols
1, 2 and 3 is large enough. Let <row, column, contents> describe the resulting nine
positions. To create test cases, the three parameters P1, P2 and P3 and their values
are mapped onto these positions in that order. If one parameter has more values
than the others (as P1 does in the example), the other parameters have one or more
undefined values. Any defined value, 1 or 2 in this example, can be used without
destroying the pair-wise coverage property. Sometimes a new test case is a duplicate
of another test case in the test suite. In such cases the duplicate can be removed,
reducing the size of the test suite. Figure 3 shows the final test suite for the example
test problem identified by OA. In this example three test cases were removed because
of duplication.

An advantage that OA has is that Orthogonal Arrays of different sizes can be
precalculated. Thus, the tester only needs to find the right size orthogonal array,
describe the mapping between parameters and indices, and possibly perform some
test reduction. A drawback is that orthogonal arrays do not exist for all test problem
sizes.

The number of test cases generated by the orthogonal arrays combination strat-
egy without reducing duplicates is V2

i , where Vi = MaxN
j=1V j, N is the number of

parameters, and parameter Pi has Vi values. However, if duplicates are removed,
the number of test cases approaches the product of the number of values of the two
largest parameters.

Williams and Probert (1996) give further details on how test cases are created from
orthogonal arrays.

Fig. 3 OA test suite for the
example test problem Parameter

test case P1 P2 P3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1
5 3 1 2
6 3 2 1

Empir Software Eng (2006) 11: 583–611 589

Fig. 4 AETG test suite for the
example test problem Parameter

test case P1 P2 P3

1 1 1 1
2 2 2 2
3 3 1 2
4 3 2 1
5 2 1 1
6 1 2 2

3.4 Automatic Efficient Test Generator (AETG)

The Automatic Efficient Test Generator (AETG) system was first described in Cohen
et al. (1994). It contains a heuristic algorithm for generating a test suite that satisfies
pair-wise coverage, the same criterion that OA satisfies. AETG and its algorithm is
described in detail Cohen et al.’s 1997 paper (Cohen et al., 1997).

The AETG algorithm finds one new test case per iteration, attempting to find
a test case that maximizes the increase in pair-wise coverage. Several test case
candidates are identified and evaluated. The algorithm terminates when test cases
have been found to satisfy 100% pair-wise coverage.

The number of test cases needed to reach pair-wise coverage is impossible to
calculate in advance due to the heuristic nature of the algorithm. It is, among other
things, related to the number of candidates generated for each test case. In gen-
eral, the more candidates, the fewer test cases in the final test suite. However, Cohen
et al. (1996) report that using values higher than 50 will not dramatically decrease the
number of test cases. Thus, in our experiment, we followed this advice and generated
50 candidates for each test case.

Figure 4 shows a test suite for the example test problem identified by the AETG
algorithm. Although OA and AETG have selected different test cases for their test
suites, both test suites satisfy pair-wise coverage.

The main advantage of AETG over OA is that AETG can handle test problems of
any size. Another advantage is that a preselected test suite, identified by some other
means, may be used as a starting point for AETG. A potential drawback is that it is
not possible to calculate, in advance, an upper limit to the number of test cases.

3.5 All Combinations (AC)

All-combinations (AC) requires that every combination of values of each parameter
be used in a test case (Ammann and Offutt, 1994). This is also the definition of n-wise
coverage (Grindal et al., 2005).

Given the example test problem, the final test suite will contain all 12 possible
combinations of the parameter values. In the general case a test suite that satisfies
n-wise coverage will have

∏N
i=1 Vi test cases, where N is the number of parameters of

the input parameter model and parameter Pi has Vi values.

590 Empir Software Eng (2006) 11: 583–611

4 Experimental Setting

Both Harman et al. (1999) and Miller et al. (1995), recommend that enough detail
should be published about an experiment to allow replication. To support this goal,
we followed the GQM (Goal, Questions, Metrics) method (Basili and Rombach,
1988) to define the goals and their refinement into concrete metrics. The use of the
GQM method is supported by Lott and Rombach (1996) from which the test subjects
used in our experiments have been borrowed. Table 1 shows the goal, questions, and
metrics of this study.

The following sections describe and motivate the implementation details of this
experiment.

4.1 Evaluation Metrics

Frankl et al. (1998) state that the goal of testing is either to measure or increase
the reliability (Frankl et al., 1998). Testing to measure reliability is usually based on
statistical methods and operational profiles, while testing to increase reliability relies
on test case selection methods. These are assumed to generate test cases, which are
good at revealing failures. The test techniques in this research were invented to reveal
failures. At first glance, the number of failures revealed could be used to evaluate
effectiveness. However, a test suite that reveals X failures that result from the same
fault can be argued to be less effective than a test suite that reveals X failures that
result from X different faults. Thus, the number of faults found is more useful.

This measure does not work if a program has no faults. Thus, code coverage is
also used to assess the effectiveness of the generated test suites. Code coverage
has been used in previous investigations of combination strategies, e.g., (Burr and
Young, 1998; Cohen et al., 1996; Dunietz et al., 1997; Piwowarski et al., 1993). In this
experiment, branch coverage was measured on fault-free versions of each program.

The faults are classified into types to help analyze differences in the fault-finding
abilities of the combination strategies. Two classification schemes are used. The first

Table 1 The goal of this study and its refinement into metrics through questions

Goal Purpose Compare
Issue five combination strategies with respect to
Object their effectiveness and efficiency
Viewpoint from the viewpoint of the practicing tester
Context in the context of a faulty program benchmark suite.

Question How effective is a generated test suite?
Metric a) Number of found faults

b) Code coverage

Question Do the combination strategies find different types of faults?
Metric c) Types of found faults

d) Failure size

Question What is the cost of using a combination strategy?
Metric e) Number of test cases

Empir Software Eng (2006) 11: 583–611 591

is based on the number of parameters involved in revealing the fault. The second is
based on whether valid or invalid values are needed to reveal the fault.

During the analysis of the faults found by the different strategies, BC seemed to
behave differently than the other strategies. The notion of failure size was introduced
to understand this better. Failure size is defined as the percentage of test cases in
a test suite that fail for a specific fault. Failure size was inspired by the notion of
fault size. Fault size is the percentage of inputs that will trigger a fault, causing a
failure (Bache, 1997; Offutt and Hayes, 1996; Woodward and Al-Khanjari, 2000). In
this experiment, the input parameter models are kept constant for all combination
strategies, thus the fault sizes will be the same for all combination strategies.

In practice, the efficiency of a test selection method is related to the resources
used, primarily time and money (Archibald, 1992). Realistic resource consumption
models of either of these resources are difficult to both create and validate. Variation
in the cost of computers, variation in human ability, and the increasing performance
of computers are just some of the factors that make it difficult. Nevertheless,
some researchers have used “normalized utilized person-time” as a measure of the
efficiency of a test case selection method (So et al., 2002).

This experiment uses a simplified model of resource consumption, in which
the efficiency is approximated with the number of test cases in each test suite.
The motivation for this is that the same input parameter models are used by all
combination strategies. Further, it is assumed that differences in time to generate
the test suites are small compared to the time it takes to define expected results and
execute the test cases.

4.2 Test Subjects

The main requirements on the test subjects are: (1) specifications for deriving test
cases must exist; (2) An implementation must exist; and (3) some known and doc-
umented faults must exist.

New test subjects can be created or already existing test subjects can be found.
Creating new test subjects has the advantage of total control over the properties
of the test subjects, e.g., size, type of application, types of faults, source code
language, etc. Drawbacks are that it takes longer and creating programs in-house can
introduce bias. A search on the Internet for existing test subjects gave only one hit;
the experimental package containing a “Repeatable Software Experiment” includ-
ing several different test objects by Kamsties and Lott (1995b) and Lott (n.d.).

Using already existing test subjects also creates the possibility of cross-experiment
comparisons (Basili et al., 1999). Thus, we used already existing test subjects.

The six programs were designed to be similar to Unix commands2 and initial-
ly used in an experiment that compared defect revealing mechanisms (Lott and
Rombach, 1996). This experimental package was inspired by Basili and Selby (1987).
The benchmark program suite has been used in two independent experiments
by Kamsties and Lott (1995a,b), and later used in a replicated experiment by Wood
et al. (1997).

2The complete documentation of the Repeatable Software Experiment may be retrieved from URL:
www.chris-lott.org/work/exp/.

www.chris-lott.org/work/exp/

592 Empir Software Eng (2006) 11: 583–611

Table 2 Descriptive size metrics of the programs. The number of decision points are divided into
assert (‘a’), case (‘c’), for (‘f’), if (‘i’), and while (‘w’) statements

Test # Functions Lines # Decisions # Global Nesting
subject of code (a,c,f,i,w) vars level

count 1 42 (0, 0, 0, 6, 2) 0 4
tokens 5 117 (2, 1, 4, 12, 3) 4 3
series 1 76 (0, 1, 1, 8, 0) 5 2
nametbl 15 215 (4, 0, 0, 17, 0) 5 3
ntree 9 193 (21, 0, 3, 10, 0) 0 3

The programs are well documented, include specifications, and come with descrip-
tions of existing faults. We were able to use five of the six programs. The first, count,
implements the standard Unix command “wc.” count takes zero or more files as input
and returns the number of characters, words, and lines in the files. If no file is given
as argument, count reads from standard input. Words are assumed to be separated
by one or more white-spaces (space, tab, or line break).

The second program, tokens, reads from the standard input, counts all alphanu-
meric tokens, and prints their counts in increasing lexicographic order. Several flags
can be used to control which tokens should be counted.

The third program, series, requires a start and an end argument and prints all real
numbers between them in steps defined by an optional step size argument.

The fourth program, nametbl, reads commands from a file and runs one of several
functions based on the command. Considered together, the functions implement a
symbol table. For each symbol, the symbol table stores its name, the object type of
the symbol, and the resource type of the symbol. The commands let the user insert a
new symbol, enter the object type, enter the resource type, search for a symbol, and
print the entire symbol table.

The fifth program, ntree, also reads commands from a file and runs one of several
functions based on the command. The functions implement a tree in which each node
can have any number of child nodes. Each node in the tree contains a key and a
content. The commands let the user add a root, add a child, search for a node, check
if two nodes are siblings, and print the tree.

The sixth program, cmdline, did not contain enough details in the specification to
fit the experimental set-up. Thus it was not used.

Table 2 contains some summary statistics of the five programs. All were imple-
mented in the C programming language. We included main() in the number of
functions. The counts of lines of code exclude any blank lines and lines that only
contain comments. The number of decisions includes assert, case, for, if, and while
statements. A case statement is counted as one decision. For global variables, each
component of a struct is counted separately. Finally, the nesting level is the highest
nesting level for any function in the program.

4.3 Test Subject Parameters and Values

One of the most important conceptual tasks in using combination strategies is
creating the input parameter model. In their category partition method, Ostrand
and Balcer (1988) discuss several approaches beyond the obvious idea of using the

Empir Software Eng (2006) 11: 583–611 593

input parameters. Yin et al. (1997) suggest dividing the problem space into sub-
domains that can be thought of as consisting of orthogonal dimensions that do not
necessarily map one-to-one onto the actual input parameters of the implementation.
Similarly, Cohen et al. (1996) suggest modeling the system’s functionality instead of
its interface.

In this experiment, input parameter models were defined based on functionality
represented by “abstract parameters”, such as the number of arguments, and how
many of the same tokens are used. Equivalence partitioning (Myers, 1979) was
applied to these parameters and a representative value was picked from each
equivalence class. To support base choice testing, one equivalence class for each
parameter was picked as the base choice class of that parameter. This made the
corresponding value the base value for that parameter. The values selected as base
choices for each parameter are all normal values.

Conflicts among parameters occur when some value of one parameter cannot be
used with one or more values of another parameter. An example of a conflict is
when a value for one parameter requires that all flags should be used, but values
for another parameter states that a certain flag should be turned off. AETG is
the only strategy in this experiment that has built-in function to handle conflicts.
Ammann and Offutt (1994) suggested an outline for parameter conflict handling
within BC that could also be used for EC. Williams and Probert (1996) suggested a
way to handle parameter value conflicts within OA. However, Williams and Probert’s
method required the input parameter model to be changed. Since this would make
comparisons between the combination strategies less reliable, handling conflicts
would introduce a confounding variable into the experiment, thus all input parameter
models were designed to be conflict free. If no complete conflict-free input parameter
model could be designed, it was decided that some aspects of the test subject should
be ignored to keep the input parameter model conflict-free, even at the cost of
possibly loosing the ability to detect some faults. This was judged to be more fair
for this experiment. Obviously, in actual testing, parameter value conflicts must be
handled, and ongoing studies include a closer look at different ways of handling
parameter conflicts.

Tables 3–7 show the input parameter models for each test subject. As mentioned
earlier, these models were influenced by the equivalence partitioning technique.
To aid the reader, the tables contain both a description of the equivalence classes
and the actual values selected from each class. The test case sets generated by the
combination strategies are quite extensive and can be found in an appendix in the
technical report (Grindal et al., 2003).

Table 3 Input parameter model for count. Each column represents the equivalence classes of one
parameter. Preselected values are in parentheses and base choices are shown in bold

I # files min # min # consecutive type # line
words/row chars/word # WS of WS feeds

0 1 0 1 1 space 0
1 > 1(2) 1 > 1(4) > 1(2) tab 1
2 - > 1(2) - - both > 1(2)

594 Empir Software Eng (2006) 11: 583–611

Table 4 Input parameter model for tokens. Each column represents the equivalence classes of one
parameter. Preselected values are in parentheses and base choices are shown in bold

I flags No. of No. of numbers upper and
-a -i -c -m different same in tokens lower case

tokens tokens

0 No No 0 No 1 1 No No
1 Yes Yes 1 0 2 2 Yes Yes
2 - - > 1(4) 1 > 2(3) > 2(5) - -
3 - - - > 1(3) - - - -

4.4 Faults

The five programs in the study came with 33 known faults. The combination
strategies exhibited only small differences in fault revealing for these faults, so an
additional 118 faults were created and seeded by hand. Most of these faults were
mutation-like, such as changing operators in decisions, changing orders in enumer-
ated types, and turning post-increment into pre-increment. Each function of every
program contains at least one fault.

23 of the 151 faults were functionally equivalent to their original program. These
were removed from the experiment, leaving a total of 128 faults.

Each fault was seeded in a separate copy of the program. This has the dual
advantage of avoiding interactions among the faults and making it obvious which
fault is found when a failure has occurred. This in turn made it easier to automate
the experiment by using the Unix command “diff” to find the failures.

Next, simple instrumentation was added into the programs to measure code
coverage. Faults were not put into these extra statements and care was taken to
ensure that they did not change the programs’ functionalities. A complete description
of the faults used in this study is given in the technical report (Grindal et al., 2003).

4.5 Infrastructure for Test Case Generation and Execution

Figure 5 summarizes the experiment tasks and the intermediate representations of
the information between each pair of tasks. Both test case generation and test case
execution were automated as much as possible. Before the experiment started, the
test subjects were instrumented for code coverage and seeded with faults.

Table 5 Input parameter
model for series. Each column
represents the equivalence
classes of one parameter.
Preselected values are in
parentheses and base choices
are shown in bold

I start end step size

0 < 0(−10) < 0(−5) no
1 0 0 < 0(−1)

2 > 0(15) > 0(5) 0
3 real (5.5) real (7.5) 1
4 non-number (abc) non-number (def) > 1(2)

5 - - real (1.5)
6 - - non-number (ghi)

Empir Software Eng (2006) 11: 583–611 595

Table 6 Input parameter model for nametbl. Each column represents the equivalence classes of one
parameter. Preselected values are in parentheses and base choices are shown in bold

I INS TOT TRT SCH
0 No instance No instance No instance No instance
1 One instance One instance One instance One instance
2 > one(4)instances > one(2)instances > one(3)instances >one (2) instances
3 Incorrect spelling Too few args. Too few args. Too few args.
4 Too few args. Too many args. Too many args. Too many args.
5 Too many args. Incorrect obj. type Incorrect obj. type -
6 Same symbol twice Unknown obj. type Unknown obj. type -

The first task is input parameter modeling. The models are represented in two
files for each subject: the Abstract Problem Definition (APD) and the Test Case
Mapping (TCM) file. The APD file contains an abstract description of the test subject
expressed in terms of the number of parameters, the number of values for each
parameter, and the base choice value for each parameter. The TCM contains the
mapping between the abstract representation of the test subject and actual values
of physical parameters of the test subject. The same pair of APD and TCM files for
each test subject were used for all combination strategies. The formats of these files
are given in detail in the technical report (Grindal et al., 2003).

The second task is generation of abstract test cases. Based on the contents of
the APD file, each combination strategy generates a separate abstract test suite
called Input Specification (IS). It contains a list of test cases represented as tuples
of parameter values. The test suites were generated automatically, except for OA,
whose tests were created manually because it was deemed easier than implementing
the OA algorithm.

The third task is translating abstract test cases to real inputs. The abstract test
cases from the IS files were automatically converted into executable test cases by
using the contents of the TCM file. For every parameter, the appropriate value in the
TCM file was located by using the parameter name and value as index. The values
identified by the different parameter values of a test case were appended to form the
test case inputs. The actual test cases were stored in the Test Suite (TS) file.

Table 7 Input parameter model for ntree. Each column represents the equivalence classes of one
parameter. Preselected values are in parentheses and base choices are shown in bold

I ROOT CHILD SEARCH SIBS

0 No instance No instance No instance No instance
1 One instance One instance One instance One instance
2 Two instances Two instances Two instances Two instances
3 Incorrect spelling > two(5)instances Incorrect spelling Incorrect spelling
4 Too few args. Incorrect spelling Too few args. Too few args.
5 Too many args. Too few args. Too many args. Too many args.
6 - Too many args. >one (2) hits Not siblings
7 - No father node - -
8 - Two father nodes - -

596 Empir Software Eng (2006) 11: 583–611

Fig. 5 Test case generation and execution

The final task is to execute the test cases. A Perl script test case executor took the
TS file as input and executed each test case in the file. The test case executor also
created a log file in which the names of the different test cases are logged together
with any response from the test subject. This log was compared with a reference log
created by executing the test suite on a correct version of the program using the Unix
“diff.”

4.6 Threats to Validity

Lack of independence is a common threat to validity when conducting an experi-
ment. Our approach was to introduce as much independence as possible throughout
the experiment. We used an externally developed suite of test subjects. The addi-
tional faults were created by a person (third author) not previously involved in the
experiment. To further avoid bias, an algorithm was followed for seeding faults as
mutation-like modifications. Also, the five input parameters models were created
without any knowledge of either the existing faults or the implementations. In fact
all the test cases were generated prior to studying the faults and the implementations.
These steps avoided all anticipated bias from lack of independence.

An obstacle in any software experiment is how representative the subjects are. In
this experiment this issue applies both to programs and faults. A necessary condition
in deciding if a sample is representative is knowledge about the complete population.
Unfortunately, we do not understand the populations of either programs or faults.
This is a general problem in software experimentation, not only for this study.
This obviously limits the conclusions that can be drawn, therefore limiting external
validity. Reasoning about the ability to detect different types of faults instead of just
how many can help with this problem. Also, replicating experiments with different
subjects is necessary.

Another aspect of representativity is whether a tester is likely to use the test
strategies on this type of test object. As described in Section 3, combination strategies
are used to identify test cases by combining values of the test subject input para-
meters. This property makes combination strategies suitable for test problems that
have discrete value inputs. However, the tester can always sample a continuous pa-
rameter, which is a fundamental aspect of equivalence partitioning, boundary value

Empir Software Eng (2006) 11: 583–611 597

analysis, and many other test methods. Thus, we draw the conclusion that combina-
tion strategies are applicable to any test problem that can be expressed as a set of
parameters with values that should be combined to form complete inputs, which is
the case for all test subjects in this study.

The decision to avoid conflicts between values of different parameters in the input
parameter model could also raise a threat to validity. This decision made it impossible
to detect three faults. However, all test techniques used the same input parameter
models, so this decision affected all techniques equally. That is, none of the test
techniques could detect these three faults.

The process of making an input parameter model has much in common with
equivalence partitioning in the sense that one value may be selected to represent a
whole group of values. The underlying assumption is that all values in an equivalence
class will detect a fault equally well. The accuracy of this assumption depends both
on the faults we actually have and the experience of the tester. Different testers
are likely to derive different classes. Hence, it is desirable to define the equivalence
classes in such way that they are representative both with respect to faults and testers.
We consider this particular form of representativity very hard to validate. Again, this
affected all test techniques equally, so we believe that this only poses a minor threat
to the validity of this experiment.

A more in-depth discussion of the validity issues in general may be found in our
workshop paper (Lindström et al., 2004).

5 Results

This section presents results from the experiment. First the number of test cases is
presented, then the number and types of faults found, the decision coverage, and
finally the failure sizes.

An initial observation from this experiment was that BC and the pair-wise
combination strategies (OA and AETG) target different types of faults. Thus, a
logical course of action is to investigate the results of combining BC with either OA
or AETG. Results for (BC+OA) and (BC+AETG) are included in the data. These
results have been derived from the individual results by taking the unions of the test
suites of the included combination strategies, eliminating duplicates.

5.1 Number of Test Cases

Table 8 shows the number of test cases generated by the five basic strategies and the
two combined strategies. In Section 3, formulas were given for EC, BC, and AC to
calculate the size of a test suite based on the contents of the input parameter model.
The empirical values given in Table 8 agree with the theoretical values from these
formulas.

The increase in the number of test cases as the coverage criteria get more de-
manding is expected, and this increase occurs on all five test subjects. Also, OA and
AETG satisfy the same coverage criterion and have about the same number of tests.

The test subjects are ordered by size (number of statements), and this order is
preserved by all strategies except AC. This is because of differences in the number
of parameters and parameter values in the input parameter models, as shown in

598 Empir Software Eng (2006) 11: 583–611

Table 8 Number of test cases generated by the combination strategies

Combination Strategy

Test Subject EC BC OA AETG BC+OA BC+AETG AC

count 3 10 14 12 23 21 216
tokens 4 14 22 16 35 29 1, 728
series 7 15 35 35 48 48 175
nametbl 7 23 49 54 71 76 1, 715
ntree 9 26 71 64 93 89 2, 646
total 30 88 191 181 270 263 6, 480

Table 9. For EC the number of values of the largest parameter will dominate. For
BC it is the sum of the parameter values minus the number of parameters that gives
the approximate number of test cases. For both OA and AETG the product of the
number of values of the two largest parameters gives an approximate size of the test
suite. Even if duplicates are removed for the two combined strategies, the order is
still preserved when taking the unions of the included test suites. Finally, for AC, the
number of test cases is the product of the number of values of each parameter. A test
subject with many parameters with few values will require more test cases than a test
subject with few parameters with many values even if the total number of values are
the same. This can be seen in the case of tokens.

The large numbers of tests for AC effectively demonstrates why it is usually not
considered practical.

5.2 Faults Found

Table 10 shows the number of faults found in each of the test subjects by the different
combination strategies. The first two columns list the number of “known” faults and
the number that are “detectable” based on the input parameter models.

There are three reasons why eight faults were never revealed. Three faults depend
on parameter values that were removed to keep the input parameter models conflict-
free. Our method of automation, feeding all commands from files and writing all
output to files, made it impossible to feed commands from stdin and to discriminate
between output to stdout and stderr. This made it impossible to detect two more
faults. Finally, three faults were missed due to the specific selection of parameters
and values in the input parameter models. These three faults were all implementation

Table 9 Sizes of test subjects

Test Subject # Parameters # Values for each Parameter Total Values

count 6 2, 3, 2, 2, 3, 3 15
tokens 8 2, 2, 3, 4, 3, 3, 2, 2 21
series 3 5, 5, 7 17
nametbl 4 7, 7, 7, 5 26
ntree 4 6, 9, 7, 7 29

Empir Software Eng (2006) 11: 583–611 599

Table 10 Number of faults revealed by the combination strategies

Test Subject Faults Combination Strategy

known detectable EC BC OA AETG BC+OA BC+AETG

count 15 12 11 12 12 12 12 12
tokens 15 11 11 11 11 11 11 11
series 20 19 14 18 19 19 19 19
nametbl 49 49 46 49 49 49 49 49
ntree 29 29 25 29 26 26 29 29
total 128 120 107 119 117 117 120 120
% of detectable 89 99 98 98 100 100

specific. One example of this is a function in the series program to handle rounding
errors in the conversion between real and integers. Reals within a 10−10 area of an
integer are considered equal. To detect the fault in this function a real value within
the rounding area would have been needed, but since this was not defined in the
specification no such value was used.

Dalal and Mallows (1998) give a model for software faults in which faults are
classified according to how many parameters (factors) need distinct values to cause
the fault to result in a failure. A t-factor fault is triggered if the values of t parameters
are required to trigger it. This model is used to analyze the faults in this study.
Table 11 shows the number of t-factor faults for each test subject with respect to its
input parameter model. A 0-factor fault is revealed by any combination of parameter
values.

The number of t-factor faults for each t is a direct consequence of the contents of
the input parameter model. A changed input parameter model may affect the t-factor
classification of faults.

A few of the faults turned out to be 0-factor faults. These are faults that will always
produce a failure with the input parameter models used in this experiment. Another
interesting observation is that there are no 4+-factor faults and only 25 3-factor faults
of the total 120 faults. The same observation, that is, that most faults are 2-factor or
less and thus detectable with pair-wise strategies, has been made in a real industry
setting. In a study of medical device software, Wallace and Kuhn report that 98%
of the faults are 2-factor or less (Wallace and Kuhn, 2001). These results may or

Table 11 Number of t-factor
faults in each test subject with
respect to the input parameter
models used in this study

Test Subject t-factor

0 1 2 3 4+
count 2 7 3 0 0
tokens 3 4 4 0 0
series 0 3 4 12 0
nametbl 2 16 30 1 0
ntree 0 8 9 12 0
total 7 38 50 25 0

600 Empir Software Eng (2006) 11: 583–611

may not generalize to other kinds of software and actual faults, so additional studies
are desirable.

It may be surprising that EC reveals 89% of the detectable faults even though
it had relatively few test cases. The 0-factor faults will always be revealed and by
definition, EC also guarantees detection of all 1-factor. Taken together, these account
for slightly more than one third of the detectable faults.

Many of the 2+-factor faults in this study share the property that many different
combinations of values of the involved parameters result in failure detection. Only
a small group of the 2+-factor faults require exactly one combination of values of
the involved parameters to be revealed. Obviously, the faults revealed by many
combinations have a higher chance of being detected than faults revealed by only one
combination. Cohen et al. (1994) claims that the same situation, that is, that a large
number of faults may be revealed by many different parameter combinations, is true
for many real-world systems. This is probably why EC is so effective in this study.
However, it should be stressed that even if a 2+-factor fault has a high detection rate
due to many combinations revealing that fault, EC cannot be guaranteed to detect it.

It is not surprising that BC revealed more faults than EC; after all, it requires more
tests. But it may be surprising that BC found a similar number of faults (even slightly
more) than OA and AETG, both of which require more tests and more combinations
of choices. Looking in detail at the faults is illuminating.

The only fault that BC missed was revealed by EC and both OA and AETG. This
fault is located in the series program and is a 3-factor fault. Parameter one has five
possible values, parameter two also has five possible values, and parameter three has
seven possible values, giving a total of 175 possible combinations. Exactly six of these
combinations will trigger this fault. Parameter one and two both need to have one
specific value and parameter three can have any value except the value one. None
of the values of parameters one and two are base choices, which explains why BC
not only missed this fault, but also could not reveal it. That is, revealing this fault
required two non-base choice values.

OA and AETG both satisfy pair-wise coverage-every combination of values of
two parameters is included in the test suites. In the case of the fault missed by BC,
the specific combination of values of parameter one and two is included in one test
case in each test suite. However, it is not enough for this combination to reveal the
fault, so there is no guarantee that OA or AETG will reveal the fault. But since
the third parameter may have several different values and still trigger the fault, the
chance of OA and AETG selecting a fault revealing combination is relatively high.
This is why EC is so effective, as explained earlier. The chance of EC revealing this
fault is small (six chances out of 175, 3.4%), and the fact that EC revealed it seems
largely due to chance. On the other hand, pair-wise strategies have six chances out of
seven of revealing the fault (87%) so it is not surprising that OA and AETG found it.

The three faults that only BC revealed are all located in the ntree program. Its
input parameter model contains four parameters with six, nine, seven, and seven
values, respectively.

The first fault requires two of the parameters to have one specific value each,
one, which happened to be a base choice and a third parameter to have any normal
value. Both OA and AETG had one test case each in their test suite with the specific
combination of the two parameters, but in both cases the third parameter happened
to be invalid, so these two strategies did not reveal this fault. This is a good example

Empir Software Eng (2006) 11: 583–611 601

of fault masking by an invalid value. BC revealed this fault because one of the
parameters required exactly the base choice value and the third parameter required
any normal value, including the base choice, which is satisfied by the base choice.

The second and third faults that were only revealed by BC are located in the same
line of code, and both faults fail for the same combinations of parameter values. For
these faults to be triggered, three parameters need to have one specific value each.
This means that neither EC, OA, nor AETG can guarantee detection. However,
two of the three required parameter values happened to be base choices, so BC was
guaranteed to reveal this fault under this input parameter model.

OA and AETG revealed exactly the same faults. Thus we can expect combining
either with BC to yield the same results. In this experiment both combinations
revealed all detectable faults.

5.3 Decision Coverage

Table 12 shows the decision coverage achieved by each combination strategy on the
correct versions of the test subjects. Very little difference was found. OA and AETG
covered slightly more decision outcomes than EC did, which can be expected since
they had more tests.

These data are also similar to data from previous studies. Cohen et al. (1996)
obtained over 90% block coverage and Burr and Young (1998) reached 93% block
coverage in experiments using AETG.

It was a little surprising that EC covered as many decisions as it did. As was shown
in Table 2 the test subjects were all relatively small, in particular with respect to
the number of decision points, which means that there is a fair chance of reaching
relatively high code coverage even with few test cases.

The high decision coverage achieved for all test subjects by the EC test suites
seems to indicate that for this experiment:

1. There is a close correspondence between the specifications and the implementa-
tions of the test subjects.

2. The selected parameters and parameter values used for testing the test subjects
are good representatives of the total input space.

3. The actual test cases generated by EC are well scattered over the
implementations.

Table 12 Percent decision
coverage achieved for the
correct versions of the test
subjects

Combination Strategy

Test Subject EC BC OA AETG

count 83 83 83 83
tokens 82 82 86 86
series 90 90 95 95
nametbl 100 100 100 100
ntree 83 88 88 88

602 Empir Software Eng (2006) 11: 583–611

Table 13 Percent of test cases that failed for each fault for the different combination. strategies
applied to the test subjects count, tokens, and series. Bold indicates high and italic indicates low for
each fault

Strategy Faults
count tokens series

1 5 6 7 8 1 4 1 2 3 4
EC 33 67 100 67 33 25 25 14 0 14 14
BC 10 90 100 90 10 7 7 7 7 0 60
OA 43 79 100 57 29 23 27 17 14 3 26
AETG 33 75 100 67 25 31 6 17 11 6 20

5.4 Failure Size

BC found more faults than OA and AETG, despite having fewer test cases. Failure
size is studied to further explore the reasons behind this.

As was presented in Section 4.1, the failure size of a fault is defined to be the
percentage of test cases in a test suite that fails. Failure size shows a fundamental
difference between BC and the other combination strategies.

Tables 13 and 14 contain the failure sizes of the 26 detectable faults in the original
benchmark suite (not including the extra added faults, due to space constraints.) The
numbers indicate the percent of test cases that triggered the fault. A zero indicates
that no test case triggered that fault, and a 100 indicates that all tests triggered the
fault.

An initial observation of this data shows that BC is unusual. Specifically, BC has
either the highest or the lowest failure size for 24 of the 26 faults. For many faults,
for instance fault 1 in count, fault 4 in series, and fault 7 in ntree, the failure sizes of
BC differ from the others by a great deal. To evaluate how different the failure sizes
for BC are from the failure sizes for the other criteria, we computed the means of
the failure sizes for each fault. Then, for each combination strategy we computed the
variance of the distances between the actual failure sizes and the means for each fault.
These results are displayed in the bar chart in Fig. 6. The resulting variances for each
combination strategy were then compared using an F-test. With a hypothesis that the
variance of distances between the actual failure sizes and the means for each fault
for BC is different from the corresponding variances of the other three combination

Table 14 Percent of test cases that failed for a each fault for the different combination strategies
applied to the test subjects nametbl and ntree. Bold indicates high and italic indicates low for each
fault

Strategy Faults
nametbl ntree

1 2 3 4 5 6 7 8 1 2 4 5 6 7 8

EC 14 71 29 29 71 14 14 57 0 33 22 56 44 44 67
BC 48 91 74 26 78 4 74 30 4 77 58 27 19 77 92
OA 4 71 27 31 59 14 14 67 0 32 21 38 31 42 75
AETG 2 69 26 30 57 13 15 43 0 23 12 31 27 28 58

Empir Software Eng (2006) 11: 583–611 603

1 1098765432 11 19 2018171615141312 21 2625242322

60

50

40

30

20

10

 0

EC

AETG

OA

BC

Fault Number

Fig. 6 Means of differences of the failure sizes

strategies, the results are that the hypothesis cannot be rejected with a significance
level of 98%.

BC behaves differently because of the way it selects values. The other combination
strategies choose values in an approximately uniform distribution, that is, all the
values appear about the same number of times in the test suite. In a BC test suite,
however, the base choice values appear more often because every test case is derived
from the base test case.

Faults that are triggered by base choice values will result in BC having a higher
failure size than the other combination strategies because the base choice values
appear so frequently. The opposite is also true; when faults are triggered by non-base
choice values, BC will have lower failure size than the other combination strategies.

6 Discussion and Conclusions

Some faults were not found by any combination strategy, yet all the strategies found
most of the faults. At the same time, 100% decision coverage was only reached in
one program. Thus we conclude that combination strategies should be combined
with other methods such as code coverage-based methods. The following subsections
discuss more detailed results.

6.1 Fault Finding Abilities of Combination Strategies

This subsection tries to make some general observations about the abilities of the
combination strategies to find faults. These observations are based partly on the data,

604 Empir Software Eng (2006) 11: 583–611

partly on experience applying the strategies, and partly on an analysis of the theory
behind the combination strategies. The data showed that EC revealed many faults
by coincidence. This leads to the conclusion that the result of applying EC is too
unpredictable to be really useful for the tester.

In this experiment the combination strategies are used solely in a black-box
manner. That is, they only use information from the specifications when designing the
test cases. It is worth stressing that there can be no guarantees that all faults will be
found by this approach. This was also the case in this experiment, where three faults
were missed because they were implementation related, as described in Section 5.2.

BC is different from the other strategies because semantic (or domain) knowledge
is used to choose base values. Choosing base values is very simple, but the choice of
base values directly affects all of the tests. Ammann and Offutt (1994) recommend
choosing the most commonly used value (based on expected user behavior). Analysis
and the data indicate that this means BC tests will be more likely to find faults in parts
of the program that are most often used. As a result of BC satisfying single error
coverage, no test case will contain more than one invalid parameter value, making it
less likely that faults will be masked. This conclusion is based on analysis of the faults
that only BC revealed.

A weakness of BC showed up in test problems where some parameters contain
two or more values that will be used about the same number of times by the user,
that is, there is more than one base choice candidate. In a BC test suite, each non-
base choice value will only occur once, which discriminates the other commonly
used values. Thus, BC is probably most effective when each parameter contains one
obvious base choice value.

Although OA and AETG generate test suites with different contents, they both
satisfy pair-wise coverage, and thus have similar performance. Also, the sizes of test
suites generated by OA and AETG are similar. Hence, the practicing tester should
choose based on other factors, for instance ease-of-use.

It seems easier to automate the AETG strategy than the OA strategy (this is
supported by the fact that there is a tool for AETG). It is also straightforward to
extend AETG to generate t-wise tests, where t is an arbitrary number. Automating
OA is quite difficult.

AETG can also start with an existing test suite and extend it to satisfy pair-wise
(or t-wise) coverage. For example, BC tests could be created, and then extended with
AETG to satisfy pair-wise coverage.

The pair-wise coverage property of OA and AETG gives best results for test
subjects where there are many valid values of each parameter, which is when BC
is least effective. For test problems with many invalid values for each parameter,
when BC is most effective, the pair-wise strategies may mask faults, that is, when
tests cover several parameter value pairs with multiple invalid values, the effects of
some parameters may be masked by others. This was also observed by Cohen et
al. (1997). In test subjects where parameters contain both several valid and several
invalid values it seems to be the case that a combination of BC and a pair-wise
strategy is required to yield the best effectiveness.

To summarize, our assessment is that BC and AETG should be combined to get
the best effects. The BC tests will provide a focus on user behavior and reduce the
risk of fault masking, and then extended with pair-wise tests for faults that appear in
parts of the program that are not used as much.

Empir Software Eng (2006) 11: 583–611 605

6.2 Input Parameter Modeling

A final observation relates to modeling the input parameters. Test engineers often
need to choose between representing some aspect of the input space as either a
separate parameter or by adding more values to another parameter. The choice
should depend on which combination strategy is used.

Given a fixed number of parameters values, for EC, BC, OA, and AETG, it is
better to have many parameters with few values, but for AC it is better to have few
parameters with many values. It should be noted that this analysis is purely based on
cost; no data exists on the relative fault finding abilities.

Piwowarski et al. (1993) showed the applicability of refining the input parameter
model by monitoring the code coverage achieved by the generated test suite. This
suggests that code coverage may be used both to validate the effectiveness of the
input parameter model and to identify parts of the code that should be tested with
other means.

6.3 Recommendations

The following recommendations summarize the findings.

• Combination strategies are useful test methods but need to be complemented by
code coverage.

• When time is a scarce resource, use BC. Its advantages are its low cost and its
user orientation.

• When there is enough time, combine BC with AETG. BC reduces the likelihood
of masking of faults, and AETG guarantees pair-wise coverage.

• For the less demanding strategies, when identifying parameters and equivalence
classes the test suite will be smaller if more parameters with few values are used
than if few parameters with many values are used.

7 Related Work

An interesting example of how different testing methods can be compared is de-
scribed by Reid (1997). Software from a real avionics system was used. All existing
trouble reports from the first six months of operation were collected. These faults
were investigated and any fault that could have been found during component
testing were identified and used in the study. Each fault was analyzed to determine
the complete set of input values that would trigger that fault, call the fault-finding
set. Independently of the fault analysis, boundary value analysis and equivalence
partitioning were used to partition the input space into test case sets. Under the
assumption that each test case has the same probability of being selected, the effec-
tiveness of each testing method was calculated as the probability that all faults will be
revealed. Reid found that the mean probability for fault detection for boundary value
analysis is 0.73 and for equivalence partitioning it is 0.33. An important contribution

606 Empir Software Eng (2006) 11: 583–611

by this research is the method of comparison, which can be used to compare any type
of testing methods.

Several studies have compared the effectiveness of different combination strat-
egies. By far the most popular property used to compare combination strate-
gies is number of test cases generated for a specific test subject. This is easy to
compute and particularly interesting for the non-deterministic and greedy combi-
nation strategies, since the size of the test suite cannot be determined algebra-
ically. Several papers have compared a subset of the combination strategies that
satisfy 2-wise and 3-wise coverage (Cohen et al., 2003; Lei and Tai, 1998;
Shiba et al., 2004; Williams, 2000). The combination strategies perform similar-
ly with respect to the number of test cases generated in all of these comparisons.

Since the number of test cases does not clearly favor one particular combination
strategy, some authors have also compared the strategies with respect to time con-
sumption, that is, the execution time for the combination strategy to generate its test
cases. Lei and Tai (2001) show that the time complexity of their combination strategy
called In-Parameter-Order (IPO) is superior to the time complexity of AETG. IPO
has a time complexity of O(v3 N2log(N)) and AETG has a time complexity of
O(v4 N2log(N)), where N is the number of parameters, each of which has v values.

Further, Williams (2000) reports on a refinement of OA called Covering Arrays
(CA) that outperforms IPO by almost three orders of magnitude for the largest test
subjects in their study, in terms of time taken to generate the test suites. Finally,
Shiba et al. (2004) show some execution times but the executions have been made on
different target machines so the results are a bit inconclusive.

8 Future Work

There are still several questions to be answered before concluding that combination
strategies can be used in an industrial setting, and other questions about how best
to apply them. A first question is about the best method to use for input parameter
modeling. This experiment kept the model stable and modified the strategy used to
generate tests. It would also be useful to precisely describe different (repeatable)
methods for generating the input model and then perform another experiment that
varies them. A secondary question, of course, would be whether the two variables
interact, that is, whether changing the input parameter modeling method would
affect which combination strategies work best.

The experiment in this paper also did not directly handle conflicts among parame-
ter values. The best way to handle conflicts needs to be determined, and how they
interact with strategies and input modeling methods also needs to be investigated.
AETG has a conflict handling mechanism already built into the algorithm (Cohen et
al., 1997). Other conflict handling mechanisms are independent of the combination
strategies (Grindal et al., 2005), and a follow-up study of the performance of these is
currently in process.

This experiment was performed in a laboratory setting and used fairly small
programs. This limits the external validity of the results. It would be helpful to try
some of these techniques in an industrial setting, both to assess their effectiveness
and to assess their true cost.

An obvious result from this study is the conclusion that the contents of the input
parameter model affects the test results in a major way. For instance, in Section 5.2

Empir Software Eng (2006) 11: 583–611 607

it was shown that the number of t-factor faults for each t may differ for different
contents of the input parameter model. One plan is to determine how sensitive the
test results are to the actual contents of the input parameter model.

In the future, we hope to further develop the tools used in this experiment to be
more robust, include more automation, and to be more general. An ultimate goal, of
course, is to completely automate the creation of tests. It seems likely that the test
engineer would always need to develop the input parameter model and the expected
results for each selected test case, but it should be possible to automate the rest of
the test process.

We also hope to formalize the description of different types of faults. It would also
be interesting to examine variants of combination strategies, for example, using the
complete BC test suite as input to the AETG algorithm.

It might also be useful to empirically compare combination testing strategies with
other test methods, for instance by the method described by Reid (1997).

Related to the fault-finding sets studied by Reid is the number of combinations
that will reveal a certain fault. It was shown in Section 5.2 that two factors influence
whether combination strategies reveal a fault. One is the number of parameters
involved in triggering the failure (t-factor), and the other is how many combination
of values of those parameters that will trigger that fault. As was also observed by
Cohen et al. (1994), it would be interesting to study faults in real-world applications
to determine the properties with respect to fault detection.

Acknowledgements First and foremost we owe our gratitude to Dr Christopher Lott for generously
supplying all the material concerning the test subjects and being very helpful in answering our
questions. Next, we are indebted to the anonymous referees who offered many helpful suggestions.
Then, we are also indebted to many of our colleagues in the computer science department at the
University of Skövde. Louise Ericsson gave us helpful hints when we were lost trying to debug
the Prolog program for generating orthogonal arrays. Marcus Brohede and Robert Nilsson supplied
valuable tips during the set up of the compiler environment. Sanny Gustavsson, Jonas Mellin, and
Gunnar Mathiason gave us general support and good ideas. Finally, Thomas Lindvall and Åsa
Grindal gave helpful advice during the analysis of the results and the writing process, respectively.

References

Ammann P, Offutt AJ (1994) Using formal methods to derive test frames in category-parti-
tion testing. Proceedings of the Ninth Annual Conference on Computer Assurance (COM-
PASS’94), Gaithersburg MD, IEEE Computer Society Press, pp 69–80

Anderson T, Avizienis A, Carter W, Costes A, Christian F, Koga Y, Kopetz H, Lala J, Laprie
J, Meyer, J Randell B, Robinson A (1994) Dependability: basic concepts and terminology.
Technical report, IFIP. WG 10.4

Archibald R (1992) Managing high-technology programs and projects. John Wiley and Sons, Inc.
Bache R (1997) The effect of fault size on testing. The Journal of Software Testing, Verification, and

Reliability 7: 139–152
Basili VR, Rombach HD (1988) The TAME project: Towards improvement-oriented software

environments. IEEE Transactions on Software Engineering SE-14(6): 758–773
Basili V, Selby R (1987) Comparing the effectiveness of software testing strategies. IEEE Transac-

tions on Software Engineering SE-13(12): 1278–1296
Basili V, Shull F, Lanubile F (1999) Using experiments to build a body of knowledge. Perspec-

tives of System Informatics, Third International Andrei Ershov Memorial Conference (PSI 99).
Akademgorodok, Novosibirsk, Russia, 6-9 July 1999, Proceedings, pp 265–282

608 Empir Software Eng (2006) 11: 583–611

Briand L, Pfahl D (1999) Using simulation for assessing the real impact of test coverage on defect
coverage. Proceedings of the International Conference on Software Maintenance (ICSM99),
Oxford, The UK, 30th of Aug - 3rd Sept 1999, pp 475–482

Brownlie R, Prowse J, Phadke M (1992) Robust testing of AT&T PMX/StarMAIL using OATS.
AT&T technical Journal 71(3): 41–47

Burr K, Young W (1998) Combinatorial test techniques: Table-based automation, test generation
and code coverage. Proceedings of the International Conference on Software Testing, Analysis,
and Review (STAR’98). San Diego, CA, USA, pp 26–28

Cohen D, Dalal S, Kajla A, Patton G (1994) The automatic efficient test generator (AETG) system.
Proceedings of Fifth International Symposium on Software Reliability Engineering (ISSRE’94),
Los Alamitos, California, USA, 6-9 November 1994, IEEE Computer Society, pp 303–309

Cohen D, Dalal S, Parelius J, Patton G (1996) The combinatorial design approach to automatic test
generation. IEEE Software 13(5): 83–89

Cohen D, Dalal S, Fredman M, Patton G (1997) The AETG System: An approach to testing based
on combinatorial design. IEEE Transactions on Software Engineering 23(7): 437–444

Cohen M, Gibbons P, Mugridge W, Colburn C (2003) Constructing test cases for interaction testing,
Proceedings of the 25th International Conference on Software Engineering, (ICSE’03), Portland,
Oregon, USA, 3-10 May 2003, IEEE Computer Society, pp 38–48

Dalal S, Mallows C (1998) Factor-covering designs for testing software. Technometrics 50(3):
234–243

Dunietz I, Ehrlich W, Szablak B, Mallows C, Iannino A (1997) Applying design of experiments
to software testing. Proceedings of 19th International Conference on Software Engineering
(ICSE’97). Boston, MA, USA 1997, ACM, pp 205–215

Frankl P, Hamlet R, Littlewood B, Stringini L (1998) Evaluating testing methods by delivered
reliability. IEEE Transactions on Software Engineering 24: 586–601

Grindal M, Lindström B, Offutt AJ, Andler SF (2003) An evaluation of combination strategies
for test case selection. Technical Report. Technical Report HS-IDA-TR-03-001. Department
of Computer Science, University of Skövde

Grindal M, Offutt AJ, Andler SF (2005) Combination testing strategies: A survey. Software Testing,
Verification, and Reliability 15(3): 167–199

Harman M, Hierons R, Holocombe M, Jones B, Reid S, Roper M, Woodward, M (1999) Towards
a maturity model for empirical studies of software testing. Proceedings of the 5th Workshop on
Empirical Studies of Software Maintenance (WESS’99). Keble College, Oxford, UK

Kamsties E, Lott C (1995a) An empirical evaluation of three defect detection techniques. Technical
Report ISERN 95-02. Dept of Computer Science, University of Kaiserslauten

Kamsties E, Lott C (1995b) An empirical evaluation of three defect detection techniques. Proceed-
ings of the 5th European Software Engineering Conference (ESEC95). Sitges, Barcelona, Spain,
25-28 September 1995

Kropp N, Koopman P, Siewiorek D (1998) Automated robustness testing of off-the-shelf software
components. Proceedings of FTCS’98: Fault Tolerant Computing Symposium, 23-25 June 1998
Munich, Germany. IEEE, pp 230–239

Lei Y, Tai K (1998) In-parameter-order: A test generation strategy for pair-wise testing. Proceedings
of the third IEEE High Assurance Systems Engineering Symposium, IEEE, pp 254–261

Lei Y, Tai K (2001) A test generation strategy for pairwise testing. Technical Report TR-2001-03.
Department of Computer Science, North Carolina State University, Raleigh

Lindström B, Grindal M, Offutt J (2004) Using an existing suite of test objects: Experience from
a testing experiment. Workshop on Empirical Research in Software Testing, ACM SIGFOST
Software Engineering Notes. Boston, MA, USA

Lott C (n.d.) A repeatable software experiment. URL:www.chris-lott.org/work/exp/
Lott C, Rombach H (1996) Repeatable software engineering experiments for comparing defect-

detection techniques. Journal of Empirical Software Engineering 1(3): 241–277
Mandl R (1985) Orthogonal latin squares: An application of experiment design to compiler testing.

Communications of the ACM 28(10): 1054–1058
Miller J, Roper M, Wood M, Brooks A (1995) Towards a benchmark for the evaluation of software

testing techniques. Information and Software Technology 37(1): 5–13
Musa J (1993) Operational profiles in software-reliability engineering. IEEE Software 10: 14–32
Myers G (1979) The Art of Software Testing, John Wiley and Sons
Ntafos SC (1984) On required element testing. IEEE Transactions on Software Engineering SE-10:

795–803

www.chris-lott.org/work/exp/

Empir Software Eng (2006) 11: 583–611 609

Offutt AJ, Hayes JH (1996) A semantic model of program faults. Proceedings of the 1996 Interna-
tional Symposium on Software Testing, and Analysis. ACM Press, San Diego, CA, pp 195–200

Offutt AJ, Xiong Y, Liu S (1999) Criteria for generating specification-based tests. Fifth IEEE
International Conference on Engineering of Complex Systems (ICECCS’99). Las Vegas NV,
IEEE, pp 119–129

Ostrand T, Balcer M (1988) The category-partition method for specifying and generating functional
tests. Communications of the ACM 31(6): 676–686

Piwowarski P, Ohba M, Caruso, J (1993) Coverge measure experience during function test. Proceed-
ings of 14th International Conference on Software Engineering (ICSE’93). Los Alamitos, CA,
USA 1993, ACM, pp 287–301

Reid S (1997) An empirical analysis of equivalence partitioning, boundary value analysis and ran-
dom testing. Proceedings of the 4th International Software Metrics Symposium (METRICS’97),
Albaquerque, New Mexico, USA, 5-7 Nov 1997, IEEE, pp 64–73

Shiba T, Tsuchiya T, Kikuno T (2004) Using artificial life techniques to generate test cases for
combinatorial testing. Proceedings of 28th Annual International Computer Software and Appli-
cations Conference (COMPSAC’04) 2004. Hong Kong, China, IEEE Computer Society, 28-30
September 2004, pp 72–77

So S, Cha S, Shimeall T, Kwon Y (2002) An empirical evaluation of six methods to detect faults in
software. Software Testing, Verification and Reliability 12(3): 155–171

Wallace DR, Kuhn D (2001) Failure modes in medical device software: An analysis of 15 years
of recall data. International Journal of Reliability, Quality, and Safety Engineering 8(4):
351–371

Williams A (2000) Determination of test configurations for pair-wise interaction coverage. Proceed-
ings of the 13th International Conference on the Testing of Communicating Systems (TestCom
2000). Ottawa, Canada, August 2000, pp 59–74

Williams A, Probert R (1996) A practical strategy for testing pair-wise coverage of network in-
terfaces. Proceedings of the 7th International Symposium on Software Reliability Engineering
(ISSREt’96). White Plains, New York, USA, Oct 30 - Nov 2 1996, pp 246–254

Wood M, Roper M, Brooks A, Miller J (1997) Comparing and combining software defect detection
techniques: A replicated study. Proceedings of the Sixth European Software Engineerng Confer-
ence (ESEC/FSE 97). Lecture Notes in Computer Science Nr. 1013, Springer Verlag, pp 262–277

Woodward MR, Al-Khanjari ZA (2000) Testability, fault size and the domain-to-range ratio: An
eternal triangle. Proceedings of the 2000 ACM SIGSOFT international symposium on Software
testing and analysis (ISSTA ’00). ACM Press, Portland, Oregon, USA, pp 168–172

Yin H, Lebne-Dengel Z, Malaiya Y (1997) Automatic test generation using checkpoint encoding and
antirandom testing. Technical Report CS-97-116. Colorado State University

Zweben S, Heym W (1992) Systematic Testing of Data Abstractions Based on Software Specifica-
tions. Journal of Software Testing, Verification, and Reliability 1(4): 39–55

610 Empir Software Eng (2006) 11: 583–611

Mats Grindal received his Master’s degree in computer science and engineering in 1992 from the
Royal Institute of Technology, Stockholm, Sweden. Since then he has been working in the field
of software testing as a consultant. In 1999 he was appointed senior consultant at Enea AB. His
professional interests include all test strategy related issues. Since 2000, Grindal also holds a part
time research position at the University of Skövde. His research focuses on test case selection for test
objects with very large input spaces. Technology transfer from academia to industry is a major driving
force for Mr. Grindal. His research is sponsored in part by the Swedish Knowledge Foundation, Enea
AB and the University of Skövde.

Birgitta Lindström received her Master’s degree in computer science in 2000 from the University
of Skövde, Sweden. Since 2000, Ms Lindström holds a research position in the Distributed Real-
Time Systems research group at the University of Skövde where she is one of the participants of
the TETReS project (Testing of Event-Triggered Real-time Systems). Her research focus testability
of event-triggered systems and the impact on testability from system properties, e.g., concurrency,
scheduling, resource handling.

Jeff Offutt is a Professor of Information and Software Engineering at George Mason University.
His current research interests include software testing, analysis and testing of web applications,
object-oriented program analysis, module and integration testing, formal methods, and software
maintenance. He has published almost 100 research papers in refereed software engineering journals
and conferences. Offutt is or has been on the editorial boards for the IEEE Transactions on Software
Engineering (2001-2005), the Empirical Software Engineering Journal (current), the Journal of Soft-
ware Testing, Verification and Reliability (current), the Journal of Software and Systems Modeling

Empir Software Eng (2006) 11: 583–611 611

(current), and the Software Quality Journal (current) and was program chair for ICECCS 2001. He
received the Best Teacher Award from the School of Information Technology & Engineering in
2003. Offutt received a PhD degree in Computer Science from the Georgia Institute of Technology,
and is a member of the ACM and IEEE Computer Society

Sten F. Andler is a Professor of Computer Science at University of Skövde and Program Director
of the Research Program in Information Fusion, a recent major grant from the Swedish Knowledge
Foundation. Prof. Andler has previously served three years as Dean of Science at the University.
Prof. Andler was affiliated with the IBM Almaden Research Center and IBM Software Solutions,
San Jose, CA, for fourteen years, and shorter periods at University of California at Berkeley
and Xerox Palo Alto Research Center. Prof. Sten F. Andler received his Ph.D. in Computer
Science in 1979 from Carnegie Mellon University, Pittsburgh, PA, and a Ph.D. in Computer Science
from Chalmers University of Technology, Gothenburg, Sweden, also in 1979. His interests are in
the areas of distributed systems, real-time systems, databases, operating systems, and information
fusion. In addition to the newly formed Information Fusion Program, Prof. Andler leads a research
group in Distributed Real-Time Systems (DRTS), with interests in distributed real-time systems,
active real-time databases, real-time operating systems, scheduling, monitoring, testing, and software
engineering. Prof. Andler is a Member of the ACM and the IEEE Computer Society. He is a Member
of the Editorial Board of Innovations in Systems and Software Engineering: A NASA Journal.

	An evaluation of combination strategies for test case selection
	Abstract
	Introduction
	Background
	Combination Strategies
	Each Choice (EC)
	Base Choice (BC)
	Orthogonal Arrays (OA)
	Automatic Efficient Test Generator (AETG)
	All Combinations (AC)

	Experimental Setting
	Evaluation Metrics
	Test Subjects
	Test Subject Parameters and Values
	Faults
	Infrastructure for Test Case Generation and Execution
	Threats to Validity

	Results
	Number of Test Cases
	Faults Found
	Decision Coverage
	Failure Size

	Discussion and Conclusions
	Fault Finding Abilities of Combination Strategies
	Input Parameter Modeling
	Recommendations

	Related Work
	Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialUnicodeMS
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

