166 EMPIRICAL SOFTWARE ENGINEERING

References

Basili, V., and Rombach, D. 1988. The TAME project: Towards improvement-oriented software environments.
IEEE Transactions on Software Engineeribdy6): 758-773.

Basili V. and Weiss, D. 1984. A methodology for collecting valid software engineering &L Transactions
on Software Engineering0(11): 758-773.

http://www.iese.fhg.de/Services/Projects/Public-Projects/Cemp.html

Hoisl, B., Oivo, M., Rombach, D. H., Ruhe, G., van Latum, F., and van Solingen, R. Shifting to goal-oriented
measurement in industrial environments. Submitted for publication.

Morasca, S., Macchi, F., Grigoletti, M., and Gusmeroli, C. Goal-driven measurement in a maintenance project.
Tech. Report n 96-047, Politecnico di Milano Dipartimento di Elettronica. Submitted for publication.

Early Risk-Management by Identification of
Fault-prone Modules

NICLAS OHLSSON nicoh@ida.liu.se
Dept. of Computer and Information Sc., Lagkng University, S-581 83 Limiping, Sweden

ANN CHRISTIN ERIKSSON . ann-christin.eriksson@uab.ericsson.se
Ericsson Utvecklings AB, AXE Systems Management, S-12&26, Sweden

MARY HELANDER maryh@ida.liu.se
Dept. of Computer and Information Sc., Lagkng University, S-581 83 Lilping, Sweden

1.0 Introduction

Failure in telecommunication systems can cause major disruptions and threaten critical
services in society (Khoshgoftaar and Kalaichelvan, 1995). The quality of software has a
major impact on the overall performance of telecommunication systems. It is well known
that a major part of software development cost is spent on maintenance (Henry and Kafura,
1981). It has also been reported that the cost for handling faults disclosed during testing and
operation amount to large costs (Ohlsson et al., 1996). In addition, it is well-established
that the costs for fault correction grows with the number of phases between introduction
and detection of faults (Boehm, 1981). Shen et al. (1985) concluded that schedule and/or
resource constraints require that techniques which facilitate early detection are needed. A
number of studies have aimed at predicting the most fault-prone modules at the completion
of coding, see for example (Munson and Khoshgoftaar, 1992; Ebert and Liedtke, 1995).
As these models can only be used to schedule testing activities when all modules have been
implemented, models that are applicable earlier in the development phase are desirable.
This is especially critical in projects where modules are completed at different time points,
which appears to be common in most organisations, as existing prediction techniques require
available data from all components. While the results from design are limited, there have



POSITION PAPERS 167

been a few documented studies, see for example (Lennselius, 1990; Ohlsson et al., 1996b).
Still, even atthe completion of design, the impact of the prediction is relatively limited. Such
models can only be used to suggest extra inspection of fault-prone design modules, and to
allocate more experienced people and time to those critical components. Therefore, models
are needed that can be applied before the design, at the completion of the requirements
specification process. Itis also of interest to investigate to what extent present models, such
as those described by Ohlsson et al. (1996b), can be improved by incorporating facts about
the design-base quality and complexity.

This paper describes an empirical study conducted at Ericsson Telecom AB. Quantitative
data presented was collected from two successive, large-scale switching software projects.
The objective of this study was to investigate whether measurement from release n of
the switching system could be used to identify the most fault-prone modules in release
(n+ 1). Furthermore, the study investigated whether measurements from release n should
be combined with those from releas¢ hto see if the prediction models could be improved.

2.0 Background

Quantitative methods for quality control and improvement have successfully been used
within manufacturing for a number of years. Such approaches have also been applied
within software engineering to enable a better understanding of software development and
to improve software product quality. The Pareto principle, which guides improvements
efforts towards theital fewand away from thérivial many, is one example of a quality
improvement strategy. There exists a number of different examples of the Pareto principle
applied within software engineering, see for example (Adams, 1984; Munson and Khosh-
goftaar, 1992; Zuse, 1991), and (Schulmeyer and McManus, 1987). We have previously
shown that the Pareto principle was supported by data from Ericsson Telecom AB (Ohlsson
etal., 1996b). Figure 1 illustrates that 20 percent of the modules in the two systems studied
in this report were responsible for approximately 60 percent of all the trouble reports.

Developing models to predict the vital few fault-prone modules that are applicable early
in the development process enables management to take special measures at an early stage.
For example, more experienced engineers could be directed to support the development of
critical parts, and additional and more extensive inspection and testing may be scheduled.
Prediction of fault-prone modules at an early stage means reduced costs, since corrective
maintenance in early phases are less expensive, and time to delivery may in fact be reduced
as less re-work is required.

3.0 Data Collected

The data collected from the two releases (n ardX) was based on 69 modules, ranging

in size from 1000 to 6000 LOC. The modules constituted a subset of a large system. The
metrics from the different releases were distinguished by adding (n) asrdLjrto each
metric name. The dependent variable, denotethFR1), was collected from testing and



168 EMPIRICAL SOFTWARE ENGINEERING

100

80 T
2 Fault(n+1)
S
©® 60T
. — - - — Fault(n)
S
R 0 Dec(n+1)

20444 e Fault(n)*Dec(n+1)

0 14 29 43 58 72 87
% of Modules

Figure 1. The Pareto diagram is based on data from two succeeding releases of a switching system developed by
Ericsson Telecom AB and shows evidence of a 20-60 rule.

from 26 weeks during a number of site tests. Note that the modules developed communicate
with signals, see Turner (1993) for more details.
From release n the following metrics were collected:

e SigFF(n)—the number of new and modified signals (this metric is available after the
first impact analysis conducted before design)

e Dec(n)—the number of decision nodes (this metric is available at the completion of
design)

e Cond(n)—the number of condition nodes (this metric is available at the completion of
design)

e FANiIn(n)—the number of receive-signals (this metric is available at the completion of
design)

e FANout(n)—the number of send-signals (this metric is available at the completion of
design)

e LOC(n)—the number of lines of code (this metric is available at the completion of
implementation)

e TR(n)—the number of trouble reports (this metric is available after 26 weeks at site
test)

e Density(n)—the number of trouble reports divided by the number of lines of code.



POSITION PAPERS 169

From release i 1 the following metrics were collected:
e R(n+ 1)—the number of receive-signals in SigFF.

e S(n+ 1)—the number of send-signals in SigFF.

e Dedn+1)
e Condn+1)
e LOC(N+1

The modification degree, denoted Madt 1), was also measured by dividing Cang
by Condn+ 1). SigFF is the sum of receive-, send- and transit-signals. Designers pointed
out that transfer-signals never caused problems and were therefore believed to not affect
the fault-proneness of a module. Thus, only receive- and send-signals were collected in
release it 1.

4.0 Data Analysis

The objective of our study was to distinguish between fault-prone and non-fault-prone mod-
ules, which suggests that discriminative analysis should be applicable. However, discrimi-
native analysis requires that there exists a threshold for classifying modules into fault-prone
and non-fault-prone modules that is stable over releases. This turned out not to be the
case. Instead we found that the threshold value differed between the different releases
even though 20 percent of the modules were responsible for 60 percent of the faults. This
was also supported by data published elsewhere (Munson and Khoshgoftaar, 1992). Our
experience from industry also indicated that the percentage of modules that management
was willing to spend extra effort on differed from project to project. Therefore it was
not possible to determine a threshold value to distinguish between fault-prone and non
fault-prone modules. Furthermore, the most relevant statistical methods were determined
by permissible transformations of the data (Fenton, 1991). The type of metrics used in
this study have been claimed to be of ordinal scale (Zuse, 1991), which suggests that non-
parametric techniques should be used. A more detailed explanation of the application of
non-parametric techniques for this study can be found in (Ohlsson et al., 195p6&3u-

man’s rank-order coefficier(Siegel and Castellan, 1988) was used to assess the variables
to rank the predictability of fault-prone modules £ 0.001). The models were further
evaluated with Alberg diagrams (Ohlsson et al., 1996), which have the advantage of being
graphical and of making Type | and Type |l errors visible for all thresholds at once. The di-
agrams also indicate whether the modules indicated as fault-prone, but are non-fault-prone,
are relatively close to the threshold. In other words, if we have a threshold of five faults,
Type Il errors identifying modules with zero faults will generate a bigger gap than Type Il
errors identifying modules with four faults. The latter Type Il error is of course less critical,
especially if the corresponding Type | error excluded a module with five faults. For further
discussion see (Ohlsson, 1996a; Ohlsson et al., 1996b).



170 EMPIRICAL SOFTWARE ENGINEERING

Table 1.Spearman’s ranking coefficient for metrics from release n.

TR(N+1) TR(N+1) TR(N+1)
TR(n) 0.6541 Density(n) 0.6053 Déo 0.4792
FANin(n) 0.6328 FDL(n) 0.5767 Con¢h) 0.4738
SigFRN) 0.6296 FANoutn) 0.5754 LOGN) 0.3760

Table 2.Spearman'’s ranking coefficient for metrics from releaseh

TR(N+ 1) TRN+ 1) TR(N+ 1)
Sn+1 05448 Deén+ 1) 0.5850 Modn+ 1)  —0.3410
Rn+1)  0.4608 Conth+1)  0.5823

4.1 Analysis 1—Prediction Based on Release

Spearman’s correlation coefficient was calculated for the metrics from release n, using
TR(n + 1) as the dependent variable. The result is displayed in Table 1. The analysis
indicates that the most fault-prone modules in release n will also be most fault-prone in the
successsive releaseHl.

To determine whether it would be profitable to combine certain variables into more
complex models the correlation was calculated between pairs of the independent vari-
ables. FANiIrin) showed low correlation to TR) and Density(n), and it was therefore
assumed to be profitable to combined these. The correlation between the dependent vari-
able and FANIin)*TR(n) as well as the correlation between the dependent variable and
FANiIn(n)*Densityn) was 0.74.

4.2 Analysis 2-Prediction Based on Early Metrics from Release 1

The next step was to determine whether it would be profitable to combine the metrics from
release n and # 1. Spearman'’s correlation coefficient was calculated for the metrics from
release nt+ 1, using TRn + 1) as dependent variable. The correlation values are listed in
Table 2, which also includes the M@t+ 1) variable.

Itis notable that correlations are overall slightly higher for the metrics displayed in Table 1.
That s, it appears that the design base, or the history of the modules, is important when we
try to explain the fault-proneness. To determine which variables could be combined with the
variables from release n the correlations between the metrics were calculatedn €dnd
was selected to be combined with FAKm and §n + 1) with both FANin(n) and TRn).

The former had a correlation of 0.7380 and the latter two 0.6511 and 0.7300.

4.3 Evaluation of the Best Models using Alberg Diagram

The evaluation of the prediction models using an Alberg diagram suggested that a threshold
of 20 percent could be used to identify modules responsible for 46 percent of the faults
based on release n data. The best predictor available early in reledseas De¢n+ 1),

which identified 55 percent of the faults with a threshold of 20 percent. The Alberg diagram



POSITION PAPERS 171

ﬂ 100
3 807 e
% 601 Product
2 Release n
D 407 % A Product
= / Release n+1
3 201
8 D
o 0 t + t +

0 22 43 65 87

% of Modules

Figure 2. The Alberg diagram showing some of the best prediction models. The prediction models have a distance
of 4% at 20%-threshold, and 10% at 30%-threshold.

indicated that the best predictor model, using a 20%-threshold, would result in the identifi-
cation of 59 percent. This model was, however, not identified by calculating the correlation
values and on this basis combining the variables into more complete models. Instead the
model was identified when analysing the result from the Alberg diagram. Eventhough this
highlights the need for better methods for building more complex models based on ordinal
data, the actual models show the applicability of prediction models to identify fault-prone
modules: before the project has started, in the early analysis phases, and at the completion
of design.

5.0 Discussion and Future Work

A majority of the studies aimed at predicting the most fault-prone modules have focused
on building prediction models applicable at the completion of the implementation phase.
Such models may be difficult to use to improve allocation of test efforts as it is common
that modules in real projects are not completed at the same time, which is a prerequisite
for building such models. Therefore we claim that it is important that research resources
are spent on trying to make predictions earlier, before coding has started, or even further.
This should be worthwhile as such models would not only improve fault detection, e.g.
by cost effective inspection and testing, but also fault avoidance, by improving allocation
of implementation resources in terms of effort and skills. In this paper we looked at how
such models can be improved by including historical data, e.g. fault-proneness in earlier
release and modification degree. The results described in this paper indicate that it can be
profitable to use data from earlier releases to predict the most fault-prone modules. The
result also suggests that historical data gives an early indication of which modules will
be the most critical ones. Based on our experience from building such models we have



172 EMPIRICAL SOFTWARE ENGINEERING

identified a number of areas that need more examination. First, there exists no praxis for how
variables can be combined into more complete models without violating the transformations
admissible for ordinal data. Existing techniques, such as principal component analysis
(Khoshgoftaar et al., 1995), require standardised data, which restrict the transferability
of models to other data sets. Future work should therefore focus on developing methods
for analysing additive and multiplicative effects of several variables of ordinal type, as
well as how to weight variables differently. Second, it is difficult to get manageable data
sets, without a high risk of excluding the right data set, using present screening techniques,
applicable to ordinal data. Third, the objective of early identification of fault-prone modules
is to enable improved fault detection in terms of inspection and testing, and fault avoidance
in terms of improved allocation of time and skills. Unless these parameters are included in
the prediction model, the models will wear out. Therefore future work should aim at identify
other attributes that should be included in the models. Fenton etal. (1995) developed a four-
layered approach that could be used to develop such a more realistic and complete model that
includes attributes of not only the product, but also process and resources. Fourth, a number
of studies are only based on fault data from testing, omitting the actual performance of the
system in usage. Such models will only be good for predicting the modules for which
the test strategy used is likely to find many faults, not the modules which will be fault-
prone or failure-prone, i.e. likely to have many faults associated that are disclosed during
operation. Fifty, little work has been done on evaluating models predictability by building
models for one release or project and ten trying to evaluate predictability by testing on data
from another project. Such validation is crucial to understand model applicability in a real
industrial environment. Finally, surprisingly few studies have reported failure in achieving
their objectives. It is our belief that there exists a significant number of studies which
have not achieved their first stated objectives, and which failures, if published, would be of
benefit to the research field.

References

Adams, E. 1984. Optimizing preventative service of software prodiigld.Research Journa?8(1): 2—14.

Boehm, B. W. 1981Software Engineering EconomidBrentice-Hall.

Fenton, N., Neil, M., and Ostrolenk, G. 1995. Metrics and models for predicting software defects. Technical
Report CSR/10/02 Centre for Software Reliability, City University, UK.

Fenton, N. E. 1991Software Metrics—A Rigorous Approadtondon: Chapman & Hall.

Henry, S., and Kafura, D. 1981. Software structure metrics based on informationlB&E Transactions on
Software Engineering(5): 510-518.

Khoshgoftaar, T. M., and Kalaichelyan, K. S. 1995. Detection of fault-prone programs modules in a very large
telecommunication systerithe Sixth International Symposium on Software Reliabibiyluse, France, 24-33.

Munson, J. C., and Khoshgoftaar, T. M. 1992. The detection of fault-prone progi&R& Transactions on
Software Engineering8(5): 423—-433.

Ohlsson, N. 1996a. Software quality engineering by early identification of fault-prone modules, Licentiate Thesis
No 575, Dept. of Computer and Information Science, loipikig University, Sweden.

Ohlsson, N., Helander, M., and Wohlin, C. 1996b. “Quality improvement by identification of fault-prone modules
using software design metricSixth International Conference of Software Quatititawa, Canada, 1-13.

Schulmeyer, G. G., and McManus, J. I., eds. 198/Andbook of Software Quality Assurancean Nostrand
Reinhold Company.



POSITION PAPERS 173

Shen, V. Y, Yu, T.-L., Theabaut, S. M., and Paulsen, L. R. 1985. “Identifying error-prone software—an empirical
study. IEEE Transactions on Software Engineeri8g-11(4): 317-323.

Siegel, S., and Jr., N. J. C. 1988onparametrics Statistics for the Behavioural ScienddsGraw-Hill, second
edition.

Turner, K. J., ed. 1993Using Formal Description Technigues—An Introduction to ESTELLE, LOTOS and SDL
John Wiley & Sons.

Problems and Prospects in Quantifying Software
Maintainability

JARRETT ROSENBERG jarrett.rosenberg@sun.com; jarrett.rosenberg@acm.org
Sun Microsystems, 2550 Garcia Avenue, Mountain View, CA 94043

In one form or another, quantifying the maintainability of software has been attempted
for decades, in pursuit of two goals:

e predicting the likelihood of corrective maintenance,

e predicting the difficulty of maintenance activities, corrective or otherwise.

Despite the extensive activity in this area, we are not much further along than when we
started. This paper looks at some of the reasons why, and the factors necessary for future
progress.

Goal #1: Predicting Likelihood of Corrective Maintenance

Predicting the likelihood of defects in source code has long been a major focus of software
metrics research (Melton, 1996). There are two necessary factors that must be considered
in any such prediction: characteristics of the source code itself (including the design it
embodies), and characteristics of the testing process used on the code up to the point when
the prediction is made. Let us examine each of these in turn.

Source Code Characteristics

Some thirty years of research has yielded two basic classes of metrics: size metrics (most
famously, lines of code and the Halstead metrics) and complexity metrics (most famously,
McCabe’s cyclomatic complexity metric). Size metrics do predict likelihood of defects, but

in precisely the same way as any exposure variable does: the more source code, the more
defects. If an application’s source code were to be evenly divided into equal-sized files,
size would no longer accurately predict likelihood of defects per file. For this reason, size
metrics are only useful as covariates in evaluating the effect of other, non-size, metrics, that
is to say, predictions must be adjusted for size to be valid.



