Hormonal cytology of female genital tract

Dr Tarek Atia

- Hormones influence more or less the morphology and staining characters of endocervical, endometrial, and vaginal cells.
- It based on the degree of squamus cell maturation from the intact healthy vaginal surface.
- The best site for taking sample is the lateral mid-third vaginal surface epithelium.
• For useful interpretation; the following information must be taken in account:-

– Age of the patient

– Menstrual history (regular or irregular cycles)

– Previous past history:
 – Hormonal therapy
 – Surgical operations in the genital tract
 – Irradiation

• The ideal type for sample collection is by:

– Aspiration of vagino-cervical secretion from the posterior vaginal fornix or

– Gentle scraping from the lateral mid-third of healthy vaginal epithelium.
Indication of cytological hormonal evaluation

• Assessment of ovarian function
 • After hystrectomy
 • During menstrual cycle
 • In premature menses
• Assessment of abnormal hormonal production
 • Pregnancy Abortion Retained placenta
 • Various endocrine disorders
 • Existence of hormone producing ovarian tumors
• Assessment and guidance of hormonal therapy.

Maturation Index

• It is the percentage study of the parabasal, intermediate, and superficial squamous cells\100 cells counted from exfoliated epithelial cells of healthy vaginal smear.

• It is determined by morphology of the nucleus and thickness of cytoplasm of epithelial cells.
Physiology of hormone cycle on women

• In infancy and childhood:
 • Small amount of estrogen without progesterone –
 inactive ovary.

• At puberty:
 – **FSH**: from the pituitary gland --- proliferation of
 ovarian follicles ---- estrogen secretion
 – Maturation of vaginal epithelium
 – Proliferative phase of endometrium

 – **LH** (luteinizing hormone): cause maturation of
 ovarian follicles until rupture and release of ova
 (ovulation).
 – Maintain corpus luteum and progesterone secretion.
 – Stimulate secretory phase of endometrium

 – **If no pregnancy (no implantation of fertilized ova)**
 --- sudden drop of progesterone and estrogen level ---
 - menstrual bleeding (shedding of endometrium and
 basal blood vessels).
– If pregnancy occur (implantation of fertilized ovum) --- corpus luteum continuous secret progesterone and gonadotrophic hormones ----- until the third month of gestation.

– Also; placenta secrete progesterone and gonadotrophic hormones

Reading of the maturation index

1- Shift to the right: indicate an increase number of superficial cell (maturation) i.e. 0\0\100 under the effect of increase estrogen like effect.
2- Shift to the left: indicate an atrophic effect e.g. post menopause women i.e 100\(\%\)0 with no effect of estrogen.

3- Shift to the mid-zone: means progesterone like effect e.g. secretory phase of endometrium i.e. 0\(\%\)100\(\%\)

Normal cyto-hormonal patterns in women

- Throughout life, women under variations in type and level of hormone, which could be due to some factors such as:-
 - Age
 - Pregnancy
 - Menopause
 - Function of pituitary – ovarian – adrenal axis
Hormonal effect

• Estrogen:
 • Proliferation and maturation of the vaginal squamous epithelial cells, including the superficial cells.
 • Deposition of glycogen within the vaginal epithelium.

• Progesterone and androgen:
 • Rapid desquamation of the upper layer of epithelium.
 • Exposed intermediate and parabasal cells to the surface

Normal Maturation Index

1- New born (up to 8 weeks) : MI= 0\90\10
 - Increased number of intermediate cells with glycogen in the cytoplasm, similar to pregnancy cells: due to the effect of maternal hormones on the infant blood.

2- Infancy (8 weeks – puberty): MI= 80\20\0
 - Vaginal smear shows mainly parabasal cells similar to post-menopausal period (vaginal atrophy).
3- Reproductive period (menstrual age):

a- Onset of menstruation (3–5 days)
 - MI= 0/60/40 : intermediate and superficial cells with few RBCs, degenerated endometrial cells, eosinophils, and dirty background.

b- Proliferative phase; pre-ovulatory phase (5-14 days)
 - MI= 0/40/60 : increase estrogen level lead to gradual increase of superficial calls
 - no endometrial cells

c- Secretory phase (pos-ovulatory) (15-28 day)
 - MI= 0/70/30
 - increased intermediate cells
 - increase progesterone secreted by corpus luteum

d- Late secretory phase
 - increase number of lactobacillus organisms
 - Lysis of intermediate cells with dirty background smears
4- Pregnancy MI= 0\90\10

- Marked increase of estrogen and progesterone (placental secretion).
- Increase number of intermediate cells

NB - >20% of superficial cells during 3-4 month of pregnancy indicates poor hormonal support of pregnancy.

- Appearance of significant number of parabasal cells indicates fetal death.

5- Menopause:

- Early menopause: MI= 0\80\20
 - Most cells are intermediate cells
 - Superficial cells become gradually smaller

- Postmenopausal period: MI= 50\50\0
 - Progressive decrease of estrogen lead to
 - Increase number of parabasal cells
 - Decrease glycogen in cytoplasm

- Late postmenopausal period: MI= 100\0\0
 - Complete atrophy of vaginal epithelium with no glycogen; with no superficial cells.
Effect of extrinsic hormones on vaginal cytology

- **Estrogen: MI=0\10\90**
 - Increase cell maturation
 - Proliferation of all layers of epithelium

- **Progesterone: MI= 0\90\10**
 - Proliferation of intermediate cells
 - Decrease superficial cell maturation

- **Androgen like H. (testosterone) MI= 20\80\0**
 - Increase number of parabasal and intermediate cells
 - No superficial cells.