King Saud University
  Help (new window)
Search


Guidelines_English_Final
تحميل الدليل التدريبي

أسئلة شائعة


 

Published articles in refereed journals

All my published papers are single. Only five papers are co-authored two papers in collaboration with Prof. A. Uchiyama and Prof.K. Tanahashi and three papers with my students.

    1. S. Mecheri,  Global Minimum and Orthogonality in Cp- Classes, Math. Nachr,  280(2007) ,  784-801. MathNachr.pdf
    2. S.Mecheri, Weyl’s theorem for algebraically class A operators, Bull Belg. Math. Soc., 14(2007),  239-246BullBel.Math.SocMecheri.pdf
    3. S.Mecheri, Generalized Weyl’s theorem for Posinormal operators, Math. Proc.Royal Irish.Acad  107A(2007),  20-28. PriGenWeyl.pdf
    4. S.Mecheri, A New characterization of the orthogonality in the sense of Birkhoof, Czech.Math.Journal, 57.(2007),  697-703. Czech2007.pdf
    5. S.Mecheri, An extension of Fuglede-Putnam theorem to semihyponormal operators, Far East.J.Math.Sc., 24(2007), 251-257. Fareast.pdf
    6. S.Mecheri, On the Riesz Idempotent for a calss H(q) operators, Math. Proc.Royal Irish.Acad  107B(2007),  120-127. (FP)RizH(q)Pri.pdf
    7. S.Mecheri, Weyl type theorems for posinormal operators , Math. Proc.Royal Irish.Acad  107B(2007), 11-17. WeylPosinorPri.pdf
    8. S.Mecheri, j-Gateaux derivative and orthogonality in C¥-classes,  J. Anal. Appl, 2(2007).  
    9.  S.Mecheri, Best Approximant and orthogonality in C1-classes, J . Ineq. Pure Appl.Math , vol 7, n2(2006), Article 77(electoronic ). bestApproC1.pdf
    10. S.Mecheri, Weyls theorem for algebraically (p,k)-quasihyponormal operators, Georgian Math.J., 13 (2006), 1998-2007 .Georgian1.pdf
    11. S.Mecheri , Generalized D-symmetric operators,  Acta Sci.Math (Szeged), 72(2006), 367-372. ActaSci.pdf
    12. S.Mecheri, K.Tanahashi, A.Uchiyama, An extension of Fuglede-Putnam, to p-hyponormal or class Y operators, Bull.Koren Math.Soc.,  43(2006), 747-753. BullKoreanMath09_BJ05-05.pdf
    13. S.Mecheri and Smail Bouzenada, Similarity orbits and finite operators, J. Pure Math., 2(2006), 12-18. SimilarOrd.pdf
    14. S.Mecheri, Generalized Weyl’s theorem for algebraically (p,k)-quasihyponormal operators, Kungpook.Math.J, 46(2006), no. 4, 553-563. KynugP.pdf
    15.  S.Mecheri, General;ized a-Weyl’s theorem for some classes of operators, Nihonkai Math. J, 17(2006), 155-165.Nihonkai.pdf
    16.  S.Mecheri, Gateaux derivative and orthogonality in Cp-classes, J . Ineq. Pure  Appl.Math (JIPAM), vol.7, 2 (2006) , Article 57(electronic). CpOrthog.pdf
    17. S.Mecheri, Non normal Derivations and Orthogonality, Proc. Amer. Math. Soc., 133 (2005), 759-762. MecheriPAMS.pdf
    18.   S.Mecheri, Generalized Finite operators, Demonstratio.Math, 38(2005),163-167. Demonstr1.pdf
    19. S.Mecheri,  Another version of Anderson Inequality in the Ideal of all compact operators, J.Ineq. Pure Appl. Math , vol 6, n3(2005). Anderson Ineq.pdf
    20.  S.Mecheri, On the range of elementary operators, Integral. Equations operator theory, 53(2005), 403-409. IntegrEq.pdf
    21. S.Mecheri and A.Bachir, A positive Answer to the conjecture by Fong and Istratescu, Bull. Korean Math.Soc, 42 (2005) no4, 871-875. Conjecture.pdf
    22.  S.Mecheri, An extension of Fuglede Putnam theorem to (p,k)-quasihyponormal operator, Scientiae Math.Japonicae, 62(2005), 259-264 SC.M.J.2005-43.pdf
    23. S.Mecheri, On the Normality of  operators, Revista Colombiana. Math, 39(2005), 87-95. MecheriRevista.pdf
    24. S.Mecheri, Generalized derivation and double operator integrals, Georgian Math.J,, 12(2005), 717-726. Gergian2.pdf
    25. S.Mecheri, Gateaux derivative and orthogonality in C1-classes, J . Ineq. Pure  appl.Math , vol 6, n4(2005). C1notsmoth.pdf
    26. S.Mecheri, Best L  (x, µ)-approximant, East Journal on Approximation, 16(2004),1-8 .EastJour.pdf
    27. S.Mecheri,  Another version of Maher's inequality, J. Anal. Appl (Z. Anal. Anw), 23(2004), no.2, 303-311 zaa23016.pdf
    28.  S.Mecheri,  Some variants of Webers Theorem, Math.Proc.Roy. Irish Acad, 104A (2004), no 1,  67-73. PriaWebr.pdf
    29. S.Mecheri, An Extension of the Fuglede-Putnam theorem to p-hyponormal operators., J. Pure Math., 21(2004), 25-30. JPureMathFP.pdf
    30.  S.Mecheri, Generalized P-symmetric operators, Math.Proc.Roy.Irish Acad , 104A(2004), no.2, 173-175. Pri-p-sym.pdf
    31. S.Mecheri, A Generalization of Fuglede-Putnam theorem, J. Pure Math, 21(2004), 31-38.  PureMath2.pdf
    32. S.Mecheri, On The range and the kernel of the elementary  operator ,  Acta Mathematica Universitatis Comenianae, 72(2003), 191-196 . ActaMathCommmecheri.pdf
    33. S.Mecheri, Range Kernel and Elementary operators, J.Pure.Math, 20(2003),1-8. PureMath3.pdf
    34.  S.Mecheri,  Orthogonality and Derivation Ranges, Int. Math.Jou.Vol. 3, 2003. no. 1, pp. 21-28.InJappM.pdf 
    35.  S.Mecheri, Another version of Anderson’s Inequality in Norm Ideal. Int .Math.Jour ,  Vol. 3, 2003. no. 1, pp. 29-40. NormIdeal.pdf
    36. S.Mecheri and M. Bounhkel,  Global Minimum and Orthogonality in C1 Classes, J. Math. Anal. Appl , 287(2003), 51-60 JMAA.pdf
    37. S.Mecheri and M.Bounkhel,  Some variants of Anderson Inequality in C1 Classes,  J. Ineq.Pure. Appl. Math , issue 1, article 24, 2003. C1MBoun.pdf
    38. S.Mecheri, Generalized Maher and Anderson’s Inequality I, International Jour.Math & Math.Sci ,  52(2003), 3281-3297. SINEQ I.pdf
    39.  S.Mecheri, Generalized Maher and Anderson’s Inequality II, International Jour.Math & Math.SC , 53 (2003)3355-3372. 2002 SEneqII.pdf
    40.  S.Mecheri, Finite operators, Demonstratio Math, 35(2002), 357-366. Demonstratio2.pdf
    41. S.Mecheri and A.Bachir, Generalized derivations modulo the ideal of compact operators, Int. J. Math& Math.Sc, 32(2002), 501-506 SMABach.pdf
    42. S.Mecheri, Orthogonality in P-Schtten classes, J.Appl.Math. 8(2002),441-447 .InJappM.pdf 
    43. S.Mecheri, Weak finite operators, J.Pure Math, 19(2002), 81-85. InJappM.pdf
    44. S.Mecheri, On Minimizing , Serdica Math.Jour,  Vol.26, n°2 (2000) 119-126 . Serdica.pdf
    45.  S.Mecheri, Some remarks on the range of a generalized derivation (in Russian), Problemy  Matematicheskogo Analiza (Russia)Vol. 20(2000), 111-119. JapplSc.pdf
    46. S.Mecheri,  On the range of a generalized derivation. Function theory and applications.   J. Math. Sci. (New York) 102 (2000), no. 5, 4429 - 4435. JapplSc.pdf
    47. S.Mecheri, On the Weak closure of the range of a derivation, Jour. Appl. Math, 2(2000), 1153-1157. JapplMath2.pdf
    48. S.Mecheri,  Examples of Finite operators, Alg.Numb. Theor, 1(2000), 47-44. AlgNumth.pdf
    49.  S.Mecheri, Derivation Ranges and the Identity, Proceeding of the 37th Science WeekV1(2000) 150-155. Damscu.pdf
    50.  S.Mecheri, Commutants and Derivations Ranges, Czechoslovak Mathematical journal, 49(1999), 843-847. CzechMath.pdf
    51. S.Mecheri, L’image et le Noyau d’une dérivation (Frensh), Annales de Mathématiques, 6(1999), 321-325. AnnalMath.pdf
    52. S.Mecheri, Derivation ranges, Linear Algebra & its Applications , 279(1998) 31-38. LinAlgApll.pdf
    53.  S.Mecheri, On Minimizing , Annaba University Publication n4 (2000) 1-10.Annab1.pdf
    54.  S.Mecheri, On the range of the operator , Annaba University Publication n5(2000)10-17. Annb2.pdf
    55. S.Mecheri, On the weak operator topology, Annaba University  Publication n3 (2000) 1-9.Annab3.pdf
    56. S.Mecheri, An Extension of Penrose's inequality on generalized inverses to the von Neumann-Schatten classes Cp, Lin.Alg. Appl., (Submitted)Penrose.pdf

    57. S.Mecheri, A Fuglede-Putnam type theorem,  Integral equation operator theory, (submitted)(FP)N10.pdf

    58. S.Mecheri, A note on Fuglede-Putnam type theorem for (p,k)-quasihyponormal operators, JMAA., (submitted)FP-(p,k).pdf

    59. S.Mecheri, Quasisimilarity and Compact Perturbations, Acta.Sci.Math (Szeged), (submitted) Quasisimcompactperturb.pdf
    60. S.Mecheri and S.Bouzenada, Finite operators and Compact Perturbations., Comm.Korean.Math.Soc., (submitted) BouzenadaEtude.pdf
    61. S.Mecheri,  Global Minimum and orthogonality in B(H). (submitted). B(H)N.pdf
    62. S.Mecheri, Range-Kernel orthogonality and Finite operators,  JMAA, (Submitted)Bouzenadatravail.pdf
    63. S.Mecheri, Orthogonality and Finite operators,  Math.Nachr, (submitted)Finite and Orthog.pdf

    1. S.Mecheri and K. Tanahashi, Weyl’s type theorems for (p,k)-quasihyponormal operators,  Glasgow Math. J(Szeged),  (accepted). weylpk3.pdf
    2. S.Mecheri, A generalized Fuglede-Putnam’s theorem, MIA, (accepted). MecheriBekir.pdf
    3. S.Mecheri, Numerical ranges and Finite operators, Acta Applicandae. Math, (accepted). Article Numerical Rang.pdf
    4. S.Mecheri, Why to solve the operator equation AX-XB= T, New York Math.J (accepted). equasem.pdf
    5. S.Mecheri, Fuglede-Putnam's theorem for  Y-classes or log-hyponormal operators, Studia Math, (2007), accepted FPCLY!.pdf
    6. S.Mecheri, Putnam-Fuglede's theorem for dominant or (p,k)-quasihyponormal operators, Extracta Mat, (2007). accepted  FP(p,k)dom1.pdf
    7. S.Mecheri, An extension of Putnam-Fuglede's theorem for (p,k)-quasihyponormal operators, J.Ineq. Appl. (2007). accepted  BekirFP.pdf
    8. S.Mecheri, C*-algebras and generalized p-symmetric operators, Lin.Mult. Lin. Alg, (2007). accepted Generalizedp-Symmetric.pdf
    9. S.Mecheri, On the Kleinecke-Shirokov theorem, Proc. Amer. Math. Soc, (2007). Submitted Keinecke.pdf
    10. S.Mecheri, On the closure of the range of elementary operators, Glasgow Math. J, (2007). Submitted
    11. S.Mecheri, A remark on Weyl type theorems, J. Korean. Math. Soc, (2007). accepted RemarkGenerWeyl.pdf
    12. S.Mecheri, Quasisimilarity and compact perturbations, J. Functional Analysis  (2007). Submitted
    13. S.Mecheri, An extension of Putnam-Fuglede's theorem to a class A operators, Math. Ineq. Appl, (2007). Submitted MecheriBekir.pdf
    14. S.Mecheri,  On quasi-class A operators, Acta. Math. Sin, (2007). Quasiclass A0701-023B.pdf
    15. S.Mecheri, On the closure of the range of elementary operators and double operator integrals, Cand. Bull. Math, (2007). Submitted  Quasi-Adjoint.pdf
    16. S.Mecheri and A.Uchiyama, An extension of Fuglede Putnam-theorem to class A operators, Math. Ineq. Appl, (to appear). (FP)7.pdf

 

 Library Doc

There are no items to show in this view of the "Library Doc" document library.
King   Saud University. All rights reserved, 2007 | Disclaimer | CiteSeerx