MATH203 Calculus

Dr. Bandar Al-Mohsin

School of Mathematics, KSU

Vector Fields

- If to each point K in a region there is assigned exactly one vector having initial point K, then the collection of all such vectors is a vector field.
- A vector field in which each vector represents velocity is a called a velocity field.
- A vector field in which each vector represents force is a called a force field, i.e. mechanics and electricity.
- Steady vector fields is a vector field in which every vector is independent of time,

Vector Fields

Vector Fields

Definition: Vector field in 3-dimensions

A vector field in three dimensions is a function \mathbf{F} whose domain D is a subset of \mathbb{R}^{3} and whose range is a subset of V_{3}. If $(x, y, z) \in D$, then

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k},
$$ where M, N and P are scalar functions.

Vector Fields

Definition: Vector field in 2-dimensions

A vector field in two dimensions is a function \mathbf{F} whose domain D is a subset of \mathbb{R}^{2} and whose range is a subset of V_{2}. If $(x, y) \in D$, then

$$
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j}
$$

Vector Fields

Example: Describe the vector field \mathbf{F} if $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$. Notes:
1- $\mathbf{F}(x, y)$ is tangent to the circle of radius r with center at origin.
2- $\|\mathbf{F}(x, y)\|=\sqrt{x^{2}+y^{2}}=\|r\|$.
3- This implies that $\|\mathbf{F}(x, y)\|$ increases as the point $P(x, y)$ moves away from the center.

Vector Fields

Definition: Inverse Square Field

Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be the position vector for (x, y, z) and let the vector $\mathbf{u}=\frac{1}{\|\mathbf{r}\|} \mathbf{r}$ has the same direction as \mathbf{r}. A vector field \mathbf{F} is an inverse square field if

$$
\mathbf{F}(x, y, z)=\frac{c}{\|\mathbf{r}\|^{2}} \mathbf{u}=\frac{c}{\|\mathbf{r}\|^{3}} \mathbf{r}
$$

where c is a scalar.

Vector Fields

Definition: Gradient of a function

If f is a function of three variables, the gradient of $f(x, y, z)$ is the following vector field

$$
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

Definition: Conservative

A vector field \mathbf{F} is conservative, if

$$
\mathbf{F}(x, y, z)=\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

for some scalar function f.

Definition: Potential function

If A vector field \mathbf{F} is conservative, then f is called a Potential function for \mathbf{F} and $f(x, y, z)$ is potential at the point (x, y, z).

Vector Fields

Theorem

Every inverse sqaure vector field is conservative.

Vector differential in 3-dimensions

$\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$

Notes:

(1) ∇ operating on a scalar function f, produces then gradient of f, i.e.

$$
\operatorname{grad}(f)=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

(2) ∇ operating on a vector field to define another vector field called the curl of \mathbf{F}, denoted by

$$
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}
$$

Vector Fields

Definition: curl

Let $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$, where M, N and P have partial derivatives in some region. Then,

$$
\begin{aligned}
\operatorname{curl}(\mathbf{F})=\nabla \times \mathbf{F}=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i} & +\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k} \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right|
\end{aligned}
$$

Definition: divergence

Let $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$, where M, N and P have partial derivatives in some region. Then,

$$
\operatorname{div}(\mathbf{F})=\nabla \cdot \mathbf{F}=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}
$$

Vector Fields

Test for conservative vector field in space

Let $\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}$ is a vector field in space, where M, N and P have continuous first partial derivatives in an open region. Then, \mathbf{F} is conservative if and only if

$$
\begin{gathered}
\operatorname{curl}(\mathbf{F})=0 \\
\frac{\partial P}{\partial y}=\frac{\partial N}{\partial z}, \frac{\partial P}{\partial x}=\frac{\partial M}{\partial z}, \frac{\partial N}{\partial x}=\frac{\partial M}{\partial y} .
\end{gathered}
$$

Vector Fields

Examples

(1) If $\mathbf{F}(x, y, z)=x y^{2} z^{4} \mathbf{i}+\left(2 x^{2} y+z\right) \mathbf{j}+y^{3} z^{2} \mathbf{k}$, Find $\nabla \times \mathbf{F}$ and ∇. \mathbf{F}
(2) Find a potential function for a conservative vector field
(a) $\mathbf{F}(x, y)=2 x y \mathbf{i}+\left(x^{2}-y\right) \mathbf{j}$,
(b) $\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}-z \mathbf{k}$
(c) $\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+z^{2}\right) \mathbf{j}+2 z y \mathbf{k}$
(3) Find conservative vector field that has given potential
(a) $f(x, y, z)=x^{2}-3 y^{2}+4 z^{2}$
(b) $f(x, y, z)=\sin \left(x^{2}+y^{2}+z^{2}\right)$
(4) Find $\nabla \times \mathbf{F}$ and $\nabla . \mathbf{F}$
(a) $\mathbf{F}(x, y, z)=x^{2} z \mathbf{i}+y^{2} x \mathbf{j}+(y+2 z) \mathbf{k}$,
(b) $\mathbf{F}(x, y, z)=3 x y z^{2} \mathbf{i}-y^{2} \sin z \mathbf{j}-x e^{2 z} \mathbf{k}$

Line Integrals

We shall study the new type of integral called a Line integral defined by $\int_{c} f(x, y) d s$. Recall that a plane curve C is smooth if it has parametrisation $x=g(t), y=h(t) ; a \leqslant t \leqslant b$

Line Integrals

Let $\Delta x_{k}=x_{k}-x_{k-1}, \Delta y_{k}=y_{k}-y_{k-1}$ and $\Delta s_{k}=$ length of $\widehat{P_{k-1} P_{k}}$.

Definition: Line Integrals in Two Dimensions

$$
\begin{aligned}
\int_{C} f(x, y) d s & =\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(x_{k}, y_{k}\right) \Delta s_{k} \\
\int_{C} f(x, y) d x & =\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(x_{k}, y_{k}\right) \Delta x_{k} \\
\int_{C} f(x, y) d y & =\lim _{\|P\| \rightarrow 0} \sum_{k} f\left(x_{k}, y_{k}\right) \Delta y_{k}
\end{aligned}
$$

where $d s=\sqrt{(d x)^{2}+(d y)^{2}}=\sqrt{\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t$, $d x=g^{\prime}(t) d t$ and $d y=h^{\prime}(t) d t$

Line Integrals

Evaluation theorem for Line integral

If a smooth curve C is given by $x=g(t), y=h(t) ; a \leqslant t \leqslant b$ and $f(x, y)$ is continuous on region D containing C, then

$$
\begin{gathered}
\text { (i) } \int_{C} f(x, y) d s=\int_{a}^{b} f(g(t), h(t)) \sqrt{\left[g^{\prime}(t)\right]^{2}+\left[h^{\prime}(t)\right]^{2}} d t \\
\text { (ii) } \int_{C} f(x, y) d x=\int_{a}^{b} f(g(t), h(t)) g^{\prime}(t) d t \\
\text { (iii) } \int_{C} f(x, y) d y=\int_{a}^{b} f(g(t), h(t)) h^{\prime}(t) d t
\end{gathered}
$$

Line Integrals

Mass of a wire

$$
m=\int_{C} \delta(x, y) d s
$$

Examples

(1) Evaluate $\int_{C} x y^{2} d s$ if C has parametrisation
$x=\cos t, y=\sin t ; 0 \leqslant t \leqslant \pi / 2$.
(2) Evaluate $\int_{C} x y^{2} d x$ and $\int_{C} x y^{2} d y$ if C has parametrisation $y=x^{2}$ from $(0,0)$ to $(2,4)$.
(3) Evaluate $\int_{C}\left(x^{2}-y+3 z\right) d s$ if C has parametrisation $x=t, y=2 t$ and $z=t$ from $0 \leqslant t \leqslant 1$.
(4) A thin wire is bent into the shape of a semicircle of radius a with descity $\delta=k y$. Find the mass of the wire.

Line Integrals

Examples

(1) Evaluate $\int_{C} x y d x+x^{2} d y$ if
(a) C consist of line segment from $(2,1)$ to $(4,1)$ and $(4,1)$ to $(4,5)$.
(b) C is the line segment from $(2,1)$ to $(4,5)$.
(c) C has parametrisation $x=3 t-1, y=3 t^{2}-2 t ; 1 \leqslant t \leqslant 5 / 3$.

Line Integrals

Definition: Work done

$$
\begin{aligned}
W & =\lim _{\|P\| \rightarrow 0} \sum_{k} \Delta W \\
& =\int_{C} M(x, y, z) d x \quad+N(x, y, z) d y+P(x, y, z) d z
\end{aligned}
$$

This is the line integral represents the work done by the force \mathbf{F} along to the curve C.

Line Integrals

Definition

Let C be a smooth space curve, Let \mathbf{T} be a unit tangential vector to C at (x, y, z), and let \mathbf{F} be force acting at (x, y, z). The work done by \mathbf{F} along \mathbf{C} is

$$
W=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

Line Integrals

Examples

(1) If an inverse force field \mathbf{F} is given by

$$
\mathbf{F}(x, y, z)=\frac{k}{\|r\|^{3}} \mathbf{r}
$$

where k is a constant, find the work done by \mathbf{F} along x-axis from $A(1,0,0)$ to $B(2,0,0)$.
(2) Let C be the part of the parapola $y=x^{2}$ between $(0,0)$ and $(3,9)$. If $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$ is a force field acting at (x, y), find the work done by F along C from
(a) $(0,0)$ to $(3,9)$
(b) $(3,9)$ to $(0,0)$.

Line Integrals

Examples

(3) The force at a point (x, y) in a coordinate plane is given by $\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \mathbf{i}+x y \mathbf{j}$. Find the work done by \mathbf{F} along the graph of $y=x^{3}$ from $(0,0)$ to $B(2,8)$.
(4) The force at a point (x, y, z) in three dimensions is given by $\mathbf{F}(x, y, z)=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$. Find the work done by \mathbf{F} along the twisted cubic $x=t, y=t^{2} z=t^{3}$ from $(0,0,0)$ to $B(2,4,8)$.
(5) Evaluate $\int_{C} x y z d s$ if C is the line segment from $(0,0,0)$ to $(1,2,3)$.

