Take $g=9.8 \mathbf{~ m s}^{-2}$ where ever needed

1	The quantity with the same units as force times time, $F t$, with dimensions MLT^{-1} is: A) $m v^{2} r$ В) $m a$ C) $m v r$ D) $m v$ E) $m v^{2} / r$	D
2	An electron, starting from rest and moving with a constant acceleration, travels 2 cm in 5 ms . The magnitude of its acceleration is: A) $1.6 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$ B) $3.3 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$ C) $1.11 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$ D) $0.8 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$ E) $2.5 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$	A
3	A rocket moves straight upward from the ground surface, starting from rest with an acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$ for 4 s . At this time, its engine stopped and the rocket continued to move further upwards before falling eventually. Total height reached by the rocket from ground surface is: A) 2650 m В) 1880 m C) 2441 m D) 3200 m E) 2000 m	C
4	Acceleration of a ball that is thrown upward: A) increases B) decreases C) zero D) remain constant E) increases then decreases	D
5	Starting at point A Ahmed walks 25 km in a direction 30° south of west and then walks 30 km toward the north to point B . The distance between A and B is: A) 36 km B) 48.5 km C) 15.7 km D) 32.8 km E) 28 km	E
6	If $\mathbf{B}+\mathbf{A}=6 \mathbf{i}+\mathbf{j}$ and $\mathbf{B}-\mathbf{A}=-4 \mathbf{i}+7 \mathbf{j}$. The magnitude of \mathbf{B} is: А) 5.1 В) 4.1 C) 5.8 D) 5.4 Е) 7.2	B
7	The four forces shown in the figure act on a boat. The magnitude and the direction of the resultant of these four forces are: А) $3316 \mathrm{~N}, 357^{\circ}$ B)) $1000 \mathrm{~N}, 23^{\circ}$ C) $3000 \mathrm{~N}, 5^{\circ}$ D) $2300 \mathrm{~N}, 230^{\circ}$ E) $860 \mathrm{~N}, 0^{\circ}$	A
8	An object is thrown at the same initial velocity at two different angles with the ground as shown in the picture. The ratio between the horizontal range of A and B. (i.e. R_{A} / R_{B}): А) 1.5 В) 0.5 C) 1.33 D) 0.75 E) 2.3	D
9	A particle moving in the $x y$ plane with a constant acceleration has a velocity of $3 \mathbf{i}-2 \mathbf{j} \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=0$. At $t=3 \mathrm{~s}$, the particle's velocity is $9 \mathbf{i}+7 \mathbf{j} \mathrm{~m} / \mathrm{s}$. The acceleration of the particle is: A) $-2 \mathbf{i}-3 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}$ B) $6 \mathbf{i}+9 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}$ C) $6 \mathbf{i}-4 \mathbf{j ~ m} / \mathrm{s}^{2}$ D) $3 \mathbf{i}-2 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}$ E) $2 \mathbf{i}+3 \mathbf{j} \mathrm{~m} / \mathrm{s}^{2}$	E

10	A rock (A) is thrown horizontally and another similar rock (B) is dropped simultaneously (from rest) from the same height. If air resistance is neglected, which rock hits the ground first?	A
11	A racing car moving at a constant tangential speed of $44 \mathrm{~m} / \mathrm{s}$ on a circular track takes one lap around the track in 45 seconds. The centripetal acceleration of the car is: A) $8.4 \mathrm{~m} / \mathrm{s}^{2}$ В) $6 \mathrm{~m} / \mathrm{s}^{2}$ C) $10 \mathrm{~m} / \mathrm{s}^{2}$ D) $0 \mathrm{~m} / \mathrm{s}^{2}$ E) $7.7 \mathrm{~m} / \mathrm{s}^{2}$	B
12	The force of the wind on the sails (شراع) of a sailboat (مركب شراعية) is 390 N north. The water exerts a force of 180 N east. If the mass of the boat is 270 kg , the magnitude of its acceleration is: A) $1.14 \mathrm{~m} / \mathrm{s}^{2}$ B) $1.69 \mathrm{~m} / \mathrm{s}^{2}$ C) $4.32 \mathrm{~m} / \mathrm{s}^{2}$ D) $2.76 \mathrm{~m} / \mathrm{s}^{2}$ E) $1.59 \mathrm{~m} / \mathrm{s}^{2}$	E
13	If $\alpha=40^{\circ}, \beta=60^{\circ}$, and $M=4 \mathrm{~kg}$, determine the tension in string 1: A) 20 N B) 17 N C) 25 N D) 15 N E) 30 N	A
14	A block moves up a 45° incline with constant speed under the action of a force of 15 N applied parallel to the incline. If the coefficient of kinetic friction is 0.3 , the weight of the block is: А) 16.3 N B) 10.4 N C) 7.8 N D) 21.2 N E) 5.4 N	A
15	The apparent weight of a fish in an elevator is greatest when the elevator: A) moves В) accelerates C) accelerates D) moves upward at \mathbf{E}) is not downward at upward. downward. constant moving. constant velocity.	B

The End

University * name
\square

