University * ______name_____

			a = 7.0 ms	villere ever illecueu					
1	The quantity with the same units as force times time, Ft , with dimensions MLT^{-1} is:								
	$\mathbf{A}) mv^2 r$	B) ma	C) mvr	D) <i>mv</i>	E) mv^2/r	D			
2	An electron starti	ng from rest and mo	ving with a constar	nt acceleration trave	ls 2 cm in 5 ms				
-	The magnitude of its acceleration is:								
	A) $1.6 \times 10^3 \text{ m/s}^2$	B) $3.3 \times 10^3 \text{ m/s}^2$	C) $1.11 \times 10^3 \text{ m/s}^2$	D) $0.8 \times 10^4 \text{ m/s}^2$	E) $2.5 \times 10^4 \text{ m/s}^2$	А			
3	A rocket moves st	raight unward from	the ground surface	starting from rest	with an acceleration				
U	of 50 m/s ² for 4 s. At this time, its engine stopped and the rocket continued to move further								
	upwards before falling eventually. Total height reached by the rocket from ground surface is:								
	A) 2650 m	B) 1880 m	C) 2441 m	D) 3200 m	E) 2000 m	С			
4	Acceleration of a ball that is thrown upward:								
	A) increases	B) doorangas	\mathbf{C}) zoro	D) romain constant	E) increases				
	A) increases	D) uccreases	C) Zelo	D) Temain Constant	then	D			
					decreases				
5	Starting at point A Ahmed walks 25 km in a direction 30° south of west and then walks 30 km								
	toward the north to \mathbf{A}) 36 km	\mathbf{B}) 48.5 km	C) 15.7 km	B 18: D) 32.8 km	\mathbf{F}) 28 km	Е			
	A) 50 Km	b) 40.3 km	C) 15.7 Km	D) 52.0 Km	E) 20 Km				
6	If $\mathbf{B}+\mathbf{A}=6\mathbf{i}+\mathbf{j}$ and $\mathbf{B}-\mathbf{A}=-4\mathbf{i}+7\mathbf{j}$. The magnitude of B is:								
	A) 5.1	B) 4.1	C) 5.8	D) 5.4	E) 7.2	В			
7	The four forces shown in the figure act on a boat. The								
	magnitude and the direction of the resultant of these four								
	forces are:								
						•			
	A) 3316 N, 357°	B)) 1000 N, 23°	C) 3000 N, 5°	D) 2300 N, 230°	E) 860 N, 0°	A			
8	An object is thrown at the same initial velocity at two different angles								
	with the ground as shown in the picture. The ratio between the \hat{E}_{+} $A/$								
	norizontal range of A and B. (i.e. K_A/K_B):								
				1					
				-	B t (m)				
	A) 1.5	B) 0.5	C) 1.33	D) 0.75	E) 2.3	D			
9	A particle moving in the xy plane with a constant acceleration has a velocity of $3i-2i$ m/s at t=0.								
	At $t = 3$ s, the particle's velocity is $9i+7j$ m/s. The acceleration of the particle is:								
		D) $(1 + 0! - 1/2)$	() : : : : : : : : : : : : : : : : : : :	D) 2: 2: $-1/2^2$	E) $2 + 2 + - \frac{1}{2}$	Е			
	A) -21-3J m/s ⁻	в) 01+9J m/s ⁻	C) 01-4j m/s⁻	D) 51-2 J m/s ⁻	Ŀ) ∠ i +3 j m/s⁻				

University * ______name_____

10	A rock (A) is thrown horizontally and another similar rock (B) is dropped simultaneously (from								
	rest) from the same height. If air resistance is neglected, which rock hits the ground first?								
	A) Both rocks hit the ground at the same time	B) Rock (A) will hit the ground 9.8 s later than (B)	C) Rock (A) will hit the ground 9.8 s earlier than (B)	D) Rock (B) will hit the ground 4.9 s earlier than (A)	E) Rock (B) will hit the ground 4.9 s later than (A)	Α			
11	A racing car movin	ng at a constant tang	ential speed of 44 1	n/s on a circular trac	k takes one lap				
	around the track in 45 seconds. The centripetal acceleration of the car is:								
	A) 8.4 m/s ²	B) 6 m/s ²	C) 10 m/s^2	D) 0 m/s^2	E) 7.7 m/s^2	В			
12	The force of the wind on the sails (شراع) of a sailboat (مركب شراعية) is 390 N north. The water exerts a force of 180 N east. If the mass of the boat is 270 kg, the magnitude of its acceleration is:								
	A) 1.14 m/s ²	B) 1.69 m/s ²	C) 4.32 m/s ²	D) 2.76 m/s ²	E) 1.59 m/s ²	Е			
13	If $\alpha = 40^\circ$, $\beta = 60^\circ$, and $M = 4 \text{ kg}$, deter	rmine the tension in	n string 1:	α β 2 M				
	A) 20 N	B) 17 N	C) 25 N	D) 15 N	E) 30 N	А			
14	A block moves up parallel to the incli A) 16.3 N	a 45° incline with contrast of the coefficient B) 10.4 N	onstant speed unde t of kinetic friction C) 7.8 N	r the action of a force is 0.3, the weight of D) 21.2 N	e of 15 N applied the block is: E) 5.4 N	A			
15	The apparent weig A) moves downward at constant velocity.	ht of a fish in an ele B) accelerates upward.	vator is greatest wh C) accelerates downward.	nen the elevator: D) moves upward at constant velocity.	E) is not moving.	В			

The End