Unit 2

PREPARATION OF SOLUTIONS (CONCENTRATIONS)

- 1- The mw of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is : $\mathrm{Na}=23, \mathrm{O}=16, \mathrm{C}=12$
A) 140
B) 106
C) 96
D) 100
E) 60
- 2- How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 3 moles, (mw = 106)
A) 318
B) 0.028
C) 134
D) 201
E) 67
- 3- Calculate the normal concentration (N) of 0.1 M solution of HCl
A) 0.2 N
B) 0.3 N
C) 0.05 N
D) 0.1 N

4- The eq.wt of $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{mw}=98)$ is:
A) 98
B) 49
C) 32.7
D) 196
E) 294

- 5- 2.5 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ($\mathrm{mw}=106$) has been dissolved in water and the volume was completed to 500 mL , calculate the followings :
The molar concentration of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
A) 5
B) 500
C) 0.5
D) 0.05

Unit3: STOICHIOMETRY AND EQUILIBRIUM

The limiting reactant is:
A) present in lower of moles
B) present in higherof moles
C) present in lower of mass
D) present in lower of mass

Unit3: STOICHIOMETRY AND EQUILIBRIUM

The limiting reactant is:
A) It is comletly used up in the reaction
B) It is not comletly used up in the reaction

Unit3: STOICHIOMETRY AND EQUILIBRIUM

In chemical equilibrium:

A) rate (forward= reverse)
B) rate (forward< reverse)
C) rate (forward> reverse)

Unit3: STOICHIOMETRY AND EQUILIBRIUM

If Keq >> 1 ($\mathrm{M}=0.1$ of product)
A) Product 0.1-x
B) product 0.1+x

Unit3: STOICHIOMETRY AND EQUILIBRIUM

If Keq << 1 ($\mathrm{M}=0.1$ of product)
A) Product 0.1-x
B) Product x

Unit3: STOICHIOMETRY AND EQUILIBRIUM

Calculate the molar concentration of [H^{+}] in 0.16 M solution of dichloroacetic acid $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
$\left(\mathrm{Ka}=5 \times 10^{-3}\right)$. The concentration of the acid is initial (before dissociation)
$\mathrm{Cl}_{2} \mathrm{CHCOOH} \rightarrow \mathrm{Cl}_{2} \mathrm{CHCOO}+\mathrm{H}^{+}$
The concentration of $\mathrm{Cl}_{2} \mathrm{CHCOO}$ and H^{+}
A) $0.16-x$
B) $0.16+x$
C) X

Unit3: STOICHIOMETRY AND EQUILIBRIUM

Calculate the molar concentration of [H^{+}] in 0.16 M solution of dichloroacetic acid $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
($\mathrm{Ka}=5 \times 10^{-3}$). The concentration of the acid is initial (before dissociation)
$\mathrm{Cl}_{2} \mathrm{CHCOOH} \rightarrow \mathrm{Cl}_{2} \mathrm{CHCOO}-+\mathrm{H}^{+}$
The concentration of $\mathrm{Cl}_{2} \mathrm{CHCOOH}$ and H^{+}
A) $0.16-x$
B) $0.16+x$
C) X

Unit3: STOICHIOMETRY AND EQUILIBRIUM

Calculate the molar concentration of [H^{+}] in 0.16 M solution of dichloroacetic acid $\mathrm{Cl}_{2} \mathrm{CHCOOH}$
($\mathrm{Ka}=5 \times 10^{-3}$). The concentration of the acid is initial (before dissociation)
$\mathrm{Cl}_{2} \mathrm{CHCOOH} \rightarrow \mathrm{Cl}_{2} \mathrm{CHCOO}-+\mathrm{H}^{+}$
The value of x
A) 5×10^{-3}
B) 0.16
C) 5.9×10^{3}

Unite 4: ACID - BASE EQUILIBRIUM

Acid and base strong
A) high conc.
B) high vol.
C) Completely dissociate

Unite 4: ACID - BASE EQUILIBRIUM

pH
A) 1-7
B) 1-14
C) 7-14
D) 0-14

Unite 4: ACID - BASE EQUILIBRIUM

POH
A) 1-7
B) $1-14$
C) $7-14$
D) 0-14

Unite 4: ACID - BASE EQUILIBRIUM

pH of $\mathrm{HCl}(0.01 \mathrm{M})$
A) $\mathrm{pH}=1$
B) $\mathrm{pH}=2$
$\mathrm{pH}=3$

Unite 4: ACID - BASE EQUILIBRIUM

pOH of $\mathrm{Ba}(\mathrm{OH}) 2$ (0.01 M)
A) $\mathrm{pOH}=0.7$
B) $\mathrm{pOH}=1.7$
C) $\mathrm{pOH}=3$

Unite 4: ACID - BASE EQUILIBRIUM

pOH of $\mathrm{NaOH}(0.03 \mathrm{M})$
A) $\mathrm{pOH}=1$
B) $\mathrm{pOH}=1.5$
$\mathrm{pOH}=3$
pOH of $\mathrm{HCl}(0.01 \mathrm{M})$
A) $\mathrm{pOH}=2$
B) $\mathrm{pOH}=5$
$\mathrm{pOH}=12$

Unite 4: ACID - BASE EQUILIBRIUM

pH of strong acid :
A) $p H=-\log \left[H^{+}\right]$
B) $p H=-\log \sqrt{K_{a} C_{a}}$
C) $p H=-\log \sqrt{K_{b} C_{b}}$

Unite 4: ACID - BASE EQUILIBRIUM

pH of strong base :
A) $p H=-\log \left[H^{+}\right]$
B) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
C) $p H=-\log \sqrt{K_{a} C_{a}}$

Unite 4: ACID - BASE EQUILIBRIUM

pH of weak acide :
A) $p H=-\log \left[H^{+}\right]$
B) $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
C) $p H=-\log \sqrt{K_{a} C_{a}}$

Unite 4: ACID - BASE EQUILIBRIUM

pH of weak base:
A) $p H=-\log \left[H^{+}\right]$
B) $p H=-\log \sqrt{K_{a} C_{a}}$
C) $p H=-\log \sqrt{K_{b} C_{b}}$

Unite 4: ACID - BASE EQUILIBRIUM

K_{w} :
A) $K_{w}=\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
B) $K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
C) $K_{w}=\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]$
D) $K_{w}=\frac{\left[\mathrm{H}^{+}\right]}{\left[O \mathrm{H}^{-}\right]}$

Unite 4: ACID - BASE EQUILIBRIUM

$p K_{w}$
A) $p K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
B) $p K_{w}=\left[\mathrm{H}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
C) $p K_{w}=p H+p O H$
D) $p K_{w}=\mathrm{pH}-\mathrm{pOH}$

Unite 4: ACID - BASE EQUILIBRIUM

Calculate the pH of. 0.5 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$?
$\mathrm{Kb}\left(\mathrm{NH}_{3}\right)=1.75 \times 10^{-5}$
A) $p H=-\log \left[H^{+}\right]$
B) $p H=-\log \sqrt{K_{a} C_{a}}$
C) $p H=-\log \sqrt{\frac{K_{w} C_{s}}{K_{b}}}$
D) $p H=-\log \sqrt{K_{l_{a}} C_{s}}$

Unite 4: ACID - BASE EQUILIBRIUM

Calculate the pH of. 0.5 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$?
$\mathrm{Kb}\left(\mathrm{NH}_{3}\right)=1.75 \times 10^{-5}$
A)

$$
p H=-\log \left[H^{+}\right]
$$

B) $p H=-\log \sqrt{K_{a} C_{a}}$
C) $p H=-\log \sqrt{\frac{K_{w} C_{s}}{K_{b}}}$
D) $p H=-\log \sqrt{K_{l_{a}} C_{s}}$

Unite 4: ACID - BASE EQUILIBRIUM

Calculate the pH of. 0.5 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$? $\mathrm{Kb}\left(\mathrm{NH}_{3}\right)=1.75 \times 10^{-5}$
A) $\mathrm{pH}=2.1$
B) $\mathrm{pH}=4.8$
C) $\mathrm{pH}=7$
D) $\mathrm{pH}=9.6$

Unite 4: ACID - BASE EQUILIBRIUM

Calculate the pH of 0.2 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$
A) $\mathrm{pOH}=12.1$
B) $\mathrm{pOH}=8.9$
C) $\mathrm{pOH}=5.5$
D) $\mathrm{pOH}=0.4$

Unite 4: ACID - BASE EQUILIBRIUM

Calculate the pH of 0.2 M solution of $\mathrm{Ba}(\mathrm{OH}) 2$
A) 9.6
B) 11.6
C) 13.6

Unite 4: ACID - BASE EQUILIBRIUM

pH of salt (strong acid+ weak base)
A) $\mathrm{pH}=7$
B) $p H=-\log \sqrt{K_{a} C_{a}}$
C) $p H=-\log \left[H^{+}\right]$
D) $p H=-\log \sqrt{\frac{K_{w} c_{s}}{K_{b}}}$

Unite 4: ACID - BASE EQUILIBRIUM

pH of salt (strong acid+ strong base)
A) $\mathrm{pH}=7$
B) $\mathrm{pH}=-\cos \sqrt{\frac{\kappa_{m} C_{s}}{K_{b}}}$
C) $p O H=-\log \sqrt{\frac{k_{w} c_{s}}{k_{a}}}$
pH of salt (strong base + weak acid)
A) $\mathrm{pH}=7$
B) $p H=-\log \sqrt{\frac{k_{w} C_{s}}{K_{b}}}$
C) $\left.\mathrm{pOH}=-\log \sqrt{\frac{k_{w} C_{s}}{k_{a}}}\right)$

Unite 5: BUFFER SOLUTIONS

pH of $\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}$
A) $\mathrm{pOH}=p K_{b}+\log \frac{c_{s}}{C_{b}}$
B) $p H=p K_{a}+\log \frac{c_{s}}{C_{a}}$
C) $p O H=-\log \sqrt{\frac{k_{w} c_{s}}{k_{a}}}$

Unite 5: BUFFER SOLUTIONS

pH of $\mathbf{N H}_{4} \mathbf{O H} / \mathbf{N H}_{4} \mathbf{C l}$
A) $\mathrm{pOH}=p K_{b}+\log \frac{c_{s}}{C_{b}}$
B) $p H=p K_{a}+\log \frac{c_{s}}{C_{a}}$
C) $\mathrm{pOH}=-\log \sqrt{\frac{k_{w} c_{s}}{k_{a}}}$

Unite 5: BUFFER SOLUTIONS

Calculate the pH of a solution containing 0.1 M $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and o. 2 M NaHCO 3 ? $\mathrm{Ka} 2\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4.7 \times 10^{-}$ ${ }^{11}$.
A) $\mathrm{pH}=5$
B) $\mathrm{pH}=8$
C) $\mathrm{pH}=10$

Unite 5: BUFFER SOLUTIONS

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ ($\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$) and $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
The number of $\mathrm{mmol} \mathrm{CH}_{3} \mathrm{COOH}$
A) 0.8 mmol
B) 1.6 mmol
C) 4 mmol

Unite 5: BUFFER SOLUTIONS

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ ($\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$) and $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
The number of mmol NaOH
A) 0.8 mmol
B) 1.6 mmol
C) 4 mmol

Unite 5: BUFFER SOLUTIONS

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ ($\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$) and $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$ The number of $\mathrm{mmol} \mathrm{CH}_{3} \mathrm{COONa}$
A) 0.8 mmol
B) 1.6 mmol
C) 4 mmol

Unite 5: BUFFER SOLUTIONS

Calculate the pH of a solution resulting from adding 4 mL of 0.2 M of NaOH solution to 16 mL of a buffer solution containing $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ ($\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$) and $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{COONa}$
The pH of a solution
A) $\mathrm{pH}=2$
B) $\mathrm{pH}=5.4$
C) $\mathrm{pH}=9.4$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

In the case of titrating 10 mL solution of 0.1 M of Cl^{-}(in the conical flask) by 0.2 M solution of Ag^{+}(in the burette), calculate Veq.p of Ag^{+} solution
A) 2.5 mL
B) 5 mL
C) 10 mL

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

In the case of titrating 10 mL of 0.1 M of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution by 0.2 M of NaOH solution, calculate Veq.p of NaOH solution
A) 2.5 mL
B) 5 mL
C) 10 mL

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

Endpoint is
A) The same (equal) equivalence point
B) Before equivalence point
C) After equivalence point

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

300 mg of a $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{mw}=134) 95 \% \mathrm{w} / \mathrm{w}$ pure reagent was transferred to a titration conical flask. After adding acid solution and a suitable indicator, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ was titrated with KMnO 4 unknown solution according to the following titration reaction equation :

$$
2 \mathrm{KMnO}_{4}+5 \mathrm{C}_{2} \mathrm{O}_{4}+16 \mathrm{H}+-----2 \mathrm{Mn} 2++10 \mathrm{CO} 2+8 \mathrm{H} 2 \mathrm{O}
$$

If the volume of KMnO_{4} solution at the equivalent point was 34 mL , calculate the molarity of KMnO_{4} solution, the pure wieght of $\mathrm{Na}_{2} \underline{C}_{2} \underline{O}_{2}$
A) 300 mg
B) 285 mg
C) 31.67 mg

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

300 mg of a $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{mw}=134) 95 \% \mathrm{w} / \mathrm{w}$ pure reagent was transferred to a titration conical flask. After adding acid solution and a suitable indicator, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ was titrated with KMnO 4 unknown solution according to the following titration reaction equation:

$$
2 \mathrm{KMnO}_{4}+5 \mathrm{C}_{2} \mathrm{O}_{4}+16 \mathrm{H}+-----2 \mathrm{Mn} 2++10 \mathrm{CO} 2+8 \mathrm{H} 2 \mathrm{O}
$$

If the volume of KMnO_{4} solution at the equivalent point was 34 mL , calculate the molarity of KMnO_{4} solution, the moles of $\mathrm{Na}_{2} \underline{\mathrm{C}}_{2} \underline{O}_{4}-$
A) 5.61 mol
B) 2.12 mol
C) 0.85 mol

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

300 mg of a $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{mw}=134) 95 \% \mathrm{w} / \mathrm{w}$ pure reagent was transferred to a titration conical flask. After adding acid solution and a suitable indicator, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ was titrated with KMnO 4 unknown solution according to the following titration reaction equation:

$$
2 \mathrm{KMnO}_{4}+5 \mathrm{C}_{2} \mathrm{O}_{4}+16 \mathrm{H}+-----2 \mathrm{Mn} 2++10 \mathrm{CO} 2+8 \mathrm{H} 2 \mathrm{O}
$$

If the volume of KMnO_{4} solution at the equivalent point was 34 mL , calculate the molarity of KMnO_{4} solution, the moles of KMnO_{4}
A) 5.61 mol
B) 2.12 mol
C) 0.85 mol

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

750 mg of a sample containing iron ($\mathrm{aw}=55.85$) was transferred into a titration conical flask and all iron was converted to Fe^{3+}, then unknown excess of KI was added and the following reaction was occurred

$$
2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{I} 2+2 \mathrm{Fe}^{2+}
$$

The iodine I 2 formed was titrated with 0.075 M of Na 2 S 2 O 3 solution using starch as indicator according to the following reaction equation :

$$
\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{I}^{-}
$$

mmol of $\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}$
A) 18.51
B) 1.39
C) 4.77

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

750 mg of a sample containing iron (aw = 55.85) was transferred into a titration conical flask and all iron was converted to Fe^{3+}, then unknown excess of KI was added and the following reaction was occurred

$$
2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{I} 2+2 \mathrm{Fe}^{2+}
$$

The iodine 12 formed was titrated with 0.075 M of Na 2 S 2 O 3 solution using starch as indicator according to the following reaction equation :

$$
\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{I}^{-}
$$

mmol of I_{2}
A) 18.51
B) 1.39
C) 0.69

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

750 mg of a sample containing iron (aw = 55.85) was transferred into a titration conical flask and all iron was converted to Fe^{3+}, then unknown excess of KI was added and the following reaction was occurred

$$
2 \mathrm{I}^{-}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{I} 2+2 \mathrm{Fe}^{2+}
$$

The iodine I 2 formed was titrated with 0.075 M of Na 2 S 2 O 3 solution using starch as indicator according to the following reaction equation :

$$
\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}_{2} \rightarrow \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{I}^{-}
$$

mmol of Fe^{3+}
A) 18.51
B) 1.39
C) 0.69

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample .
m.eq. of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
A) $0.05 \mathrm{~m} . \mathrm{eq}$
B) $0.5 \mathrm{~m} . \mathrm{eq}$
C) $1.5 \mathrm{~m} . \mathrm{eq}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the $\% \mathrm{w} / \mathrm{w}$ percentage of Cr^{6+} in the sample

m.eq. of Fe^{2+} (excess) which reacted with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
 A) $0.05 \mathrm{~m} . \mathrm{eq}$
 B) $0.5 \mathrm{~m} . \mathrm{eq}$
 C) $1.5 \mathrm{~m} . \mathrm{eq}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample.
m.eq. of Fe^{2+} total
A) $0.05 \mathrm{~m} . \mathrm{eq}$
B) $0.78 \mathrm{~m} . \mathrm{eq}$
C) $26.85 \mathrm{~m} . \mathrm{eq}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample.
m.eq. of Fe^{2+} which reacted with Cr^{6+}
A) $0.05 \mathrm{~m} . \mathrm{eq}$
B) $0.78 \mathrm{~m} . \mathrm{eq}$
C) $26.36 \mathrm{~m} . \mathrm{eq}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample.
m.eq. of Cr^{6+}
A) $0.05 \mathrm{~m} . \mathrm{eq}$
B) $0.78 \mathrm{~m} . \mathrm{eq}$
C) $26.36 \mathrm{~m} . \mathrm{eq}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample.
mass of Cr^{6+}
A) 17.33 mg
B) 456.91 mg
C) 630.02 mg

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

1.782 g of a sample containing $\mathrm{Cr}^{6+}(\mathrm{aw}=52)$ is dissolved in a conical flask. An excess of 1.5 g of $\mathrm{Fe}^{2+}(\mathrm{aw}=55.85)$ are added which is oxidized to Fe^{3+} during its reduction of Cr^{6+} to Cr^{3+}. The excess Fe^{2+} is titrated with 0.05 N of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and was found to require 10 mL at the equivalent point. Calculate the \%w/w percentage of Cr^{6+} in the sample .
A) 17.33%
B) $\mathbf{4 0 . 9 1 \%}$
C) $\mathbf{2 5 . 6 0 \%}$

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

10 mL of 0.1 M of analyte A were titrated with 0.2 M of titrant B according to the following titration reaction equation :

$$
A+2 B \leftrightarrow 3 E, K e q=1 \times 10^{10}
$$

Calculate the molar concentration of each [A] , [B] and [E] in the conical flask after the following additions of the titrant B solution: (1) 5 mL (2) 10 mL (3) 15 mL
calculate the volume of the titrant B solution at the equivalent point
A) 5 mL
B) 2.5 mL
C) 10 mL

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

10 mL of 0.1 M of analyte A were titrated with 0.2 M of titrant B according to the following titration reaction equation :

$$
A+2 B \leftrightarrow 3 E, K e q=1 \times 10^{10}
$$

Calculate the molar concentration of each [A], [B] and [E] in the conical flask after the following additions of the titrant B solution :
(1) 3 mL
(2) 10 mL
(3) 15 mL
calculate the molar concentration of [E]
A) 1 mL
B) 0.07 mL
C) 0.1 mL

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

10 mL of 0.1 M of analyte A were titrated with 0.2 M of titrant B according to the following titration reaction equation :

$$
A+2 B \leftrightarrow 3 E, K e q=1 \times 10^{10}
$$

Calculate the molar concentration of each [A], [B] and [E] in the conical flask after the following additions of the titrant B solution :
(1) 3 mL
(2) 10 mL
(3) 15 mL
calculate the molar concentration of [A]
A) 1 M
B) 0.03 M
C) 0.05 M

Unite 6: INTRODUCTION TO VOLUMETRIC ANALYSIS

10 mL of 0.1 M of analyte A were titrated with 0.2 M of titrant B according to the following titration reaction equation :

$$
A+2 B \leftrightarrow 3 E, K e q=1 \times 10^{10}
$$

Calculate the molar concentration of each [A] , [B] and [E] in the conical flask after the following additions of the titrant B solution: (1) 3 mL (2) 10 mL (3) 15 mL calculate the molar concentration of [B]
A) 0.3 M
B) $1.8 \times 10^{-6} \mathrm{M}$
C) 8.3×10^{-7}

Unit7: ACID - BASE TITRATION CURVES

If 10 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)\right.$ is titrated with 0.2 M NaOH solution, calculate the pH of the titration solution in the conical flask after the addition of the following volumes of NaOH solution : V.eq.p
A) 5
B) 10
C) 15

Unit7: ACID - BASE TITRATION CURVES

If 10 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)\right.$ is titrated with 0.2 M NaOH solution, calculate the pH of the titration solution in the conical flask after the addition of the following volumes of NaOH solution : 3 mL
A) 2.91
B) 4.96
C) 11.51

Unit7: ACID - BASE TITRATION CURVES

If 10 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)\right.$ is titrated with 0.2 M NaOH solution, calculate the pH of the titration solution in the conical flask after the addition of the following volumes of NaOH solution : 5 mL
A) 5.2
B) 8.8
C) 11.51

Unit7: ACID - BASE TITRATION CURVES

If 10 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}\left(\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)\right.$ is titrated with 0.2 M NaOH solution, calculate the pH of the titration solution in the conical flask after the addition of the following volumes of NaOH solution : 10 mL
A) 2.91
B) 1.30
C) 12.71

Unit7: ACID - BASE TITRATION CURVES

A) if $\mathrm{pKa}=3$, so, sharper the region of the curve near the equivalent point
B) if $\mathrm{pKa}=7$, so, sharper the region of the curve near the equivalent point
C) if $\mathrm{pKa}=10$, so, sharper the region of the curve near the equivalent point

Unite 8: ACID - BASE TITRATION INDICATORS

At a low pH , the human can distinguish the acidic color if:
A) $\frac{[\mathrm{In}]}{[\mathrm{HIn}]}=\frac{10}{1}$
B) $\frac{[\mathrm{HIn}]}{[\mathrm{In}]}=\frac{10}{1}$
C) $\frac{[\mathrm{In}]}{[\mathrm{HIn}]}=\frac{20}{1}$

Unite 8: ACID - BASE TITRATION INDICATORS

At a high pH , the human can distinguish the acidic color if:
A) $\frac{[\mathrm{In}]}{[\mathrm{HIn}]}=\frac{10}{1}$
B) $\frac{[\mathrm{HIn}]}{[\mathrm{In}]}=\frac{10}{1}$
C) $\frac{[I n]}{[\mathrm{HIn}]}=\frac{20}{1}$

Unite 8: ACID - BASE TITRATION INDICATORS

At low pH (acidic), The pH of indicator is :
A) $\mathrm{pH}_{\mathrm{In}}=\mathrm{pK}_{\mathrm{HIn}}-1$
B) $\mathrm{pH}_{\mathrm{In}}=\mathrm{pK}_{\mathrm{HIn}}+1$
C) $\mathrm{pK}_{\mathrm{HIn}}=\mathrm{pH}_{\mathrm{In}}-1$

Unite 8: ACID - BASE TITRATION INDICATORS

The Indicator's Range is:
A) $\Delta \mathrm{pK}_{\mathrm{HIn}}=\mathrm{pK}_{\mathrm{HIn}} \pm 1$
B) $\Delta \mathrm{pK}_{\mathrm{HIn}}=\mathrm{pH}_{\mathrm{In}} \pm 1$
C) $\Delta \mathrm{pH}_{\mathrm{In}}=\mathrm{pK}_{\mathrm{HIn}} \pm 1$

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 10 mL of 0.05 M of the weak acid $\mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=1 \times 10^{-5}\right)$ with 0.1 M NaOH :
(1) $\mathrm{pK}_{\mathrm{In}}=7(2) \mathrm{pK}_{\mathrm{In}}=9(3) \mathrm{pK}_{\mathrm{ln}}=11$

Calculate $\mathrm{V}_{\text {eq.p. }}$
A) 2.5 mL
B) 5 mL
C) 7.5 mL

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 10 mL of 0.05 M of the weak acid $\mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=1 \times 10^{-5}\right)$ with 0.1 M NaOH :
$\begin{array}{lll}\text { (1) } p K_{l n}=7 & \text { (2) } p K_{I n}=9 & \text { (3) } p K_{I n}=11\end{array}$
Calculate the pH at eq.p.
A) 4.7 mL
B) 9.3 mL
C) 12.5 mL

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 10 mL of 0.05 M of the weak acid $\mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=1 \times 10^{-5}\right)$ with 0.1 M NaOH :
$\begin{array}{lll}\text { (1) } p K_{\text {In }}=7 & \text { (2) } p K_{\text {In }}=9 & \text { (3) } p K_{\text {In }}=11\end{array}$
The suitable indicatore is
A)) $\mathrm{pK}_{\mathrm{In}}=7$
B) $\mathrm{pK}_{\mathrm{ln}}=9$
C) $\mathrm{pK}_{\mathrm{In}}=11$

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 20 mL of 0.1 M of $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}} \approx 2 \mathrm{X}\right.$ 10^{-5}) with $0.4 \mathrm{M} \mathrm{HCl}:$
(1) $\mathrm{pK}_{\mathrm{ln}}=3(2) \mathrm{pK}_{\mathrm{ln}}=5(3) \mathrm{pK}_{\mathrm{ln}}=7$

Calculate $\mathrm{V}_{\text {eq.p. }}$
A) 2.5 mL
B) 5 mL
C) 7.5 mL

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 20 mL of 0.1 M of $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}} \approx 2 \times 10^{-5}\right)$ with 0.4 M HCl :
(1) $\mathrm{pK}_{\text {In }}=3$
(2) $\mathrm{pK}_{\text {ln }}=5$
(3) $\mathrm{pK}_{\text {ln }}=7$

Calculate the pH at eq.p.
A) 11.9
B) 9.8
C) 5.2

Unite 8: ACID - BASE TITRATION INDICATORS

How do the following indicators behave with the titration of 20 mL of 0.1 M of $\mathrm{NH}_{3}\left(\mathrm{~K}_{\mathrm{b}} \approx 2 \times 10^{-}\right.$ ${ }^{5}$) with $0.4 \mathrm{M} \mathrm{HCl}:$
(1) $p K_{\text {In }}=3$
(2) $\mathrm{pK}_{\mathrm{ln}}=5$
(3) $\mathrm{pK}_{\mathrm{In}}=7$

The suitable indicatore is
A) $\mathrm{pK}_{\mathrm{ln}}=3$
B) $\mathrm{pK}_{\mathrm{ln}}=5$
C) $\mathrm{pK}_{\mathrm{ln}}=7$

Unite 9: COMPLEX FORMATION TITRATION

Example of unidentate
A) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
B) $\mathrm{Br}^{-}, \mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{CN}-\mathrm{RNH} 2, \mathrm{RCOO}$
C) EDTA

Unite 9: COMPLEX FORMATION TITRATION

The charge of complex Fe^{3+}, $\mathrm{Fe}(\mathrm{CN})_{6}$
A) $3+$
B) 3-
C) 6-
D) $6+$

Unite 9: COMPLEX FORMATION TITRATION

Calculate the molar concentration of $\left[\mathrm{CN}^{-}\right]$in a solution of $\mathrm{Cu}(\mathrm{CN})_{4}{ }^{2-}\left(\mathrm{Kd}=5.2 \times 10^{-28}\right)$ prepared by dissolving 0.05 mole of the complex in water and completing the volume to one liter A) 2.52×1010^{-5}
B) 5.63×10^{-2}
C) 32.2×10^{-28}

