Tutorial 3

Digital Signals and Systems

Exercise 1

Calculate the first eight sample values and sketch each of the following sequences:
a. $\quad x(n)=-2 \delta(n-5)$
b. $x(n)=5 u(n-2)$
C. $x(n)=0.5^{n} u(n)$
d. $x(n)=5 \sin (0.2 \pi n) u(n)$

Solution 1

Exercise 2

Given the digital signals $x(n)$ in Figures write an expression for each digital signal using the unit-impulse sequence and its shifted sequences.

Solution 2
a. $x(n)=3 \delta(n)+\delta(n-1)+2 \delta(n-2)+\delta(n-3)+\delta(n-5)$
b. $x(n)=\delta(n-1)-\delta(n-2)+\delta(n-4)-\delta(n-5)$

Exercise 3

Assume that a DS processor with a sampling time interval of 0.01 second converts the following analog signals $x(t)$ to a digital signal $x(n)$; determine the digital sequence for each of the analog signals.
a. $\quad x(t)=e^{-50 t} u(t)$
b. $x(t)=5 \sin (20 \pi t) u(t)$

Solution 3

a. $x(n)=e^{-0.5 n} u(n)=(0.6065)^{n} u(n)$
b. $x(n)=5 \sin (0.2 \pi n) u(n)$

Exercise 4

Determine whether the following systems are linear
a. $y(n)=5 x(n)+2 x^{2}(n)$
b. $\quad y(n)=x(n-1)+4 x(n)$
C. $y(n)=4 x^{3}(n-1)-2 x(n)$

Solution 4
a. Let $y_{1}(n)=5 x_{1}(n)+2 x_{1}^{2}(n), y_{2}(n)=5 x_{2}(n)+2 x_{2}^{2}(n)$

$$
y_{1}(n)+y_{2}(n)=5 x_{1}(n)+2 x_{1}^{2}(n)+5 x_{2}(n)+2 x_{2}^{2}(n)
$$

For $x(n)=x_{1}(n)+x_{2}(n)$

$$
\begin{gathered}
y(n)=5 x(n)+2 x^{2}(n)=5\left(x_{1}(n)+x_{2}(n)\right)+2\left(x_{1}(n)+x_{2}(n)\right)^{2} \\
=5 x_{1}(n)+5 x_{2}(n)+2 x_{1}^{2}(n)+2 x_{2}^{2}(n)+4 x_{1}(n) x_{2}(n)
\end{gathered}
$$

Since $y_{1}(n)+y_{2}(n) \neq y(n)$, the system is a nonlinear system.
b. Let $y_{1}(n)=x_{1}(n-1)+4 x_{1}(n), y_{2}(n)=x_{2}(n-1)+4 x_{2}(n)$

$$
y_{1}(n)+y_{2}(n)=x_{1}(n-1)+x_{2}(n-1)+4 x_{1}(n)+4 x_{2}(n)
$$

For $x(n)=x_{1}(n)+x_{2}(n)$

$$
\begin{aligned}
y(n)= & y(n-1)+4 x(n)=\left(x_{1}(n-1)+x_{2}(n-1)\right)+4\left(x_{1}(n)+x_{2}(n)\right) \\
& =x_{1}(n-1)+x_{2}(n-1)+4 x_{1}(n)+4 x_{2}(n)
\end{aligned}
$$

Since $y_{1}(n)+y_{2}(n)=y(n)$, the system is a linear system.
c. Let $y_{1}(n)=4 x_{1}^{3}(n)-2 x_{1}(n), y_{2}(n)=4 x_{2}^{3}(n)-2 x_{2}(n)$

$$
y_{1}(n)+y_{2}(n)=4 x_{1}^{3}(n)-2 x_{1}(n)+4 x_{2}^{3}(n)-2 x_{2}(n)
$$

For $x(n)=x_{1}(n)+x_{2}(n)$

$$
\begin{array}{rl}
y(n)=5 & x(n)+2 x^{2}(n)=4\left(x_{1}(n)+x_{2}(n)\right)^{3}-2\left(x_{1}(n)+x_{2}(n)\right) \\
& =4 x_{1}^{3}(n)+8 x_{1}^{2}(n) x_{2}(n)+8 x_{1}(n) x_{2}^{2}(n)+4 x_{2}^{3}(n)-2 x_{1}(n)-2 x_{2}(n)
\end{array}
$$

Since $y_{1}(n)+y_{2}(n) \neq y(n)$, the system is a nonlinear system.

Exercise 5

Determine whether the following linear systems are time-invariant.
a. $y(n)=-5 x(n-10)$
b. $y(n)=4 x\left(n^{2}\right)$

Solution 5

a. For $x_{1}(n)=x\left(n-n_{0}\right), y_{1}(n)=-5 x_{1}(n-10)=-5 x\left(n-10-n_{0}\right)$

Since $y\left(n-n_{0}\right)=-5 x\left(\left(n-n_{0}\right)-10\right)=-5 x\left(n-10-n_{0}\right)=y_{1}(n)$
The system is time invariant.
b. For $x_{2}(n)=x\left(n-n_{0}\right)$ so that $x_{2}\left(n^{2}\right)=x\left(n^{2}-n_{0}\right), y_{2}(n)=4 x_{2}\left(n^{2}\right)=4 x_{2}\left(n^{2}-n_{0}\right)$ Since shifting $y\left(n-n_{0}\right)=4 x\left(\left(n-n_{0}\right)^{2}\right)=4 x\left(n^{2}-2 m n_{0}+n_{0}^{2}\right) \neq y_{2}(n)$
The system is time variant.

Exercise 6

Determine which of the following linear systems is causal.
a. $y(n)=0.5 x(n)+100 x(n-2)-20 x(n-10)$
b. $y(n)=x(n+4)+0.5 x(n)-2 x(n-2)$

Solution 6

a. Since the output is depending on the current input and past inputs, the system is causal. b. Since the output is depending on the future input $x(n+4)$, the system is a non-causal system.

Exercise 7

Find the unit-impulse response for each of the following linear systems.
a. $y(n)=0.5 x(n)-0.5 x(n-2)$; for $n \geq 0, x(-2)=0, x(-1)=0$
b. $y(n)=0.75 y(n-1)+x(n)$; for $n \geq 0, y(-1)=0$
c. $y(n)=-0.8 y(n-1)+x(n-1)$; for $n \geq 0, x(-1)=0, y(-1)=0$

Solution 7
a. $h(n)=0.5 \delta(n)-0.5 \delta(n-2)$
b. $h(n)=(0.75)^{n} ; n \geq 0$
c. $h(n)=1.25 \delta(n)-1.25(-0.8)^{n} ; n \geq 0$

Exercise 8

Determine the stability for each of the following linear systems.
a. $y(n)=\sum_{k=0}^{\infty} 0.75^{k} x(n-k)$
b. $y(n)=\sum_{k=0}^{\infty} 2^{k} x(n-k)$

Solution 8
a. $h(n)=(0.75)^{n} u(n), S=\sum_{k=0}^{\infty}(0.75)^{k}=1 /(1-0.75)=4=$ finite, the system is stable.
b. $h(n)=(2)^{n} u(n), S=\sum_{k=0}^{\infty}(2)^{k}=1+2+2^{2}+\cdots=\infty=$ infinite, the system is unstable.

Exercise 9

Using the sequence definitions, evaluate the digital convolution
$h(k)=\left\{\begin{array}{ll}2, & k=0,1,2 \\ 1, & k=3,4 \\ 0 & \text { elsewhere }\end{array}\right.$ and $x(k)= \begin{cases}2, & k=0 \\ 1, & k=1,2 \\ 0 & \text { elsewhere }\end{cases}$
a. using the graphical method;
b. using the table method;
c. applying the convolution formula directly.

Solution 9

$$
\begin{aligned}
& y(0)=4, y(1)=6, y(2)=8, y(3)=6, y(4)=5, y(5)=2, y(6)=1, \\
& y(n)=0 \text { for } n \geq 7
\end{aligned}
$$

k	-4	-3	-2	-1	0	1	2	3	4	5	6	
$\mathrm{x}(\mathrm{k})$					2	1	1					
$\mathrm{~h}(-\mathrm{k})$	1	1	2	2	2							$\mathrm{y}(0)=4$
$\mathrm{~h}(1-\mathrm{k})$		1	1	2	2	2						$\mathrm{y}(1)=6$
$\mathrm{~h}(2-\mathrm{k})$			1	1	2	2	2					$\mathrm{y}(2)=8$
$\mathrm{~h}(3-\mathrm{k})$				1	1	2	2	2				$\mathrm{y}(3)=6$
$\mathrm{~h}(4-\mathrm{k})$					1	1	2	2	2			$\mathrm{y}(4)=5$
$\mathrm{~h}(5-\mathrm{k})$						1	1	2	2	2		$\mathrm{y}(5)=2$
$\mathrm{~h}(6-\mathrm{k})$							1	1	2	2	2	$\mathrm{y}(6)=1$

