Tutorial 3

Digital Signals and Systems

Exercise 1

Calculate the first eight sample values and sketch each of the following sequences:

a.
$$x(n) = -2\delta(n-5)$$

b.
$$x(n) = 5u(n-2)$$

c.
$$x(n) = 0.5^n u(n)$$

d.
$$x(n) = 5\sin(0.2\pi n)u(n)$$

Exercise 2

Given the digital signals x(n) in Figures write an expression for each digital signal using the unit-impulse sequence and its shifted sequences.

Solution 2

a.
$$x(n) = 3\delta(n) + \delta(n-1) + 2\delta(n-2) + \delta(n-3) + \delta(n-5)$$

b.
$$x(n) = \delta(n-1) - \delta(n-2) + \delta(n-4) - \delta(n-5)$$

Exercise 3

Assume that a DS processor with a sampling time interval of 0.01 second converts the following analog signals x(t) to a digital signal x(n); determine the digital sequence for each of the analog signals.

a.
$$x(t) = e^{-50t}u(t)$$

b.
$$x(t) = 5\sin(20\pi t)u(t)$$

Solution 3

a.
$$x(n) = e^{-0.5n}u(n) = (0.6065)^n u(n)$$
 b. $x(n) = 5\sin(0.2\pi n)u(n)$

Exercise 4

Determine whether the following systems are linear

a.
$$y(n) = 5x(n) + 2x^2(n)$$

b.
$$y(n) = x(n-1) + 4x(n)$$

C.
$$y(n) = 4x^3(n-1) - 2x(n)$$

a. Let
$$y_1(n) = 5x_1(n) + 2x_1^2(n)$$
, $y_2(n) = 5x_2(n) + 2x_2^2(n)$
 $y_1(n) + y_2(n) = 5x_1(n) + 2x_1^2(n) + 5x_2(n) + 2x_2^2(n)$
For $x(n) = x_1(n) + x_2(n)$
 $y(n) = 5x(n) + 2x^2(n) = 5(x_1(n) + x_2(n)) + 2(x_1(n) + x_2(n))^2$
 $= 5x_1(n) + 5x_2(n) + 2x_1^2(n) + 2x_2^2(n) + 4x_1(n)x_2(n)$

Since $y_1(n) + y_2(n) \neq y(n)$, the system is a nonlinear system.

b. Let
$$y_1(n) = x_1(n-1) + 4x_1(n)$$
, $y_2(n) = x_2(n-1) + 4x_2(n)$
 $y_1(n) + y_2(n) = x_1(n-1) + x_2(n-1) + 4x_1(n) + 4x_2(n)$
For $x(n) = x_1(n) + x_2(n)$
 $y(n) = y(n-1) + 4x(n) = (x_1(n-1) + x_2(n-1)) + 4(x_1(n) + x_2(n))$
 $= x_1(n-1) + x_2(n-1) + 4x_1(n) + 4x_2(n)$

Since $y_1(n) + y_2(n) = y(n)$, the system is a linear system.

c. Let
$$y_1(n) = 4x_1^3(n) - 2x_1(n)$$
, $y_2(n) = 4x_2^3(n) - 2x_2(n)$
 $y_1(n) + y_2(n) = 4x_1^3(n) - 2x_1(n) + 4x_2^3(n) - 2x_2(n)$
For $x(n) = x_1(n) + x_2(n)$
 $y(n) = 5x(n) + 2x^2(n) = 4(x_1(n) + x_2(n))^3 - 2(x_1(n) + x_2(n))$
 $= 4x_1^3(n) + 8x_1^2(n)x_2(n) + 8x_1(n)x_2^2(n) + 4x_2^3(n) - 2x_1(n) - 2x_2(n)$

Since $y_1(n) + y_2(n) \neq y(n)$, the system is a nonlinear system.

Exercise 5

Determine whether the following linear systems are time-invariant.

a.
$$y(n) = -5x(n-10)$$

b.
$$y(n) = 4x(n^2)$$

a. For
$$x_1(n) = x(n-n_0)$$
, $y_1(n) = -5x_1(n-10) = -5x(n-10-n_0)$

Since
$$y(n-n_0) = -5x((n-n_0)-10) = -5x(n-10-n_0) = y_1(n)$$

The system is time invariant.

b. For
$$x_2(n) = x(n - n_0)$$
 so that $x_2(n^2) = x(n^2 - n_0)$, $y_2(n) = 4x_2(n^2) = 4x_2(n^2 - n_0)$

Since shifting
$$y(n-n_0) = 4x((n-n_0)^2) = 4x(n^2 - 2nn_0 + n_0^2) \neq y_2(n)$$

The system is time variant.

Exercise 6

Determine which of the following linear systems is causal.

a.
$$y(n) = 0.5x(n) + 100x(n-2) - 20x(n-10)$$

b.
$$y(n) = x(n+4) + 0.5x(n) - 2x(n-2)$$

Solution 6

- a. Since the output is depending on the current input and past inputs, the system is causal.
- b. Since the output is depending on the future input x(n+4), the system is a non-causal system.

Exercise 7

Find the unit-impulse response for each of the following linear systems.

a.
$$y(n) = 0.5x(n) - 0.5x(n-2)$$
; for $n \ge 0$, $x(-2) = 0$, $x(-1) = 0$

b.
$$y(n) = 0.75y(n-1) + x(n)$$
; for $n \ge 0$, $y(-1) = 0$

c.
$$y(n) = -0.8y(n-1) + x(n-1)$$
; for $n \ge 0$, $x(-1) = 0$, $y(-1) = 0$

Solution 7

a.
$$h(n) = 0.5\delta(n) - 0.5\delta(n-2)$$
 b. $h(n) = (0.75)^n$; $n \ge 0$

c.
$$h(n) = 1.25\delta(n) - 1.25(-0.8)^n$$
; $n \ge 0$

Exercise 8

Determine the stability for each of the following linear systems.

a.
$$y(n) = \sum_{k=0}^{\infty} 0.75^k x(n-k)$$

b.
$$y(n) = \sum_{k=0}^{\infty} 2^k x(n-k)$$

a.
$$h(n) = (0.75)^n u(n)$$
, $S = \sum_{k=0}^{\infty} (0.75)^k = 1/(1-0.75) = 4$ = finite, the system is stable.

b.
$$h(n) = (2)^n u(n)$$
, $S = \sum_{k=0}^{\infty} (2)^k = 1 + 2 + 2^2 + \dots = \infty = \text{infinite}$, the system is unstable.

Exercise 9

Using the sequence definitions, evaluate the digital convolution

$$h(k) = \begin{cases} 2, & k = 0, 1, 2 \\ 1, & k = 3, 4 \\ 0 & elsewhere \end{cases} \text{ and } x(k) = \begin{cases} 2, & k = 0 \\ 1, & k = 1, 2 \\ 0 & elsewhere \end{cases}$$

- a. using the graphical method;
- **b.** using the table method;
- c. applying the convolution formula directly.

$$y(0) = 4$$
, $y(1) = 6$, $y(2) = 8$, $y(3) = 6$, $y(4) = 5$, $y(5) = 2$, $y(6) = 1$, $y(n) = 0$ for $n \ge 7$

k	-4	-3	-2	-1	0	1	2	3	4	5	6	
x(k)					2	1	1					
h(-k)	1	1	2	2	2							y(0)=4
h(1-k)		1	1	2	2	2						y(1)=6
h(2-k)			1	1	2	2	2					y(2)=8
h(3-k)				1	1	2	2	2				y(3)=6
h(4-k)					1	1	2	2	2			y(4)=5
h(5-k)						1	1	2	2	2		y(5)=2
h(6-k)							1	1	2	2	2	y(6)=1