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1 Foreword

This is a revised version of Section 7.5 of my Advanced Calculus (Harper & Row,
1978). It is a supplement to my textbook Introduction to Real Analysis, which is refer-
enced several times here. You should review Section 3.4 (Improper Integrals) of that
book before reading this document.

2 Introduction

In Section 7.2 (pp. 462-484) we considered functions of the form

b
F(y>=/ Feondy, c<y<d

We saw that if f is continuous on [a, b] X [c, d], then F is continuous on [c, d] (Exer-
cise 7.2.3, p. 481) and that we can reverse the order of integration in

/Cd F(y)dy =/Cd (/;bf(x,y)dX> dy
/Cd F(y)dy =/ab (/Cd f(x,y)dy) dx

(Corollary 7.2.3, p. 466).
Here is another important property of F'.

to evaluate it as

Theorem 1 If f and f, are continuous on [a, b] x [c, d], then

b
F(y) = / Feondy, c<y<d, M)

is continuously differentiable on [c, d] and F'(y) can be obtained by differentiating (1)
under the integral sign with respect to y; that is,

b
F(y) = / frly)dx, c<y<d. @)

Here F'(a) and fy(x,a) are derivatives from the right and F'(b) and fy(x,b) are
derivatives from the left.

Proof Ifyandy+ Ay arein|[c,d]and Ay # 0, then

F(y + Ay) = F(y) _ /b SOy +4Ay) = f(xy)
Ay s Ay ’

3

From the mean value theorem (Theorem 2.3.11, p. 83),if x € [a,b] and y, y + Ay €
[c,d], thereis a y(x) between y and y + Ay such that

S y+Ay)—f(x,y) = f(x, »)Ay = fy(x, y(x)Ay+(fy (x, y(x)—fy (x, y))Ay.
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From this and (3),

F(y + Ay) — F(y)
Ay

b b
- / oo y)dx| < / 1y (e y@) — fy( )| dx. @)

Now suppose € > 0. Since fy is uniformly continuous on the compact set [a, b] x[c, d]
(Corollary 5.2.14, p. 314) and y(x) is between y and y + Ay, there is a § > 0 such
that if |A| < § then

|fy(xa)’)_fy(xa)’(x))| <€, (x,y)e[a,b]x[c,d].

This and (4) imply that

F(y + Ay — F(y))
Ay

b
—/ fy(x,y)dx| <e(b—a)

if yand y + Ay are in [c,d] and 0 < |Ay| < §. This implies (2). Since the integral
in (2) is continuous on [c, d] (Exercise 7.2.3, p. 481, with f replaced by f;), F’ is
continuous on [c, d]. 0

Example 1 Since

f(x,y) =cosxy and f,(x,y)=—xsinxy

are continuous for all (x, y), Theorem 1 implies that if
g
F(y) = / cosxydx, —oo<y < oo, 5)
0

then .
F'(y) = —/ xsinxydx, —oco<y <oo. (6)
0

(In applying Theorem 1 for a specific value of y, we take R = [0, 7] X [—p, p], where
o > |y|.) This provides a convenient way to evaluate the integral in (6): integrating the
right side of (5) with respect to x yields

. T
sinxy

y

sinmy
= . y#0.
y

F(y) =

x=0
Differentiating this and using (6) yields
sinty  mwcosmy
y? y

To verify this, use integration by parts. [ ]

T
/ xsinxy dx = , y#O0.
0

We will study the continuity, differentiability, and integrability of

b
F(y) = / fx.y)dx, yeS.



where § is an interval or a union of intervals, and F is a convergent improper integral
for each y € S. If the domain of f is [a,b) x S where —0o < a < b < o0, we say
that F is pointwise convergent on S or simply convergent on S, and write

b r
| reyax = iim [ repax )

if, for each y € S and every € > 0, there is an r = ro(y) (which also depends on ¢€)
such that

= <e, ro(y) <y<b. (8)

r b
‘F(y)— [ 1w x| =|[ s

If the domain of f is (a, b] X S where —o0 < a < b < 0o, we replace (7) by

b b
| reyar= tim |7 s

and (8) by

= <€, a<r=<roy).

b
F(y) - / Fx.y)dx

[ reax

In general, pointwise convergence of F for all y € S does not imply that F is
continuous or integrable on [c, d], and the additional assumptions that f) is continuous

and [ ab fy(x,y)dx converges do not imply (2).

Example 2 The function
flxy) = ye Pk

is continuous on [0, 00) X (—0o0, 00) and

F(y) = /0 Fe.y)dx = /0 ye I dx

converges for all y, with

-1 y <0,
Fy)=3 0 y=0,
1 y>0;

therefore, I is discontinuousat y = 0.

Example 3 The function
fx,y) = yle ™

is continuous on [0, 00) X (—00, 00). Let
oo o0 2
Fo = [ fandi= [ e ar =y —w<y <
0 0
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Then
F'(y) =1, —oco<y<oo.

However,

*© oo
/ i(y%_yzx) dx = / (3y2 —2y*x)e ™ dx = Loy #0,
o 0y 0 0. y=o0

SO

’ *9f(x,y) . _
F(y);é/o oy dx if y=0.

3 Preparation

We begin with two useful convergence criteria for improper integrals that do not involve
a parameter. Consistent with the definition on p. 152, we say that f is locally integrable
on an interval [ if it is integrable on every finite closed subinterval of /.

Theorem 2 (Cauchy Criterion for Convergence of an Improper Integral I) Suppose
g is locally integrable on [a, b) and denote

G(r)z/rg(x)dx, a<r<hb.

Then the improper integral fab g(x) dx converges if and only if, for each € > 0, there
isanrg € [a, b) such that

|G(r) — G(r)| <€, ro=rri<b. )

Proof For necessity, suppose |, ab g(x)dx = L. By definition, this means that for
each € > O thereis an rg € [a, b) such that

|G(r)—L| < % and |G(r;)—L| < %, ro<rr <b.
Therefore

|G(r)—G(r1)| = [(G(r) = L) —(G(r1) — L)
|G(r)— L|+1|G(r1)—L| <€, ro<rry<b.

IA

For sufficiency, (9) implies that
GO =1G(r) + (G(r) = Gr))| <[G(r)| +1G(r) =G| = [G(r)| + €,

ro <r <rp; <b. Since G is also bounded on the compact set [, r¢] (Theorem 5.2.11,
p- 313), G is bounded on [a, b). Therefore the monotonic functions

G(r) = sup {G(r1) | r<ri<b} and G(r)=inf{G(ry) | r<r<b}



are well defined on [a, b), and

lim G(r) =L and lirlr} G(r)=L

r—b—

both exist and are finite (Theorem 2.1.11, p. 47). From (9),

Gr) =Gl = [(G(r) = G(ro)) = (G(r1) — G(ro))|
|G(r) = G(ro)| + |G (r1) — G(ro)| < 2,

IA

S0
6(r) —G(r) <2, ro<r,rp<bhb.

Since € is an arbitrary positive number, this implies that
lim (G(r)=G(r) =0,
r—>b—

soL=L.LetL =L =L.Since
G(r) = G(r) < G(r),

it follows that lim, ., G(r) = L. a
We leave the proof of the following theorem to you (Exercise 2).

Theorem 3 (Cauchy Criterion for Convergence of an Improper Integral IT) Suppose
g is locally integrable on (a, b] and denote
b
G(r) :/ g(x)dx, a<r<b.
r
Then the improper integral fab g(x) dx converges if and only if, for each € > 0, there
isanrg € (a,b] such that
|G(r)—G(r1)| <€, a<rri<ryo.

To see why we associate Theorems 2 and 3 with Cauchy, compare them with The-
orem 4.3.5 (p. 204)

4 Uniform convergence of improper integrals
Henceforth we deal with functions f = f(x, y) with domains / x S, where S is an
interval or a union of intervals and [ is of one of the following forms:

e [a,b) with—oco <a < b < o0;

e (a,b] with—oco <a < b < oc;

e (a,b) with—oco <a <b < o0.



In all cases it is to be understood that f is locally integrable with respect to x on /.

When we say that the improper integral | ab f(x,y)dx has a stated property “on S” we
mean that it has the property forevery y € S.

Definition 1 Ifthe improper integral
b r
| remdx = tim [ reenax (10)
a r—>b—Jg4

converges on S, it is said to converge uniformly (or be uniformly convergent) on S if,
foreach € > 0, there is an ry € [a, b) such that

<e, yeS, rog<r<b,

/abf<x,y>dx—/: Fx ) dx

or, equivalently,

<€, yeS, ro<r<hb. (11

/ " feny) dx

The crucial difference between pointwise and uniform convergence is that ro(y) in
(8) may depend upon the particular value of y, while the ro in (11) does not: one choice
must work for all y € S. Thus, uniform convergence implies pointwise convergence,
but pointwise convergence does not imply uniform convergence.

Theorem 4 (Cauchy Criterion for Uniform Convergence I) The improper integral
in (10) converges uniformly on S if and only if, for each € > 0, there is an ry € [a, D)
such that

<e, yeS, ro<rr<b. (12)

[ rena

Proof Suppose [ ab f(x,y)dx converges uniformly on S and € > 0. From Defini-
tion 1, there is an rg € [a, b) such that

/, ’ feny) dx / b Fx,y)dx

<E and
2

<§, yes, ro<rr <b (13)

Since . ,
/ Flx.y)dx = / £ y)dx - / F(x.y)dox,

(13) and the triangle inequality imply (12).
For the converse, denote

F(y) = / F(x.y)dx.



Since (12) implies that
|F(r,y) = F(r1,y)l <€, y€S, ro<rr<b, (14)

Theorem 2 with G(r) = F(r, y) (y fixed but arbitrary in S') implies that fab fx,y)dx
converges pointwise for y € S. Therefore, if € > 0 then, for each y € S, there is an
ro(y) € [a, b) such that

b
/f(x,y)dx <e, yesS, ro(y)<r<b. (15)

For each y € S, choose r1(y) > max[ro(y), ro]. (Recall (14)). Then

b ri(y) b
/ Fe.y)dx = / FGeuy)dx + / F(xy)dx,
r r ri(y)

so (12), (15), and the triangle inequality imply that

<2, yesS, ro<r<b.

/ " fedx

|
In practice, we don’t explicitly exhibit r¢ for each given €. It suffices to obtain
estimates that clearly imply its existence.

Example 4 For the improper integral of Example 2,

/ F(x.y)dx| = / e = el g 2,

If |y| > p, then

<e”

’

[ remax

o) fooo f(x,y)dx converges uniformly on (—oo, p] U [p,00) if p > 0; however, it
does not converge uniformly on any neighborhood of y = 0, since, for any r > 0,
el > % if |y| is sufficiently small.

Definition 2 Ifthe improper integral

b b
/; Sy dx = tim / F(x.y)dx

converges on S, it is said to converge uniformly (or be uniformly convergent) on S if,
for each € > 0, there is an rg € (a, b] such that

<€, yeS, a<r <ry,

/abf(x,wdx—/rbf(x,y)dx

or, equivalently,

<€, yeS, a<r <ry.

[ renas




We leave proof of the following theorem to you (Exercise 3).

Theorem 5 (Cauchy Criterion for Uniform Convergence II) The improper integral

b b
| remax = tim [ e dx

converges uniformly on S if and only if, for each € > 0, there is an ro € (a, b] such
that

<€, yeS, a<rr; <ry.

/ fr.y)da

We need one more definition, as follows.

Definition 3 Let f = f(x,y) be defined on (a,b) x S, where —oo < a < b < oo.
Suppose f is locally integrable on (a, b) forall y € S and let ¢ be an arbitrary point
in (a,b). Then fab f(x,y)dx is said to converge uniformly on S szac f(x,y)dx and

fcb f(x,y)dx both converge uniformly on S.

We leave it to you (Exercise 4) to show that this definition is independent of c;

that is, if f: f(x,y)dx and fcb f(x,y)dx both converge uniformly on S for some
¢ € (a, b), then they both converge uniformly on S for every ¢ € (a, b).
We also leave it you (Exercise 5) to show that if f is bounded on [a, b] X [c, d]

and [ ab f(x,y)dx exists as a proper integral for each y € [c, d], then it converges
uniformly on [c, d] according to all three Definitions 1-3.

Example S Consider the improper integral

o0
F(y) :/ x V27X gx,
0

which diverges if y < 0 (verify). Definition 3 applies if y > 0, so we consider the
improper integrals

1 9]
Fi1(y) :/ x V2™ dx and  Fa(y) =/ x V267 dx
0 1
separately. Moreover, we could just as well define

C o0
Fl(y)=/ x Y267V dx  and Fz(y):/ x V27XV gy, (16)
0 c

where c is any positive number.
Definition 2 applies to F;. If 0 <7y <rand y > 0, then

r
/ x V267 g x
;

so F1(y) converges for uniformly on [0, 00).

,
</ x_l/zdx<2r1/2,
r

1



Definition | applies to F>. Since

ry
/ x V27 dx
.

F>(y) converges uniformly on [p, 00) if p > 0. It does not converge uniformly on
(0, p), since the change of variable u = xy yields

/rl x_l/ze_xy dx = y—1/2 /rly u_l/ze_" du.
r

ry

e’

12 [e%e)
- —xy _
<r /r e dx = el

which, for any fixed r > 0, can be made arbitrarily large by taking y sufficiently small
and r = 1/y. Therefore we conclude that F(y) converges uniformly on [p, 00) if
p>0.

Note that that the constant ¢ in (16) plays no role in this argument.

Example 6 Suppose we take

® sinu T
du = — (17)
0 u 2

as given (Exercise 31(b)). Substitutingu = xy with y > 0 yields

-
/ Y aux=Z y>o. (18)
0 X 2

What about uniform convergence? Since (sin xy)/x is continuous at x = 0, Defini-
tion | and Theorem 4 apply here. If 0 < r < r; and y > 0, then

" sinxy 1 (cosxy 1 "l cosxy ) " sinxy 3
dx = —— +/ dx ), so / dx| < —.
/; r r ‘xz r X

x y x ry
Therefore (18) converges uniformly on [p, 00) if p > 0. On the other hand, from (17),
there is a § > 0 such that

oo -
/ Smudu>z, 0<ugy<§é.
u 4

0 u

This and (18) imply that

o0 : o0 :
sinxy sinu T
/ dx = / du > —
r X yro U 4

forany r > 0if 0 < y < §/r. Hence, (18) does not converge uniformly on any interval
(0, p] with p > 0.

10



S Absolutely Uniformly Convergent Improper Integrals

Definition 4 (Absolute Uniform Convergence I) The improper integral

b r
| ryrar= tim [ peyas

is said to converge absolutely uniformly on S if the improper integral

b r
[ ity = tim [Cireoplax

converges uniformly on S that is, if, for each € > 0, there is an ro € [a, b) such that

<€, yeS, ro<r<b.

b r
/|f(x,y>|dx—/ 1f(r )] dix

To see that this definition makes sense, recall that if f is locally integrable on [a, b)
for all y in S, then so is | f| (Theorem 3.4.9, p. 161). Theorem 4 with f replaced by

| f| implies that |, ab f(x,y)dx converges absolutely uniformly on S if and only if, for
each € > 0, there is an r¢ € [a, b) such that

ry
/ | fx,y)|dx <€, y€eS, ro<r<ry<b.
-

Since

[ s

5/ ()| dox,

Theorem 4 implies that if |, ab f(x,y)dx converges absolutely uniformly on S then it
converges uniformly on S.

Theorem 6 (Weierstrass’s Test for Absolute Uniform Convergence I) Suppose M =
M (x) is nonnegative on [a, b), fab M(x)dx < oo, and

|fe. ) =Mx)., yeS, asx<b. (19)
Then fab f(x,y)dx converges absolutely uniformly on S.

Proof Denote | ab M(x)dx = L < oo. By definition, for each ¢ > 0 there is an
ro € [a, b) such that

,
L—e</ M(x)dx <L, ro<r<b.
a

Therefore, if ro < r < ry, then

Of/rrl M(x)dx = (/arlM(x)dx—L)—(/arM(x)dx—L) <e€

11



This and (19) imply that

r r
/ |f(x,y)|dx§/ M(x)dx <€, yeS, a<ro<r<ry<b.

Now Theorem 4 implies the stated conclusion. a

Example 7 Suppose g = g(x, y) is locally integrable on [0, co) for all y € S and, for
some ag > 0, there are constants K and pg such that

lg(x,y)| < KeP*, yeS, x>ao.

If p > po and r > ayp, then

o0 o0
/ P lg(x.y)| dx / PP PO g (x )| dx
:

K / —rmpyx g, _ KeTTTOY
Cp—po

IA

S0 fooo e P*g(x,y)dx converges absolutely on S. For example, since
[x¥sinxy| < e?%* and [x%cosxy| < ePO¥

for x sufﬁ01ent1y large if po > 0, Theorem 4 implies that f e PXx%sinxy dx
and f e P*x%cos xy dx converge absolutely uniformly on (—o0, 00) if p > 0 and
a > 0. As a matter of fact, fo e P*x%sin xy dx converges absolutely on (—oo, 00)
if p > 0and o > —1. (Why?)

Definition 5 (Absolute Uniform Convergence II) The improper integral

b b
| reyan= tim |7 s

is said to converge absolutely uniformly on S if the improper integral

b b
[ irotas = tim [C1lax

converges uniformly on S that is, if, for each € > 0, there is an ro € (a, b] such that

<€, yeS, a<r<rg<b.

b b
/ fGra )] dx —/ £ Cre )] dx

We leave it to you (Exercise 7) to prove the following theorem.

Theorem 7 (Weierstrass’s Test for Absolute Uniform Convergence II) Suppose
M = M(x) is nonnegative on (a, b], fab M(x)dx < oo, and

| f(x,y)| < M(x), yeS, xE¢€l(a,b].

Then fab f(x,y)dx converges absolutely uniformly on S.

12



Example 8 If g = g(x, y) is locally integrable on (0, 1] for all y € S and
lg(x.y)| < Ax#, 0<x < xo,
foreach y € S, then

1
/ ¥ g(x. y) dx
0

converges absolutely uniformly on S if « > § — 1. To see this, note that if 0 < r <
r1 < xo, then

r r Axe—B+1 " Are—B+1
/ x%g(x, y)|dx < A/ B gy = 22 <2 .
ri ri a_IB+1r1 a_IB+1

Applying this with § = 0 shows that

1
F(y) :/ x%cosxy dx
0

converges absolutely uniformly on (—oo, 00) if ¢« > —1 and

1
G(y)z/ x%sinxy dx
0

converges absolutely uniformly on (—oo, 00) if ¢ > —2.

By recalling Theorem 4.4.15 (p. 246), you can see why we associate Theorems 6
and 7 with Weierstrass.

6 Dirichlet’s Tests

Weierstrass’s test is useful and important, but it has a basic shortcoming: it applies
only to absolutely uniformly convergent improper integrals. The next theorem applies

in some cases where fab f(x,y)dx converges uniformly on S, but fab | f(x,y)|dx
does not.

Theorem 8 (Dirichlet’s Test for Uniform Convergence I) If g, gx, and h are con-
tinuous on [a, b) x S, then

b
| sty dx
a
converges uniformly on S if the following conditions are satisfied:

(a) lim gsuplg(x,y)l =0;
b yeSs

x—>b—

(b) There is a constant M such that

sup <M, a<x<b;

yes

/: h(u,y)du

13



(© fab |gx(x,y)| dx converges uniformly on S.

Proof If .
Hx.y) = / hu. y) du, 20)

then integration by parts yields

/ g(ro y)h(x, y) dx / g (x.y) H (x. y) dx
= g(r,y)H(ri,y)—g(r, y)H(r,y) (21)

_/ gx(xa)’)H(x,y)dx.

Since assumption (b) and (20) imply that | H (x, y)| < M, (x, y) € (a,b] xS, Eqn. (21)
implies that

/ g y)h(x. y) dx

ri
<M (ZSuplg(x,y)l +/ ng(x,y)ldx) (22)

xX>r

on[r,r] xS.

Now suppose € > 0. From assumption (a), there is an 7o € [a,b) such that
lg(x,y)] < €on S if rp < x < b. From assumption (c¢) and Theorem 6, there is
an sg € [a, b) such that

ri
/ lgx(x,y)|dx <€, yeS, so<r<r<bh.
,
Therefore (22) implies that

<3Me, yeS, max(rg,s0) <r <ry <b.

/ g (e yh(x. )

Now Theorem 4 implies the stated conclusion. a

The statement of this theorem is complicated, but applying it isn’t; just look for a
factorization f = gh, where h has a bounded antderivative on [a, b) and g is “small”
near b. Then integrate by parts and hope that something nice happens. A similar
comment applies to Theorem 9, which follows.

Example 9 Let

o0
I(y) :/ oS XY dx, y>0.
0o Xty

The obvious inequality

cosxy | _ 1
X+y| x+y

/°° dx
= 00
o X+

14

is useless here, since




However, integration by parts yields

/” cosxyd sinxy | +/” sinxy d
X = — ————dx
ro X+y yx+ Il S oy +y)?
sinryy sinry /” sinxy
— —————dx.
yri+y) yor+y) S oy +y)?

Therefore, if 0 < r < ry, then

"I cosxy 1 2 o 1 3 3
dx| < — + 5= > =
ro Xty y\r+y J (x+Yy) y(r+y) p(r +p)

if y > p > 0. Now Theorem 4 implies that /(y) converges uniformly on [p, c0) if
p>0.

We leave the proof of the following theorem to you (Exercise 10).

Theorem 9 (Dirichlet’s Test for Uniform Convergence II) If g, g, and h are con-
tinuous on (a, b] x S, then

b
| gty dx
a
converges uniformly on S if the following conditions are satisfied:
(@ lim {sup|g(x,y)|p =0;
x—a+ yes

(b) There is a constant M such that

sup
yes

<M, a<x<bh;

/xb h(u,y)du

(© fab |gx(x,y)| dx converges uniformly on S.
By recalling Theorems 3.4.10 (p. 163), 4.3.20 (p. 217), and 4.4.16 (p. 248), you

can see why we associate Theorems 8 and 9 with Dirichlet.
7 Consequences of uniform convergence

Theorem 10 If /' = f(x,y) is continuous on either [a,b) x [c,d] or (a,b] X [c, d]
and

b
F(y) = / Fx.y) dx 23)

converges uniformly on [c, d], then F is continuous on [c, d]. Moreover,

/Cd(/abf(x,y)dx) dy=/ab(/cdf(x,y)dy> dx. (24)

15



Proof We will assume that f is continuous on (a, b] x [c, d]. You can consider the
other case (Exercise 14).

We will first show that F in (23) is continuous on [c, d]. Since F converges uni-
formly on [c, d], Definition 1 (specifically, (11)) implies that if ¢ > 0, there is an
r € [a, b) such that

/  fed

<e, c¢<y<d.

Therefore, if ¢ < y, yo < d], then

b b
IF(y) - Fyo)l = / Fe.y)dx - / F(x. vo)dx
r b

< / [f(y) — (. yo) dx| + / F(e.y)dx
b
+ / f(xvyO)dx B
SO ,
IF(y) = F(yo)| < / £ (X, y) = f(x, yo)l dx + 2. (25)

Since f is uniformly continuous on the compact set [a, 7] x[c, d] (Corollary 5.2.14,
p- 314), there is a § > 0 such that

|f(x.y) = flx.yo)l <€
if (x,y) and (x, yo) are in [a, 7] X [c, d] and |y — yo| < §. This and (25) imply that
|F(y) — F(yo)l < (r —a)e +2¢ < (b —a +2)e

if y and yo arein [c, d] and |y — yo| < 8. Therefore F is continuous on [c, d], so the
integral on left side of (24) exists. Denote

1 =/Cd (/;bf(x,y)dx) dy. (26)

We will show that the improper integral on the right side of (24) converges to /. To

this end, denote
r d
I(r) = / (/ f(x,y) dy) dx.

Since we can reverse the order of integration of the continuous function f over the
rectangle [a, ] X [c, d] (Corollary 7.2.2, p. 466),

0= | ‘ ( [ re dx) dy.

16



From this and (26),

1—1(r>=/cd (/rbf(x,y)dx) dy.

Now suppose € > 0. Since [ ab f(x,y)dx converges uniformly on [c, d], there is an
ro € (a, b] such that

<€, ro<r<b,

/  fed

so |l —I(r)| < (d —c)eifro <r < b. Hence,

i [ ( [ e dy) ax= [ ( [ s dx) a.

which completes the proof of (24). a

Example 10 It is straightforward to verify that

o0 1
/ e Vdx =—, y>0,
0 y

and the convergence is uniform on [p, co0) if p > 0. Therefore Theorem 10 implies that
if 0 < y; < y3, then

2 gy »2 0 oo 2
/ — = / (/ exydx)dy=/ (/ exydy)dy
Y 1 0 0 1

o0 ,—XY1 —X)y2
e —e
= / S
0

X

Since

y2 d
/ 4X=bg23,mzy1>Q
n Yy 1

it follows that
00 L, =XYL _ p—X)2
/ 7dx=10g2, y2 = y1 > 0.
0 X N

Example 11 From Example 6,

* sinx
/ ydxzz, y >0,
0 X 2

and the convergence is uniform on [p, 0o0) if p > 0. Therefore, Theorem 10 implies
thatif 0 < y; < y,, then

y2 0 o1 oo Y2 <1
Za—y) = '/ (/‘ Slnxydx)dyz/ (/ Slnxydy:)dx
2 " 0 X 0 no X

*° cosxy; —cosxya
= > dx.
0 X

27)

17



The last integral converges uniformly on (—oo, 00) (Exercise 10(h)), and is therefore
continuous with respect to y; on (—oo, 0o), by Theorem 10; in particular, we can let
¥1 — 04 in (27) and replace y, by y to obtain

* 1 —cosxy Ty
——dx = —, > 0.
| = ta=T

The next theorem is analogous to Theorem 4.4.20 (p. 252).

Theorem 11 Let f and f, be continuous on either [a,b) x [c,d] or (a,b] x [c,d].
Suppose that the improper integral

b
F(y) = / F(x.y)dx

converges for some yq € [c,d] and

b
G(y) = / fy(xoy) dx

converges uniformly on [c, d]. Then F converges uniformly on [c, d] and is given ex-
plicitly by

y
F(y) = F(yo) + / Guyd. c<y<d.

0
Moreover, F is continuously differentiable on [c, d]; specifically,

F'(y) =G(y), c<y=d, (28)

where F'(c) and fy(x, c) are derivatives from the right, and F'(d) and f,(x,d) are
derivatives from the left.

Proof We will assume that f and f) are continuous on [a,b) x [c,d]. You can
consider the other case (Exercise 15).
Let

,
Fr(y) =/ fx.y)dx, a<r<b, c=<y=d.
a
Since f and f, are continuous on [a, r] X [c, d], Theorem 1 implies that
r
Fl(y) = / Sy, y)dx, c<y<d.
a

Then

y r
FO) = F(o)+ / (/ fy(x,r)dx) a1
Yo a

Foo+ [ 6w

Yo

y b
+(Fr(yo) — F(30)) —/ (/ fy(x.t) dx) dt, c¢<y=<d.
yo \Jr

18



Therefore,

= |F(o) = F(yo)l

/y: /rb fy(x,t)dx

Now suppose € > 0. Since we have assumed that lim,_,,_ F;-(y9) = F(yo) exists,
there is an rg in (a, b) such that

y
Fr(3) — Fyo) — / G()di

Yo

+ dt. (29)

|Fr(yo) — F(yo)| <€, ro<r<bh.

Since we have assumed that G(y) converges for y € [c, d], there is an r; € [a, b) such
that

<e, tele,d], rn<r<b.

b
/ fy(x,t)dx

Therefore, (29) yields

y
Fr(Y)_F(YO)—/ Gt)ydt| <e(l+|y—yol]) <e(l+d—c)

Yo

if max(ro,71) <r <bandt € [c,d]. Therefore F(y) converges uniformly on [c, d]
and

F(y) = F(yo) + yG(f)dt, c<y<d.

Y0
Since G is continuous on [c, d] by Theorem 10, (28) follows from differentiating this
(Theorem 3.3.11, p. 141). a

Example 12 Let
o0
I(y) :/ e dx, y > 0.
0

r 1 rJy
/ eI dx = —/ e dt,
0 VY Jo

1 /oo 2
1 = — e ' dt,
») 7 Js

and the convergence is uniform on [p, co) if p > 0 (Exercise 8(i)). To evaluate the last
integral, denote J(p) = f(f e d t; then

o o o rp
J*(p) = (/ e’ du) (/ e v’ dv) = / / e~ gy gy,
0 0 0o Jo

Transforming to polar coordinates r = r cos 8, v = r sin 0 yields

/2 pp = /7_[ l_e_pz)
J2(p) =/0 /0 re">drdf = %, so J(p) = (7

2

Since

it follows that
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Therefore

o0 o0
</ 1
/ e dt = lim J(p) = X and / e dx == = y>o.
0 P—>00 2 0 2

< |

Differentiating this n times with respect to y yields

/°° gy g, _ L3 @Dy
0 Znyn+1/2

y>0, n=1,2,3,...,
where Theorem 11 justifies the differentiation for every n, since all these integrals

converge uniformly on [p, 00) if p > 0 (Exercise 8(i)).

Some advice for applying this theorem: Be sure to check first that F(yo) =
/ ab f(x, yo) dx converges for at least one value of y. If so, differentiate | ab fx,y)dx

formally to obtain fab fy(x,y)dx. Then F'(y) = fab fy(x,y)dx if y is in some
interval on which this improper integral converges uniformly.

8 Applications to Laplace transforms
The Laplace transform of a function f locally integrable on [0, 00) is

F(s) = /000 e f(x)dx

for all s such that integral converges. Laplace transforms are widely applied in mathe-
matics, particularly in solving differential equations.
We leave it to you to prove the following theorem (Exercise 26).

Theorem 12 Suppose f is locally integrable on [0, 00) and | f (x)| < Me®* for suf-
ficiently large x. Then the Laplace transform of F converges uniformly on [s1, 00) if
S1 > So.

Theorem 13 If f is continuous on [0, 00) and H(x) = fooo e 0% f(u) du is bounded
on [0, 00), then the Laplace transform of f converges uniformly on [s1, 00) if s1 > So.

Proof If0 <r <rq,

r 1 .
[ e s = [ etmores pwan = [0,

r r

Integration by parts yields

ry
/ e X f(x)dt = e_(s_SO)xH(x)

r r
+ (s — so)/ e~ 60X F(x) dx.
r r
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Therefore, if | H(x)| < M, then

/rrl e f(x)dx

IA

M

e—(s—so)rl +e—(s—s0)r + (S —so) /rl e_(s_so)x dx
r

3Me~ 650 < 3pe=(1=s0)r o> g

IA

Now Theorem 4 implies that F(s) converges uniformly on [s1, 00).
The following theorem draws a considerably stonger conclusion from the same
assumptions.

Theorem 14 If f is continuous on [0, 00) and

H(x) = /Ox e % f(u) du

is bounded on [0, 00), then the Laplace transform of f is infinitely differentiable on
(s0, 00), with

o0
FO) = 1 [ e e dx; (30)
0
that is, the n-th derivative of the Laplace transform of f(x) is the Laplace transform
of (=1)"x" f(x).
Proof First we will show that the integrals

In(s)=/ e X" f(x)dx, n=0,1,2,...
0

all converge uniformly on [s1, 00) if 51 > 5¢. If 0 < r < rq, then

r r r
/ e X" f(x)dx = / e~ TI0X p=S0X 31 £(x) dx = / e~ 6N Y (x) dix.
.

r r

Integrating by parts yields

ry
/ e X" f(x)dx = r{'e_(s_s")” H(r)— r”e_(s_s")’H(r)
;

—/rl H(x) (e_(s_s(’)xx”)/ dx,

where ’ indicates differentiation with respect to x. Therefore, if |H(x)] < M < oo on
[0, 00), then

/rrl e x" f(x)dx

o0

<M (e—(s—so)rrn +e—(s—s0)rrn +/ |(e—(s—s0)x)xn)/|dx) )
r

Therefore, since e ~6~50)7 " decreases monotonically on (n, 00) if s > s¢ (check!),

<3Me 6Ty <y,

/rrl e x" f(x)dx

so Theorem 4 implies that 7, (s) converges uniformly [s;, 00) if s; > so. Now The-
orem 11 implies that F,+1 = —F,, and an easy induction proof yields (30) (Exer-
cise 25). O
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Example 13 Here we apply Theorem 12 with f(x) = cosax (a # 0) and sp = 0.

Since

X sinax
cosaudu =
0 a

is bounded on (0, co), Theorem 12 implies that
o0
F(s) = / e ¥ cosaxdx
0

converges and

o0

F®™(5) = (—1)"/ e *x"cosaxdx, s>0.
0

(Note that this is also true if a = 0.) Elementary integration yields

s
F(s) = ——.
(s) §2 + a?
Hence, from (31),
o dr s
e *x"cosax = (—=1)" _ =0,1,....
/0 =D ds™ s2 + a?

22
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9 Exercises

1.

7.

8.

Suppose g and & are differentiable on [a, b], with
a<g(y)<b and a<h(y)<bh, c=<y=d.

Let f and f, be continuous on [a, b] x [c, d]. Derive Liebniz’s rule:

d h(y)
. fe.yydx = fh@). I () — f(g»). g )
Y Je»)
h(y)
+ fy(x,y)dx.
g(y)

(Hint: Define H(y,u,v) = fuv f(x,y)dx and use the chain rule.)
Adapt the proof of Theorem 2 to prove Theorem 3.

Adapt the proof of Theorem 4 to prove Theorem 5.

Show that Definition 3 is independentof ¢; that s, if [, f(x, y) dx and fcb f(x,y)dx
both converge uniformly on S for some ¢ € (a, b), then they both converge uni-
formly on S and every ¢ € (a, b).

(a) Show that if f is bounded on [a, b] X [c, d] and fab f(x,y)dx exists as a
proper integral for each y € [c, d], then it converges uniformly on [c, d]
according to all of Definition 1-3.

(b) Give an example to show that the boundedness of f is essential in (a).

Working directly from Definition 1, discuss uniform convergence of the follow-
ing integrals:

- —xy 2

(a)/o e dx (b)/o e x“dx

(c)/ x2e™V% dx (d)/ sinxy? dx
0 0

o0 o0
(e) / (3y?% - ny)e_yzx dx @ / 2xy — y*x)e ™ dx
0 0
Adapt the proof of Theorem 6 to prove Theorem 7.

Use Weierstrass’s test to show that the integral converges uniformly on S :

(a) / e sinxdx, S=][p,0), p>0
0

(b)/ MY gy, S=lc.d], l<c<d<?2
o X7

23



10.

11.

12.

(c)
(@)
(e)
®
(®
(h)
(@

(a)

(b)

(c)
(d)

00 .
/ empx MY dx, p>0, S =(—00,00)
1 X

1 exy
- — (— 1
/0 d—xp dx, S = (-o00,b), b<

_cosxy dx.

1+ x2y2 S = (=00, —p]U[p,00), p>0.

eVdx, S=][po0), p>0

88

cosxy—cosaxd S = )
X, = (—00, 00

2n,—yx? dx, S=][p,o0), p>0, n=0,12,...

/.
.
/ “dx, S=[-p.pl, p>0
J
i

Show that
o0
r'(y) :/ x¥ e dx
0

converges if y > 0, and uniformly on [c, d]if 0 < ¢ < d < oo.
Use integration by parts to show that

and then show by induction that

r
r'(y)= (v +n) ., y>0, n=12.73....
yoy+D--(y+n-—1)

How can this be used to define I'(y) in a natural way for all y # 0, —1,
—2,...7 (This function is called the gamma function.)

Show that I'(n 4+ 1) = n!if n is a positive integer.
Show that

o0
/ e dt =57 M+ 1), a>-1, s>0.
0

Show that Theorem 8 remains valid with assumption (c) replaced by the as-
sumption that |gx (x, ¥)| is monotonic with respect to x forall y € S.

Adapt the proof of Theorem 8 to prove Theorem 9.

Use Dirichlet’s test to show that the following integrals converge uniformly on
S =[p,00)if p > 0:
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13.

14.

15.

16.

17.

18.

(a)/ sinxy dx (b)/ sin xy dx
1 xY > logx

cos Xy smxy
()/ X+y de ()/ 1+xy

Suppose g, gx and & are continuous on [a,b) x S, and denote H(x,y) =
[ h(u,y)du,a < x < b. Suppose also that

x—>b—

b
lim gsup Ig(x,y)H(x,y)l} =0 and / gx(x, y)H(x,y)dx
yES a

converges uniformly on S. Show that [ ab g(x, y)h(x, y)dx converges uniformly
onS.

Prove Theorem 10 for the case where f = f(x, y) is continuous on (a, b] X

[c,d].

Prove Theorem 11 for the case where f = f(x, y) is continuous on (a, b] X

[c,d].
Show that
C(y) :/oo f(x)cosxydx and S(y) :/oo f(x)sinxydx

are continuous on (—oo, 00) if

/_00 | f(x)|dx < oo.

o0

Suppose f is continuously differentiable on [a, 00), limy—s f(x) = 0, and

/oo|f’(x)|dx < 0.

Show that the functions
C(y) = / f(x)cosxydx and S(y) = / f(x)sinxy dx

are continuous for all y # 0. Give an example showing that they need not be
continuous at y = 0.

Evaluate F(y) and use Theorem 11 to evaluate 7:

©  dx ® tan"lax —tan~! hx
@ Fo = [ Syt 1= dx,
o 1+ y%x 0 X
a,b>0
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19.

20.

21.

22,

00 ooxa_xb
(b) F(y):/ xYdx,y > —1, I:/ dx, a,b>-1
0o 0
(o) F(y):/ e cosxdx, y>0
0
oo ,—ax _ ,—bx
I:/ icosxdx, a,b>0
0 X

d F(y) :/ e sinxdx, y>0
0

ooe—ax_e—bx
I:/ ——sinxdx, a,b>0
0

X
o0 o0
1—
(e) F(y) :/ e Fsinxydx; I =/ e 084X
0 0 X
o0 o0 :
® F(y) :/ e “cosxydx; I =/ e_xsmxax dx
0 0

Use Theorem 11 to evaluate:

1
(a) / (logx)'x?dx, y>-1, n=0,1,2,....
0

o dx
(b) ) de, y>0, n=0,1,2,....
00

(c)/ X2 e gy y>0, n=0,1,2,...
0

o0
(@) / xy©¥dx, 0<y<]l.
0
(a) Use Theorem 11 and integration by parts to show that

o0
F(y) :/ e cos2xy dx
0

satisfies
F +2yF =0.

(b) Use part (a) to show that

F(y) = ‘/Tge—yz.

Show that
*© 2 2 Y 2
/ e sin2xydx = e / e* du.
0 0

(Hint: See Exercise 20.)

State a condition implying that

C(y) = /00 f(x)cosxydx and S(y) = /00 f(x)sinxy dx
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23.

24.

25.

26.

27.

28.

29.

are n times differentiable on for all y # 0. (Your condition should imply the
hypotheses of Exercise 16.)

Suppose f is continuously differentiable on [a, 00),

/oo * ) [ dx <00, 0=k <n,

a

and limy—, o, X" f(x) = 0. Show that if

C(y) = /00 f(x)cosxydx and S(y) = /00 f(x)sinxydx,

then

c® () =/ xk f(x)cosxydx and S®(y) Z/ xk f(x)sinxy dx,

a

0<k<n.
Differentiating
7 cos?
F(y) = cos = dx
1 X

under the integral sign yields
o0
1
- / — sin Y dx,
1 X X

which converges uniformly on any finite interval. (Why?) Does this imply that
F is differentiable for all y?

Show that Theorem 11 and induction imply Eq. (30).
Prove Theorem 12.

Show that if F(s) = fooo e~** f(x) dx converges for s = sp, then it converges
uniformly on [sg, 00). (What’s the difference between this and Theorem 137?)

Prove: If f is continuous on [0, co) and fooo e~%0% f(x) dx converges, then
o0

lim e f(x)dx = /ooe_soxf(x) dx.
0

s—>so+ 0

(Hint: See the proof of Theorem 4.5.12, p. 273.)

Under the assumptions of Exercise 28, show that
o0

lim e f(x)dx = / e % f(x)dx, r>0.

s—>so+ r
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30. Suppose f is continuous on [0, co) and

o0
F(s) = / e f(x)dx
0
converges for s = s¢. Show that lims_, F(s) = 0. (Hint: Integrate by parts.)

31. (a) Starting from the result of Exercise 18(d), let » — oo and invoke Exer-
cise 30 to evaluate

oo .
___sinx
/ e 4 dx, a>0.
0 X

(b) Use (a) and Exercise 28 to show that

0o .-

sin x T
/ dx = —.
0 X 2

32. (a) Suppose f is continuously differentiable on [0, co) and

| f(x)] < Me®*, 0<x<o0.
Show that

G(s) = /Oooe_”f’(x) dx

converges uniformly on [s1, 00) if 51 > s¢. (Hint: Integrate by parts.)
(b) Show from part (a) that

o0
— 2 . 2
G(s)z/ e Fxe™ sine™ dx
0

converges uniformly on [p, c0) if p > 0. (Notice that this does not follow
from Theorem 6 or 8.)

33. Suppose f is continuous on [0, 00),

i S
m ——-
x—>0+ X

exists, and
o0
F(s) = / e f(x)dx
0
converges for s = s¢. Show that

/Soo Fu)du = /Oooe_sox@ dx.

0
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10 Answers to selected exercises

5. ) If f(x,y) = 1/yfory # 0and f(x,0) = 1, then fab f(x,y)dx does not
converge uniformly on [0, d] for any d > 0.

6. (a), (d), and (e) converge uniformly on (—oo, p] U [p, 00) if p > 0; (b), (¢), and (f)
converge uniformly on [p, 0o0) if p > 0.

® cosxy * sin xy

dx. Then C(0) = oo and

17. Let C(y) = / dx and S(y) = /
1 1
S(0) =0, while S(y) = n/2if y # 0.

T T a 1 a—+1
18.(aQ) F)) = ——:; I==log— MBYFYy)=—— [=1o
(@) F(y) 0] 5 log (b) F(y) . Sl

1b2+1
y j= +

(C)F(y)=y2+1; =511

@ F(y) = yzl-i—l; I =tan™'h —tan"lq
© FO) = i 1= 3 log(1 +a%)
(f)F(y)=y21+1; I =tan"'a

19. (@) (=D)"a!l(y + D™ (b) w2727 (Znn>y_”—1/2

n! s
(c) 2yt (logy)~= (d) (logx)?

22. /00 |x" f(x)]dx < o0

24. No; the integral defining F diverges for all y.

31. (a) % —tan 'a
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