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ABSTRACT The use of cutting edge object detection techniques to build an accurate phoneme sequence
recognition system for English and Arabic languages is investigated in this study. Recently, numerous
techniques have been proposed for object detection in daily life applications using deep learning. In this
paper, we propose the use of object detection techniques in speech processing tasks. We selected two
state-of-the-art object detectors, namely YOLO and CenterNet, based on a trade-off between detection
accuracy and speed. We tackled the problem of phoneme sequence recognition using three systems: the
domain transfer learning system (DTS) from image to speech, intra-language transfer leaning system
(IaTS) between speech corpora within the same language (English to English), and inter-language transfer
learning system (IeTS) between speech corpora from dissimilar languages (English to Arabic). For English
phoneme recognition, the Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus is used
to evaluate the performance of the proposed systems. Our IaTS based on the CenterNet detector achieves
the best results using the test core set of TIMIT with 15.89% phone error rate (PER). For Arabic phoneme
recognition, the best performance, with 7.58% PER, was achieved using the CenterNet. These results show
the effectiveness of using object detection techniques in phoneme recognition tasks. Furthermore, based on

the findings of this study, speech processing tasks may be treated as object detection tasks.

INDEX TERMS CenterNet, object detection, phoneme recognition, transfer learning, YOLO.

I. INTRODUCTION

Phoneme recognition plays a dominant part in many applica-
tions such as speech recognition [1], speaker recognition [2],
and pronunciation error detection and correction [3]. With
the success of deep learning techniques for computer vision,
many studies have been conducted on speech processing tasks
by converting speech signals to a visual representation such
as spectrogram [4]. Recently, research efforts have focused
on object detection, which aims to localize the objects on an
image and identify the class of each object [5]. In this paper,
we consider phonemes with their time boundaries as objects
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in a spectrogram (i.e., image). Hence, we apply object detec-
tion techniques to detect the phonemes in the spectrogram.
In general, object detection techniques can be classified
into two major classes: two-stage detectors and one-stage
detector [6]. The detection process of the two-stage detectors
consists of two steps. In the first step, the image is divided into
candidate regions; then, each region is classified separately.
An example of a two-stage detector is a region-based CNN
(RCNN) [7]. In one stage detectors, the whole image is
fed to the network at once to detect the objects and their
respective bounding boxes. Examples of one-stage detectors
are YOLO [8] and CenterNet [9]. In general, one stage
detectors are faster than two-stage detectors [10]. Owing to
their speeds, modernity and accuracies, YOLO and Center-
Net were investigated in this study for phoneme sequence
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recognition. The speed of the techniques is crucial for real
time applications such as speech recognition. Transfer learn-
ing techniques have been applied in many domains such
as image classification [11], semantic segmentation [12],
and object detection [13] to overcome the lack/imbalance
of training data and accelerate the training process. The
aim of this study is to answer the following research
questions:

Q1: What is the effectiveness of applying object detectors
to phoneme recognition?

Q2: Does intra language transfer learning improve the
recognition accuracy in this type of task?

Q3: Does inter language transfer learning improve the
recognition accuracy in this type of task?

Q4: Can we relate the evaluation metrics of object detec-
tion to the metrics of phoneme recognition?

Our investigation is based on using English and Ara-
bic corpora. To answer the first research question, we pro-
posed the domain transfer learning system (DTS) by adapting
YOLO and CenterNet for the phoneme recognition task using
the Texas Instruments/Massachusetts Institute of Technology
(TIMIT) corpus, which is in the English language. In this
system, Image-Net pre-trained weights, rather than randomly
initializing weights, were used as the initial weights for the
backbone networks of the detectors. To answer the second
research question, the intra-language transfer learning sys-
tem (IaTS) is proposed. TIMIT is a small vocabulary cor-
pus compared to other object detection benchmarks. Hence,
in IaTS, we start by training the detectors of DTS using a
random subset from the LibriSpeech corpus [14], which is
a large English language vocabulary corpus. Subsequently,
we fine-tune and test the detectors using TIMIT. We selected
LibriSpeech because it is a free corpus, and its acoustic
model and lexicon are freely available. To answer the third
research question, we proposed the inter-language transfer
learning system (IeTS). This system aims to study the effect
of transfer learning between English language as a source lan-
guage and the Arabic language as a target language, by fine-
tuning the trained detectors of DTS by a small Arabic corpus.
Finally, to answer the fourth research question, we used
two evaluation metrics to evaluate the performance of the
proposed methods. The first metric, mean average precision
(mAP), is from the object detection domain and the second
metric, Phone Error Rate (PER), is from speech recognition
domain.

To the best of our knowledge, this is the first attempt to use
object detection techniques for phonemes sequence recogni-
tion, except for one study on keyword spotting using the first
version of YOLO [15]. That study was published few months
ago during the development of our study. The rest of this
paper is organized as follows: the related studies are presented
in section II, a detailed research methodology is explained
in section III, and experimental results and analysis are pre-
sented in section IV. Finally, the conclusions are given in
section V.
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Il. RELATED WORK

As the topic of this study belongs to the object detec-
tion and speech recognition fields, we shall first introduce
state-of-the-art techniques in object detection by exploring
their growth curve from the pre-deep learning era to the
present day and will highlight the most well-known bench-
marks. Then, we shall present diverse related studies on
TIMIT phoneme recognition. Finally, some prior studies
of Arabic Automatic Speech Recognition (AASR) will be
discussed.

A. OBJECT DETECTION

Object detection plays a vital role in many real life appli-
cations, such as face detection and pedestrian detection in
the security field, autonomous driving and traffic sign recog-
nition in the transportation field, flyer detection and topo-
graphic survey in the military field, glaucoma detection and
skin lesion analysis in the medical filed, etc. [S]. The follow-
ing section is mostly inspired from the recent comprehensive
surveys in object detection techniques [5], [6], [10]. Before
the deep learning era, some object detection techniques were
proposed such as Viola Jones detectors [16], the histograms
of oriented gradients detector [17], and discriminatively
trained, multiscale, deformable part model [18], which are
based on hand crafted features. During the evolution of
deep learning and GPU computation, the curve of object
detection techniques has grown rapidly. The deep detectors
can be classified into two categories: one-stage and two-
stage detectors. In two-stage detectors, an image is first
divided into candidate regions and then, each region is fed
to a convolutional neural network (CNN) to extract features,
which are fed to detection layers to identify the class of these
regions. The R-CNN [7], Fast-RCNN [19], Faster-RCNN
[20], SPPNet [21], and Mask-RCNN [22] are examples of
two-stage detectors. On the other hand, one-stage detectors
work by feeding the entire image to a CNN to extract features,
which are then fed to detection layers to predict objects
and bounding boxes. YOLO and its varieties [8], [23], [24],
SSD [25], RetinaNet [26], CornerNet [27], and Center-
Net [9], [28] are examples of one-stage detectors. In terms of
benchmarks, there are different object detection benchmarks.
Pascal VOC 2007 and VOC2012 (20 classes) [29], [30],
ILSVRC (200 classes) [31], MS-COCO (80 classes) [32],
and OID (600 classes) [33] are examples of these
benchmarks.

Most of the object detection techniques that are based
on deep learning consist of two networks, backbone net-
works and detection networks [5]. The backbone network
is used to extract the features, and the detection network
is used to classify the objects and detect the correspond-
ing bounding boxes. The backbone networks are based
on a CNN without fully connected layers. In the litera-
ture, several backbones are used, such as AlexNet [34],
VGG [35], ResNet [36], Darknet-53 [24], deep layer aggre-
gation (DLA) [37], MobileNet [38], and Hourglass [39].
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B. ENGLISH ASR

ASR systems have received considerable attention in the age
of deep learning. Several speech corpora have been released
with small and large vocabularies such as TIMIT [40], Lib-
riSpeech [14], TEDLIUM [41], WSJ [42], and Vystadial [43].
TIMIT is a well-known, time-aligned (at word and phone
level) corpus that was designed to develop ASR [44]. TIMIT
is a suitable choice for investigating a new method for speech
recognition because of its extensive publication, simplicity,
and size [45]. Hence, we will briefly discuss the perfor-
mance of ASR using the TIMIT corpus. Diverse deep learning
architectures have been published for English ASR systems,
such as deep neural networks (DNN), convolutional neu-
ral networks (CNN), recurrent neural networks (RNN), and
attention-based RNN, as described in detail in the following
sections.

1) ENGLISH DNN-BASED ASR

For many decades, conventional ASRs have been developed
using the Gaussian mixture model-hidden Markov model
(GMM-HMM) acoustic model. ASRs based on DNNs have
outperformed those based on the GMM-HMM model for
different speech benchmarks [45]. An acoustic model for
phone recognition based on the deep belief network (DBN)
is proposed in [46]. It outperformed the other conventional
approaches in terms of phone error rate by achieving a 23.0%
PER on TIMIT. A DBN with multiple hidden layers was also
proposed by the same authors in [47] and achieved a 20.7%
PER on TIMIT. Recently, a DNN acoustic model for TIMIT
phone recognition based on multi resolution speech represen-
tation proposed in [48] achieved the best PER of 18.25%.
The performances of a feed forward DNN, time delay neural
network (TDNN), and long short-term memory (LSTM) are
explored in [44] for TIMIT phone recognition, where LSTM-
based phone recognition achieved a PER of 15.02%.

2) ENGLISH CNN BASED ASR

Abdel-Hamid et al. [49] proposed a CNN acoustic model
for TIMIT phone recognition and large vocabulary speech
recognition. They compared the performances of an acoustic
model based on CNN and an acoustic model based on DNN,
and noticed that the model based on the CNN outperformed
that based on the DNN. For TIMIT phone recognition, they
reported 21.87% and 20.17% as an average PERs for the
DNN and CNN-based models, respectively. A hierarchical
CNN based on the maxout activation function instead of
ReLU is proposed in [50] for phone recognition. A PER
of 16.5% was achieved on the TIMIT core test set, which the
authors claimed was the best result that had been achieved
on TIMIT to that date. By replacing the softmax layer in
a CNN by a support vector machine (SVM), Passricha and
Aggarwal [51] developed a convolutional SVM (CSVM)
for speech recognition. They experimented with different
training criterion on TIMIT and reported an overall PER
of 16.9%. SincNet is a novel CNN proposed for speech and
speaker recognition [52]. It achieved a PER of 17.2% for
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TIMIT phone recognition, outperforming the standard CNN.
Quaternion values based on a CNN rather than real values was
proposed for TIMIT phone recognition and a PER of 19.64%
was realized [53].

3) ENGLISH RNN BASED ASR

A hybrid model CNN-RNN is proposed for phone recog-
nition and emotion recognition, and accomplished a PER
of 18.0% on a TIMIT core test set [54]. Light gated recur-
rent units (Li-GRU) have been proposed for speech recog-
nition [55]. Experiments were conducted using TIMIT and
other speech corpora, and a PER of 14.9% was attained
using feature-space maximum likelihood linear regression
(fMLLR). An attention-based RNN was applied for a TIMIT
phone recognition task and competitive PER of 17.6% was
achieved [1]. The performance of a combination of Li-GRU
and multi-layer perceptron (MLP) with concatenation of
different features such as mel frequency cepstral coeffi-
cient (MFCC), filter banks (FBANK), and fMLLR using
pytorch-kaldi speech recognition toolkit is presented in [56].
A PER of 13.8% for the TIMIT test set was achieved, which
were the best published results at that time, as mentioned by
authors.

C. ARABIC ASR

Challenges in building Arabic ASR are presented in [57].
An Arabic ASR system for broadcast news transcription is
described in [58]. The experiment was conducted on an Ara-
bic broadcast news corpus containing 7.5 h of recordings;
7 h were used for training and 0.5 h were used for testing.
The reported word error rate (WER) was 10.14% on a test
set of 3585 words and 8.61% for non-vocalized text (text
without diacritical marks). A rule-based method for creating
a pronunciation dictionary for large vocabulary Arabic ASR
was proposed in [59]. The proposed method was evaluated
on a broadcast news corpus with 5.4 h of recordings (4.3 for
training and other remaining for testing). They reported a
WER of 9% using text without diacritical marks. Building
a language model for Holy Quran ASR using CMU Sphinx
4isinvestigated in [60]. The authors of [61] proposed spectro-
temporal directional derivative (STDD) feature for high per-
formance Arabic ASR for a serious game. Ten digits from
(1 to 10) were recorded from 50 normal and 70 pathological
speakers. They used the HMM for the acoustic model and
obtained a word accuracy of 99.01%.

The above studies were performed at the word level.
As examples of studies on the Arabic language at the
phoneme level, we present the following. A study on Arabic
speech processing that concentrated on five Arabic conso-
nants phonemes (pharyngeal and uvular), which appear only
in the Arabic language, is presented in [62]. The authors
conducted experiments on the WestPoint Modern Standard
Arabic corpus using the HTK toolkit. They also studied the
effect of non-native speakers on the recognition rate of these
phonemes. The highest recognition rates were for the pharyn-
geal consonants Ain /¢/ and Haa /A/ and were 72% and 76.9%,
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respectively. The recognition rates for the uvular consonants
Ghain /¥/, Qaa /g/, and Khaa /x/ were 64%, 55%, and 86.7%
respectively. Arabic phoneme classification using HMM is
presented in [63]. Experiments were conducted on The Holy
Quran (THQ) corpus, which has been prepared from THQ
recitations and is segmented semi-manually at the phoneme
level. Four systems were designed, namely monophone, left
context biphone, right context biphone, and triphone, and
correction rates of 76.04%, 93.01%, 93.59%, and 92.81%,
respectively, were obtained.

Similar to those of other languages, Arabic ASR systems
using deep learning have received considerable attention
recently. The Arabic ASR system using the Kaldi toolkit
for a large broadcast corpus called GALE, which contains
200 hours of recordings, is presented in [64]. This corpus
contains recordings of broadcast reports and broadcast con-
versations. Different models were proposed, and the best
WERSs were obtained using DNN + MPE; they were 15.81%,
32.21%, and 26.95% on the broadcast reports, broadcast
conversations, and broadcast reports with broadcast conver-
sations, respectively.

lll. METHODOLOGY

In this section, we discuss in detail the research method-
ology applied in this study, including speech corpora and
evaluation metrics, data preparation, proposed systems, and
training/testing phases. We start by describing in brief the
speech corpora and evaluation metrics that were used in this
study. The data preparation process in which raw waves are
converted into images will be explained.

Then, a general overview of the proposed systems will be
given. We will then explain the training process of YOLO and
CenterNet. The adaptation of these detectors to the phoneme
recognition task is also provided. Each of the two detectors
was used in the DTS, IaTS, and IeTS. For the DTS and
1aTS, we used two backbone networks with each of the two
detectors. For IeTS, we used one backbone network for each
of the two detectors. Finally, we describe the testing process
as well as the post processing used to generate the sequence
of phonemes from the detector’s output. A general overview
of the methodology steps is shown in Figure 1.

A. SPEECH CORPORA

To evaluate the performance of our proposed methods, three
speech corpora are used in this investigation, two from
English language and one from Arabic language. A brief
description of each corpus is presented in this section.

1) TIMIT CORPUS

The TIMIT corpus [65], developed by Texas Instruments
(TT), Massachusetts Institute of Technology (MIT), and the
Stanford Research Institute (SRI), is a well-known and pop-
ular corpus; hence, we used it to investigate our proposed
methods. TIMIT comprises the recordings of 630 speakers.
Each speaker read ten sentences, and the total duration of all
recording is about 5.4 h. TIMIT defined the corpus partition
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FIGURE 1. Overview of the proposed methodology.

in the training and test sets as 462 speakers for training set,
24 speakers for core test set, and 168 speakers for complete
test set. In our experiments, we followed the configuration
of the TIMIT defined by Kaldi. The Kaldi configuration
excluded the two dialect sentences SA1 and SA2 from all
sets as suggested in most of the previous studies. We used
48 phones in the training and testing phases, and these phones
were mapped to 39 phones during evaluation as suggested
in [66].

2) LIBRISPEECH CORPUS

The LibriSpeech corpus [14] was used in our study for
the Intra-language transfer learning task. LibriSpeech is
a free corpus that contains the recordings of 1000 hours
of read speech. In our experiments, we randomly selected
the 15.7 h of recordings for training and 3.85 h for val-
idation from 50 speakers from the train-clean-100 subset.
The selected set contains utterances from 26 males and
24 females. We used this corpus to overcome the scarcity
of the data on the TIMIT corpus and to study the effect
of transfer learning within the same language. To adapt the
LibriSpeech corpus to fulfill the requirements of our research,
we had to segment it to the phone level before using it.
To do that, we used an open source force alignment tool
called the Montreal forced aligner (MFA) [67] for the phone
segmentation task. For the MFA to work, it needs the acoustic
model of the language of the speech. MFA developers have
provided an acoustic model for many languages. They used
the entire LibriSpeech corpus to build the acoustic model of
the English language. Hence, this was one of the reasons for
using the LibriSpeech corpus in our study.

3) KSU ARABIC SPEECH CORPUS

The King Saud University Arabic speech corpus [68] is a
rich Arabic corpus owing to the number of speakers of dif-
ferent genders, ages, and nationalities, as well as the number
of different recording environments and texts. In terms of
gender, the corpus contains the recordings of 269 male and
95 female speakers. In terms of nationalities, speakers are
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TABLE 1. Arabic phonemes and number of occurrences of each phoneme.

Arabic English # of samples Arabic English # of samples
phoneme symbol an oot phoneme symbol e o
il a2 540 341 5 ~Z 57 38
Ll b 157 104 14 ~@ 293 168
& t 194 118 & gh 17 64
& t h 134 89 dazb a 1904 1100
4 ] 30 32 = f 337 205
¢ ~h 211 105 3 q 68 41
4 X 66 43 g k 158 79
L) d 70 48 B s i 547 349
3 ~z 76 65 Jd 1 552 339
5 r 250 155 B m 537 306
J z 92 55 [a] n 585 306
o s 346 195 Y h 377 203
o s h 121 65 30 @ 352 209
ol S 128 73 3 w 143 75
ol D 54 44 gy u2 24 20
iaa u 270 171 “ y 110 80
b T 19 9 el i2 127 73
Total number of phonemes 14413

classified to Saudis, non-Saudi Arabs, and non-Arabs. With
regard to recording environments, the recording was done in
three environments (office, soundproof room, and cafeteria).
Each speaker uttered 16 lists that varied between words, sen-
tences, paragraphs, and spontaneous speech. As we needed
segmented data at the phoneme level, in this study, we used
a subset from the KSU corpus that was segmented at the
phoneme level [69]. The total phonemes in this subset was
14413 with a total duration of recording of about 0.47 h. This
small data size encouraged us to study the effect of transfer
learning between different languages. We used 34 Arabic
phonemes listed in [69]. The Arabic phonemes and the cor-
responding symbols and number of samples in the train and
test sets are represented in Table 1.

B. EVALUATION METRICS

We used two metrics to evaluate our proposed systems. The
first one belongs to the object detection domain, and it called
mean average precision (mAP) which is a significant metric
to measure the accuracy of object detection models. The sec-
ond metric is phone error rate (PER) which belongs to the
speech processing domain to evaluate the automatic speech
recognition systems.

1) AVERAGE PRECISION (AP)

The AP is a universal metric that can be used to evaluate
the performances of different systems, such as information
retrieval systems [70], recommender systems [71], and object
detection systems [72]. The AP is computed from the area
under the precision-recall curve [73]. The precision and recall
for each class are calculated using (1) and (2).

True Positive

Precision = — — (D
True Positive + False Positive

True Positive
Recall = — - 2)
True Positive + False Negative

To classify each predicted bounding box as a true positive,
false positive, and false negative, we need to clarify an impor-
tant term called the intersection over union (IoU), which is
also called a Jaccard index. The IoU is the ratio between
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the area of intersection and the area of union of a ground
truth bounding box and a predicted bounding box [74]. The
algorithm used to calculate TP and FP using the IoU threshold
is presented in [10]. Then, the AP for each class is computed
as the average of the precision values over the interval of
recall between “0” and ““1”° [75]. Then, the mAP is computed
by the average of the AP over all the classes. In this study,
we used the mAPs( term that means the average of the AP,
which is calculated at an IoU threshold of 0.5.

2) PHONE ERROR RATE (PER)

The word error rate is a popular metric in the speech process-
ing field. For phone-level recognition systems, the word error
rate is called a PER [76]. In our experiments, we used the
HResults analysis tool from the HTK toolkit [77] to calculate
PER, which is computed by (3).

H-1

PER = 100 — [ X 100%] 3)
where Nrepresents the number of reference labels, H is the
total number of correct labels, and I represents the number of
insertions. Moreover, we used the correct rate metric for each
phoneme p, which is calculated by (4) [63].

HP
—L % 100% )
N, —D,

p P

Correct rate(%c) =

where H = N — S — D, S represents the number of substitu-
tions, and D is a number of deletions.

C. DATA PREPARATION

The purpose of this phase is to convert the raw wave
utterances to images by using a spectrogram. In our work,
phonemes are considered objects within bounding boxes, and
these bounding boxes are given the corresponding annotation.
While in normal speech processing, phonemes are defined
by their start and end times, and this interval is given the
corresponding annotation. This phase consists of two steps: in
the first step, a 3-channel image is generated from the speech
signal. Next, the annotation files that contain the phonemes
and their respective bounding boxes are created as shown
in Figure 2-a and Figure 2-b.
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1) SPEECH TO IMAGE CONVERSION

Usually, the input of object detectors are images containing
one or more objects with their respective bounding boxes.
To use deep object detectors in the field of speech pro-
cessing, we need to represent speech signals as images and
represent the phonemes as objects within the images with
their bounding boxes. The time-frequency signal representa-
tions, such as spectrograms, are frequently used for speech
processing tasks, as described in [78]-[83]. In this work,
we will generate an image with three channels that are the log
Mel-spectrogram and its derivatives (delta and delta-delta),
as in [84].

We used Librosa [85] to generate the log Mel-spectrograms
from the speech signals. First, the speech signal is divided
into overlapped frames using 256 samples (16 ms) for the
frame length and 64 samples (4 ms) for the frame stride.
The sampling rate of the signal was 16 kHz. We used the
Hanning window [86]. A Fourier Transform of the windowed
signal was calculated; then the power spectrum was calcu-
lated using (5) [86]:

1
PS(k):m|F(k)|2, k=0,1,....,N—1 5)

The power spectrum was passed through a 32 bandpass filter
so that it could be converted to the Mel scale to calcu-
late the Mel-spectrogram. Then, it was converted to the log
scale (decibel unit). The first and second derivatives were
calculated and appended to create a three-channel image
that was visually displayed as an RGB image. Each channel
was normalized to the range (0,1). The final output was an
image with dimension (number of Mels (height)x number
of frames (width)x 3 (channels)), as shown in Figure2-a. For
the TIMIT corpus, the maximum width size of the generated
spectrograms was 1939, and the second one had 1885 frames.
Some detectors require a size that is divisible by 32. Hence,
by zero padding, we padded all channels of images to 1888,
which is the closest number to the average of the two highest
numbers that are divisible by 32. Detectors will resize all
images that have a size greater than 1888. For the Arabic
corpus, we observed that more than 98% of utterances have a
width size less than 512, so we padded all channels of images
to 512.

2) ANNOTATION FILE

In our experiments, we followed the Pascal VOC annotation
format [29, 30]. Once the RGB images are created from the
speech signals, the annotation files are extracted by creating
the bounding boxes of each phoneme. The start and end times
of each phoneme are provided by the phone transcript file,
which is generally supplied with the speech corpora. The
detailed steps of the technique used to create the images
and annotate them is shown in Figure 3. We found the start
and end frames of the phone from the phone transcript files,
the indices of the start and end frames were xmin and xmax
of the bounding box, respectively. We ignore any phoneme
if its width is less than or equal one frame. Given that all
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phones have the same Mel-spectrogram height, we used “0”
and number of Mels for ymin and ymax of the bounding
box coordinates, respectively. Furthermore, the class label of
each phoneme was occupied inside the annotation files as
shown in Figure2-b, where the bounding box was for a silent
phoneme.

The output of this phase is a database that contains ‘‘images
and annotation files,” which is similar to the Pascal VOC and
COCO databases.

D. THE PROPOSED SYSTEMS

We propose three systems, namely DTS, IaTS, and IeTS,
to answer the research questions of this study. In this section,
we give a general overview of the proposed systems.

1) DOMAIN TRANSFER LEARNING SYSTEM (DTS)

In DTS, we used ImageNet pre-trained weights as the initial
weights for the backbone networks. This means that transfer
learning from the image processing task to the speech pro-
cessing task is presented as shown in Figure 4. In the training
phase, the weights of the backbone networks are fine-tuned
by the speech data of the TIMIT corpus in the form of images
of three channels for phoneme recognition. While the weights
of the detection layers are initialized randomly. This system
allows us to evaluate the impact of transfer learning between
the image and speech domains.

2) INTRA-LANGUAGE TRANSFER LEARNING SYSTEM (IaTS)
To overcome the issue of lack of data on the TIMIT corpus,
we proposed a second system that is called 1aTS. We inves-
tigated fine-tuning of the backbone networks using a corpus
that is much larger than TIMIT. We chose a subset of Lib-
riSpeech that is three times larger than TIMIT as explained
in speech corpora section. First, as in the previous system,
the weights of the backbone network were initialized using
ImageNet weights. Then, LibriSpeech was used to train the
backbone network and detection layers. The input was speech
data from the LibriSpeech corpus as 3-channel images, and
the output was the sequence of phonemes. Next, the TIMIT
data were used to fine-tune the system for phoneme recog-
nition, where the input were speech data from the TIMIT
corpus as 3-channel images, and the output was the sequence
of TIMIT phonemes. The pipeline of this system is shown
in Figure 5. This system allows us to demonstrate the per-
formance of intra language transfer learning between two
corpora.

3) INTER-LANGUAGE TRANSFER LEARNING SYSTEM (1eTS)
Finally, the third proposed system in this study is IeTS.
The Arabic speech dataset is very small; hence, it cannot
be used to train the system (backbone and detection layers)
from scratch. To address this, we used the weights of DTS,
which was initialized by ImageNet and fine-tuned by TIMIT.
We selected TIMIT as a source language in this system
because it is a well-known corpus with published results and
verified time labelling at the phoneme level.
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Input: Speech corpus
for each wave file in speech corpus do
Generate log Mel-spectrogram, delta and delta-delta.
Apply Normalization.
Find the time in seconds for all frames frames_time[], using librosa.frames_to_time.
Jor each line in associate phone transcript file do
. find the minimum and maximum time of current phoneme, ¢_min, t_max.
e  Find index of start frame f min by  argmin |frames_times[i] — t_min|
ieframes_time[]

argmin

ieframes_time[]

e  Find index of end frame /" max by |frames_times[i] — t_max|

// Compute object coordinates:
width = f max - { min, height = height of log Mel-spectrogram
Xmin =f min, Xmax = f min + width
Ymin = 0, Ymax = height
o Endif

. End for

. End for
Output: Database similar to PASCAL VOC

FIGURE 3. Data preparation steps.
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FIGURE 4. Pipeline of DTS.
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weights \ (training) using TIMIT
\
\ 7/
Backbone network’s py, 7 Backbone network’s
Weights Speech task -English weights

Detector’s fine-tuning (training)
using a subset of LibriSpeech

FIGURE 5. Pipeline of laTS.

We started from the network weights of DTS. Then,
the system (backbone network and detection layers) was
fine-tuned using the data from Arabic speech for input and
output. We compared the performances of the first two sys-
tems with published results on TIMIT. This cannot be done
for the IeTS system; therefore, we consider as a baseline
a detector system with backbone networks initialized by
ImageNet. The flow diagram of this system is shown in
Figure 6.

For each of the proposed three systems, we investigated
the use of state-of-the-art object detection techniques, namely
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YOLO and CenterNet, with different backbone networks.
In the following sections, the training and testing processes
of all the investigated proposed systems will be discussed.

E. TRAINING YOLO-BASED SYSTEMS

In this section, the adaptation of the YOLO object detec-
tor to phoneme sequence recognition is presented. The
three proposed systems that use the YOLO detector are
DTS-YOLO, IaTS-YOLO, and IeTS-YOLO, as shown in
Figure 7. We investigated the use of two models of the
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Baseline model
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Detector’s fine-
ImageNet pre- tuning (training)
trained weights using Arabic
corpus
N
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Backbone \ 4
network’s \ , 7 Backbone
weights 4 ’ network’s
Speech task - English weights

Detector’s fine-tuning
(training) using
TIMIT

FIGURE 6. Pipeline of 1eTS and its baseline model.

YOLOv3-tiny
Domain transfer learning (DarkNet-Ref.)
- system
(DTS-YOLO) YOLOv3

(Darknet-53)

YOLOv3-tiny
(DarkNet-Ref.)

— Intra language transfer
- learning system
(IaTS-YOLO)

Inter language transfer
L learning system S—

(IeTS-YOLO)

YOLOv3
(Darknet-53)

YOLOv3-tiny
(DarkNet-Ref.)

FIGURE 7. YOLO detector of the three proposed systems.

YOLO detector, which are YOLOvV3 and YOLOV3-tiny (with
three scales). We used DarkNet-53 as the backbone network
for YOLOVvV3, and DarkNet-reference as the backbone net-
work for YOLOv3-tiny. For the last system (IeTS), we inves-
tigated the use of one model, that is, YOLOv3-tiny using a
DarkNet-reference backbone. Figure 7 shows the proposed
systems and the proposed models of each system.

1) BACKGROUND OF YOLO AND BACKBONE NETWORKS
The DarkNet framework is an open source framework devel-
oped by Josep Redmon to train YOLO detectors and perform
other tasks. Darkent is fast, designed to support GPUs and
CPUs, easy to install, and written in C and CUDA [87].
A variant of the DarkNet that was actively developed by Alex-
eyAB’s GitHub fork [88] was used to train YOLO detectors.
As already mentioned, YOLO is a real-time one-stage
object detector. Different versions of YOLO with different
backbone networks exist. The first version was presented
in 2015 and is called YOLOv1[8]. A faster version called Fast
YOLO was proposed and contained a very small backbone
network [8]. Chronologically, the YOLO team introduced a
new version called YOLOV2 [23] by making some improve-
ments on the previous model. These improvements were done
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TABLE 2. YOLO loss function [8], [89].
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Where (%, y, w, h ) represent the center coordinates, width, and height
of the bounding box. B is a number of predicted bounding boxesin
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Where C represents the confidence score of bounding box.
YOLOloss= CL +LL +OL

by increasing the input resolution, using the batch normaliza-
tion for each convolutional layer, and using the Anchor boxes.
Moreover, they proposed YOLO9000 version, which is a real-
time object detection technique for more than 9000 cate-
gories. More details about the improvements are presented
in [23]. Recently, the YOLO team announced a new model
called YOLOV3 as presented in [24] and made more enhance-
ments to increase the accuracy and maintain the detection
performance in real-time as well. They also proposed a deeper
and more accurate backbone network called DarkNet-53,
which has 53 convolutional layers. Compared to the resid-
ual networks, the authors stated that “Darknet-53 is better
than ResNet-101 and 1.5x faster. Darknet-53 has a similar
performance to ResNet-152 and is 2x faster". Furthermore,
they made the prediction through three different scales to
improve the performance of the detection. YOLOvV3 supports
multi-label classification by replacing the softmax by an inde-
pendent logistic classifiers and using binary cross entropy
loss for class predictions. YOLO is optimized in an end-to-
end manner, and the loss consists of three parts as presented
in [8] and explained in [89]. These parts are classification loss
(CL), localization loss (LL), and objectness loss (OL). Hence,
the YOLO loss function is described as a sum of all the three
parts as tabulated in Table 2.

2) YOLO TRAINING FOR DTS (DTS-YOLO)

We started by training the YOLOv3-tiny model for TIMIT
phoneme sequence recognition. YOLOv3-tiny uses a small
backbone network that is called a DarkNet-Reference, which
is pre-trained by ImageNet. DarkNet-Reference is a CNN
with fewer parameters than AlexNet, and on a par with
AlexNet in terms of performance [90]. It has 13 consecutive
convolutional and pooling layers, and achieved 61.1 and
83.0 for Top-1 and Top-5 accuracy on ImageNet, respectively.
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FIGURE 8. Training loss and mAP of YOLOv3-tiny for DTS-YOLO
[ImageNet -> TIMIT].

We followed the same training strategy in the original
paper of YOLO [8], where, as stated by the authors, extensive
data augmentation was used to avoid overfitting. In our case,
we used the same proposed data augmentation process, but
the color, rotation, and flip augmentation functions were
disabled because, after a lot of experiments the detection
accuracy was decreasing rapidly with these augmentations.
This was probably because our pixels are not real color
codes; rather, they are a concatenation of three arrays that
are represented as an RGB image. Furthermore, the rotation
and flip augmentation functions changed the semantic mean-
ing of the spectrogram unlike computer vision which is a
semantic-preservation deformation [91].

We used the following training parameters: 0.001 for the
learning rate, 0.9 for momentum, 0.0005 for decay, 64 for
batch size, and 30,000 for the number of iterations. For the
last 15% iterations, the learning rate was reduced by 10x.
The loss curve of the TIMIT training set and the mAP of the
TIMIT validation set are shown in Figure 8. We achieved an
mAP of 0.65 at IoU = 0.5 after 30,000 iterations as shown on
the left y-axis.

Furthermore, we plotted the log of the YOLO loss on the
right y-axis. The x-axis represents the number of iterations.
We also investigated the DTS-YOLO using the YOLOv3
model with DarkNet-53 for a backbone network. The training
parameters were similar to those used to train YOLOv3-tiny.

We obtained the training loss curve and mAP perfor-
mance shown in Figure 9. This model outperformed the
previous tiny model and achieved nearly 0.75 in terms of
mAP for the TIMIT validation set with a 15.3% improvement
percentage.

3) YOLO TRAINING FOR IATS (I1aTS-YOLO)

We started by training the YOLOv3 and YOLOv3-tiny mod-
els using the LibriSpeech corpus with training parame-
ters similar to those of DTS-YOLO for 20,000 iterations.
Then, we fine-tuned the models using the TIMIT corpus
for another 10,000 iterations. Figure 10 shows the train-
ing loss and mAP for the YOLOv3-tiny. From the figure,
we can see the mAP increased from 0.65 for DTS-YOLO
to around 0.70 for IaTS-YOLO after only 10,000 itera-
tions. This enhancement is due to adding the LibriSpeech
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FIGURE 9. Training loss and mAP of YOLOv3 for DTS-YOLO
[ImageNet -> TIMIT].
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FIGURE 10. Training loss and mAP for YOLOv3-tiny, for 1aST-YOLO
[ImageNet -> LibriSpeech -> TIMIT].
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FIGURE 11. Training loss and mAP of YOLOv3 for 1aTS-YOLO
[ImageNet -> LibriSpeech -> TIMIT].

pre-trained weights to the TIMIT phoneme sequence recog-
nition task.

We repeated the experiment using YOLOv3 with the same
training parameters and same number of iterations for Lib-
riSpeech and TIMIT. The training loss and mAP curve are
presented in Figure 11. The mAP of this model starts at
0.44 and reaches approximately 0.80, which is the best
value achieved. This performance is better than that of the
same model of a previous system (DTS-YOLO), where mAP
started at 0.15 and reached 0.75 after 30,000 iterations as
shown in Figure 9.

This performance indicates the benefit of using transfer
learning between LibriSpeech and TIMIT corpora.
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FIGURE 12. Training loss and mAP for YOLOv3-tiny for 1eTS-YOLO
[ImageNet -> TIMIT -> ARABIC].

4) YOLO TRAINING FOR leTS (leTS-YOLO)

[eTS-YOLO aims to study the effect of transfer learning from
English to Arabic. Our Arabic corpus is small, and its classes
are fewer than those of the TIMIT corpus as we presented in
section III.A.3. Therefore, we investigated the use of only the
tiny model of YOLO from DTS-YOLO for Arabic phoneme
sequence recognition. We transferred the weight of the layers
of the backbone network for DTS-YOLO to this system and
we fine-tuned it using the small Arabic corpus. We used the
training parameters of IaTS-YOLO. The curves of training
loss and mAP are shown in Figure 12. We can clearly see that
we achieved a high mAP of 0.87 after only 10,000 iterations.

F. TRAINING CENTERNET-BASED SYSTEMS

In addition to YOLO, we propose using another cutting
edge and recently published object detector called CenterNet,
which depends on the key points estimation strategy. Hence,
in this phase, we discuss applying the CenterNet detector to
the English and Arabic phoneme sequence recognition task
using the three proposed systems, as for YOLO. We start
this section by giving a brief background of the CenterNet
detector. Then, the training process of the three proposed
systems is presented in Figure 13. We investigated use of the
two backbone networks of CenterNet, namely ResNet-18 and
DLA-34.

1) BACKGROUND

Similar to YOLO, CenterNet is a one-stage detector that
depends on keypoints estimation networks. It does not need
to use prior anchors, as in the case of YOLOv3, and it
does not require post processing after the detection process.
CenterNet is presented in [9]. The authors proved that their
detectors were faster, simpler, more accurate than bounding
box based detectors, and could run in real time. We there-
fore considered it in our research. CenterNet starts to detect
the object from the object center point and regresses the
object size. The middle frames of phonemes are important in
speech processing systems [92]. From the acoustic point of
view, middle frames are more stable than other frames [93].
As CenterNet starts from the object center, it was an excel-
lent candidate to use for phoneme recognition. The authors
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FIGURE 13. CenterNet detector for three proposed systems.

TABLE 3. Centernet loss function [9].
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conducted experiments with four different backbone architec-
tures, ResNet-18, ResNet-101, DLA-34, and Hourglass-104,
which are different from the backbones used with YOLO.

Our choice of backbone network depended on a tradeoff
between accuracy and speed. Thus, we selected, for our
phoneme sequence recognition task, two networks to exam-
ine, the ResNet-18 and the DLA-34.

Residual networks were proposed by He et al. [36] to solve
the difficulties in training deeper neural networks. These
networks won first place in many visual recognition chal-
lenges such as ILSVRC and COCO. Different architectures
were proposed with different numbers of layers, such as
18 layers, 34 layers, 50 layers, 101 layers, and 152 layers.
ResNet has also been used for pose estimation. For this
purpose, up-convolutional layers have been added after the
last convolution stage in ResNet as proposed in [94]. Further-
more, the creators of the CenterNet detector modified ResNet
for pose estimation by adding a deformable convolutional
layer [95] before each up-convolutional layers.
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The other backbone network is called deep layer
aggregation (DLA). DLA was proposed by Yu et al. [37] as an
aggregation technique for fusing representations of network
layers. They proposed two architectures of deep aggregation,
iterative and hierarchal deep aggregation, and applied DLA
networks for classification, dense prediction (e.g. semantic
segmentation), etc. The creators of the CenterNet detector
have used DLA for dense prediction with some adjustments,
including adding extra skip connections and modifying the
up-sampling layers in DLA by replacing convolutional layers
with deformable convolutional layers.

The CenterNet detector depends on the keypoints
estimation.

Therefore, backbone networks are used for generate a
heatmap from the input image, and the center of each objects
is found by the peaks of the heatmap. In our case, image with
size (# frames x #mels x 3) is fed to the backbone network
to produce a keypoints heatmap of size ((# frames/R) x
(#mels/R)x C), where (R = 4) is the output stride mentioned
in the original paper [9], and C is the number of classes
(48 for TIMIT corpus and 34 for Arabic corpus). To train
the keypoints estimation network, the ground truth keypoint
p is transformed to the lower size of the keypoint heatmap
() = |p/R] using a Gaussian kernel as shown in [9].
In addition to the keypoints estimation, CenterNet predicts
the local offset, which is important for overcoming the error
caused by reducing the size of the input image to the size
of a keypoints heatmap. Finally, the size of each object is
predicted by regressing the object size from the center points.
Hence, the CenterNet loss function is a sum of three compo-
nents: keypoints 108s Lieypoinss, 0ffset 10ss Lyger, and object
size loss Lgjz.. The equation of each loss part is presented in
Table 3, which is taken from the original paper [9]. We used
Yofser = 1 and yyize = 0.1 as suggested by the authors.

2) CENTERNET TRAINING FOR DTS (DTS-CENTERNET)

In the training phase, we followed the training process of the
original paper on CenterNet [9] with some modification of the
parameters. We attempted to use the same training parameters
of the YOLO models as much as possible to make a fair
comparison. We disabled the color augmentation as we had
during YOLO training. The models were trained with a batch
size of 16 and for 48 classes for English and 34 classes for
Arabic. We used the following training parameters: number
of epochs = 140, leaning rate = 0.001, and learning reduction
(10x at 90 and 120 epochs). All losses were trained using the
Adam optimizer. FIGURE 14 shows the CenterNet loss in
the training phase for the two models: CenterNet-ResNet and
CenterNet-DLA. We can clearly see that the loss convergence
of the DLA performed better than ResNet.

3) CENTERNET TRAINING FOR IaTS (1aTS-CENTERNET)

In this system, we trained the CenterNet models using a
LibriSpeech corpus for 50 epochs without learning rate
reduction. Then, in the second phase, we fine-tuned the
models using the TIMIT corpus for another 70 epochs with a
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FIGURE 15. Training loss of CenterNet with backbones (ResNet and DLA),
for 1aTS [ImageNet -> LibriSpeech -> TIMIT].

10x learning rate reduction at 45 and 60 epochs.
We used training parameters similar to those used in the
DTS-CenterNet experiment. The training losses of the mod-
els are shown in Figure 15. We can see that the
CenterNet-DLA loss decreased from 2.07 to 0.28 after
70 epochs, showing better convergence compared to the
DTS-CenterNet, which was presented in Figure 14.

4) CENTERNET TRAINING FOR leTS (leTS-CENTERNET)

In this model, we used the CenterNet detector for the Ara-
bic phoneme recognition task. We investigated using only
the DLA backbone network for the CenterNet detector. The
pre-trained weights of the DLA were transferred from the
DTS-CenterNet to this system to examine the effectiveness
of transfer learning between English and Arabic languages.
We used training parameters similar to those of the DTS-
CenterNet. The training loss is shown in Figure 16.

G. TESTING THE PROPOSED SYSTEMS

The input of the testing phase is similar to the input of the
training phase, which is a three-channel image of the speech
signal for each utterance on the test set. The image of the
entire utterance is fed to the trained detectors without any
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FIGURE 16. Training loss of CenterNet using DLA backbone, for l1eTS
[ImageNet -> TIMIT -> ARABIC].

time labelling as shown in Figure 17-a. Figure 17-b shows the
output of the YOLOv3-IaTS system for sentence SX388 of
speaker MTAS1 on the TIMIT core test set (after the
mapping to 39 phonemes). The sequence of phonemes of
the output detectors is written more clearly and shown in
Figure 17-c. The corresponding output of the post processing
is shown in Figure 17-d. The sequence of the phonemes after
post-processing is written in a clearer form and shown in
Figure 17-e. The reference phonemes with their bounding
boxes are shown in Figure 17-f, and they are written in a
clearer form in Figure 17-g.

As we can see from Figure 17-b, the output of the detector
might have an overlap between bounding boxes of different
classes. The overlap might be between bounding boxes of
the same class or bounding boxes of different classes. This
is acceptable in the object detection domain. In the object
detection field, the researchers solve this by accepting an
overlap between bounding boxes of different classes, while
for an overlap between bounding boxes of the same class,
they choose the bounding box with the highest confidence
score using the NMS algorithm [96]. In our case, there should
be no overlap between the bounding boxes of the phonemes,
and phonemes should follow each other. Hence, we apply
NMS and take the bounding box of the highest confidence
score among all classes as shown in Figure 17-d. Then,
the PER is calculated between the reference sequences of
phonemes and the predicted output after post-processing,
without using a language model. The calculated PER is
22% with the post processing step and is 28% without post
processing.

IV. RESULTS AND DISCUSSION

First, we present the performance of the domain trans-
fer learning system (DTS) for TIMIT phoneme sequence
recognition. Then, the performance of intra-language trans-
fer learning (IaST) between LibriSpeech and TIMIT for
the TIMIT phoneme recognition task is presented. Finally,
the performance of inter-language transfer learning (IeTS)
between English and Arabic for Arabic phoneme sequence
recognition task is presented.
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TABLE 4. mAP and PER of DTS using TIMIT core test set.

System Model PER mAPsy(%) Backbone
(%)
DTS-YOLO YOLOv3-tiny 28.25 63.60 DarkNet-
Ref.
YOLOv3 20.2 73.25 DarkNet-53
DTS- CenterNet- 21.09 69.79 ResNet-18
CenterNet ResNet
CenterNet- 19.06 73.41 DLA-34
DLA

A. DOMAIN TRANSFER LEARNING SYSTEM (DTS)

We evaluated YOLO and CenterNet detectors for the
phoneme sequence recognition task using our proposed DTS
system. The performance of the system in this experiment is
presented in Table 4. Four models were evaluated: two with
YOLO detectors, which are presented in the first two rows,
and two models with the CenterNet detectors are shown in the
last two rows. All the models were evaluated using the TIMIT
core test set. From Table 4, we can observe that YOLOv3 and
CenterNet-DLA had almost the same values in terms of mAP.
In terms of PER, CenterNet-DLA outperformed all other
detectors by achieving a PER of 19.06%. The obtained PER
results were 28.25%, 20.2%, 21.09%, and 19.06%, respec-
tively, and the mAP results were 63.60, 73.25, 69.79, and
73.41, respectively, for YOLOv3-tiny, YOLOv3, CenterNet-
ResNet, and CenterNet-DLA. Hence, we can observe that the
mAP is inversely proportional to the PER. Moreover, we can
observe that keypoint-based detectors (i.e., CenterNet) out-
performed the bounding box-based detectors (i.e., YOLO) in
the phoneme sequence recognition task.

B. INTRA-LANGUAGE TRANSFER LEARNING SYSTEM
(IaTs)

The best (lowest) PER in the previous system was 19.06%,
which is higher than those of the best state-of-the-art methods
but comparable to other state-of-the-art methods. This was
encouraging to us, so we investigated whether we could
improve on this by using Intra-language transfer learning
between different English corpora as in the [aTS. The perfor-
mance of the 1aTS is presented in Table 5. We observed that
the PER significantly decreased for the DTS especially for the
YOLOvV3 and CenterNet-DLA models, which achieved PERs
of 16.34% and 15.89%, respectively.

As in the DTS system, the CenterNet-DLA achieved the
best performance with PER = 15.89% (16.6% improvement
from the DTS). This improvement was attributed to the power
of transfer learning between LibriSpeech and the TIMIT
corpora. Because, the YOLO detector depends on prede-
fined anchors, unlike the CenterNet detector, we achieved
the highest mAP using the YOLOvV3 detector, which sug-
gests that bounding box-based detectors can outperform the
keypoint-based detectors in terms of mAP. For our task,
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FIGURE 17. Process of testing phase.

TABLE 5. mAP and PER of 1aTS using TIMIT core test set.

System Model PER(%) mAPso(%) Backbone
1aTS-YOLO YOLOV3-tiny 25.57 68.01 DarkNet-Ref.
YOLOV3 16.34 78.56 DarkNet-53
IaTS- CenterNet- 17.16 73.11 ResNet-18
CenterNet ResNet
CenterNet- 15.89 76.64 DLA-34
DLA

PER is more important than mAP; hence, CenterNet-based
systems have better performances than YOLO-based
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systems. We also observed that PER is inversely proportional
to the mAP but only for the same systems, while in the DTS
system, it was inversely proportional in general, as shown
on Table 5.

The confusion matrix of the 39 phonemes (classes) of the
TIMIT corpus when the system with the best performance,
CenterNet-DLA, is used is presented in Figure 18. We can
clearly see that most of the phonemes were classified cor-
rectly with high confidence. Furthermore, we notice that the
confused phonemes have the same articulatory features. For
example, phoneme /m/ is confused with phoneme /n/, as both
have the same nasal manner, both are anterior and voiced,
and the place of articulation of phoneme /m/ is labial, while
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Confusion Matrix [CenterNet-DLA]

True phoneme
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Predicted phoneme

uh
uw
sil

FIGURE 18. Confusion matrix of TIMIT phonemes using CenterNet-DLA
model of IaTS.

—— YOLOV3-tiny

YOLOV3

CenterNet-DLA

CenterNet-
ResNet

FIGURE 19. Percentage of correctness of each TIMIT phoneme using four
proposed models in laTS.

that of phoneme /n/ is a coronal. Furthermore, phoneme /z/
is confused with phoneme /s/, as both have the same place
of articulation (coronal) and the same fricative classes [97].
Moreover, the confusions between vowels is more than the
other phonemes. For example, phoneme /ih/ is confused with
phonemes /ah/, /eh/, and /iy/. Furthermore, phoneme /uh/ is
highly confused with phoneme /ah/.

The correct rate of each phoneme is calculated for all
four detectors as shown in Figure 19. Most of phonemes
have a correction rate greater than 80%. We can see that
CenterNet-DLA outperforms all other detectors, and when it
is used, more than 50% of the phonemes have a correction
rate greater than 90%.

Using the CenterNet-DLA model, all the phonemes
achieved a correct rate of more than 80%, except /uh/, /eh/,
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TABLE 6. PER comparison between state-of-the-art and proposed IaTS.

Model PER (%)  Year of publication
DNN-based multi-resolution spectrogram 18.25 2018
Quaterni([)igéNN [53] 19.64 2018
Hierarchical CNN [50] 16.5 2015
CNN [49] 20.36 2014
SincNet-Raw waveform [52] 17.2 2018
Attention-Based Model [1] 17.6 2015
LSTM [44] 15.02 2018
FFDNN [98] 18.0 2019
SPEECH-XLNET [99] 133 2019
Convolutional SVM [51] 16.9 2019
PYTORCH-KALDI [56] 13.8 2019
Deep-residual-networks [100] 16.0 2020
Yolov3 (Our) 16.34
CenterNet-DLA (Our) 15.89

/ael, luw/, /th/, /ah/, and fow/. All of these phonemes are vow-
els, except /th/. This observation may open a new direction for
future work to examine different features instead of the Mel
spectrogram to enhance the recognition of vowels.

C. COMPARISON OF PROPOSED IaTS WITH
STATE-OF-THE-ART METHODS

Experiments of TIMIT phone sequence recognition have
been conducted and discussed in previous sections. Now,
we compare the performance of our best proposed models
using our proposed systems with state-of-the-art. Previous
studies on TIMIT phoneme recognition can be grouped into
two categories. The first category used audio files and their
transcripts, at the training and testing phases, without using
the time boundaries of the phones. While the second category
used phone time boundaries at train and test phases. In our
work, we tackled the problem differently, our models required
time boundaries only at the training level, while at the testing
phase, only the audio of the whole utterance is required,
aiming to predict the phonemes and their time boundaries.
Hence, our comparison is with the first category, as presented
in Table 6. We want to mention that most of the first category
methods need a language model to work while our proposed
methods work without a language model.

From Table 6, we notice that our CenterNet-DLA model
performs better than most (75%) of state-of-the-art methods
except three methods. We discuss here the difference between
our models and the best three approaches. Firstly, the DNN
model proposed in the paper [44] achieved 15.02% PER
using LSTM. This was done using a bi-gram language/phone
model for decoding. Pytorch-kaldi toolkit [56] reached 13.8%
PER, which was the best published result for that time in
TIMIT phone recognition task. This result is realized by
a combination of different networks such as Li-GRU and
MLP and combination of different features such as MFCC,
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FBANK, and fMLLR. For decoding, an n-gram language
model was used. Lastly, the best result up to date for TIMIT
phone recognition was reported by Speech-XLNET [99].
Speech-XLNET achieved 13.3% PER on TIMIT core test
set using self-attention network (SAN). Pre-training was
conducted using three large unlabeled corpora namely Lib-
riSpeech, TED-LIUM release2, and WSJ-si284 using four
GPUs (Tesla M40). They used a bigram phone language
model for decoding.

The main goal of our work is investigating the use of object
detection techniques for phoneme recognition task and we
found that it gave an excellent results and outperformed many
state of the art systems. The systems that outperformed our
proposed systems used many features that we did not use.
For example, all of them used language model while in our
case we did not use a language model. Some of them used
combination of different speech features, while we used only
Mel spectrogram and its derivatives. The one with the best
performance used pre-training with a three large corpora.

Likewise, we observe that the proposed YOLOvV3 model
is on a par with most of stat-of-the-art models such as
[50, 51, 100] and outperforms many of cutting edge models
such as [1], [48], [52], [53].

D. INTER-LANGUAGE TRANSFER LEARNING SYSTEM
(1eTs)

We used a subset from the KSU Speech corpus that
researchers have published results on [69]. The authors used
a subset of the KSU corpus that contains utterances from
native and non-native speakers. We compared our results with
the results of the best experiments in [69] (Experiment 5.b).
For training, the authors used 32 native speakers (16 were
time labeled) and 5 time-labeled nonnative speakers. For
testing, they used 11 non-native speakers. In our experiment,
we needed only the time-labelled speakers. For the native
speakers, we found only the data for 15 of the 16 speakers they
used. Hence, in our work, we used only 15 native speakers and
5 nonnative speakers for training (time labeled) and 11 nonna-
tive speakers for testing (non-time labeled). Table 7 shows the
performance of the proposed models with TIMIT pre-trained
weights and the performance of the baselines of the ImageNet
pre-trained weights as defined in section III.D.3.

From Table 7, we can see the our proposed systems
achieved an excellent PER result compared to the traditional
method [69]. Comparing our proposed systems with the base-
lines, the proposed YOLO based system has a slightly better
performance (around 1%) than the YOLO-based baseline
with regards to the PER and an mAP of around 2%. For the
CenterNet-based system, there was not much of a difference
between the results of the proposed system and the corre-
sponding baseline. We cannot argue that there is no effect
by applying transfer learning between dissimilar languages
duo to the small size of test set of an Arabic speech corpus.
The confusion matrix of 34 Arabic phonemes for the best
model, which is a CenterNet-DLA, is presented in Figure 20.
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TABLE 7. mAP and PER for KSU arabic speech corpus.

System Model PER  mAPs, Pre- Backbone
trained
weights
1eTS- YOLOV3-tiny 11.14 85 ImageNet  DarkNet-
YOLO (baseline) Ref
YOLOV3-tiny 10.15 87 DTS- DarkNet-
YOLO Ref
1eTS- CenterNet-DLA 7.66 86.07 ImageNet  DLA-34
CenterNet (baseline)
CenterNet-DLA 7.58 85.71 DTS- DLA-34
CenterNet
HMM [69] 28.8 - - -
Confusion Matrix [CenterNet-DLA]
E
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T

o

@
s's4aoRo
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True phoneme

Sna033 _xc

s

-

~
=

c
N< X ERNC

Predicted phoneme

FIGURE 20. Confusion matrix of Arabic phoneme recognition using the
CenterNet-DLA model of leTS.
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FIGURE 21. Correction rate of Arabic phonemes using the CenterNet-DLA
model.

We notice that confusion occurred with phonemes that have
similar articulatory features. For example, the phone /D/ is
confused with phone /~Z/ and the two phones are emphatic
and voiced and very near in place of articulation. Further-
more, the phone /T/ is confused with phone /t/, as both are
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stops and have the same place of articulation (alveo-dental);
furthermore, both are unvoiced, and while /T/ is emphatic,
/t/ is non-emphatic. Phone /S/ is confused with phone /s/,
as both are fricatives and have the same place of articulation
(alveo-dental); furthermore, both are unvoiced, and while /S/
is emphatic, /s/ is non-emphatic [62].

The correct rate of each phoneme is calculated for the
best model, CenterNet-DLA, and presented in Figure 21. All
phonemes have a correction rate greater than 90%, except
five phonemes, which are /D/, /~Z/, /T/, /S/, and /d/. From
the 34 phonemes, 20 phonemes (58.8%) achieved a correc-
tion rate greater than 95%. This excellent result shows the
effectiveness of our third proposed IeTS system.

V. CONCLUSION

In this study, we proposed and investigated the use of object
detection techniques for phoneme sequence recognition.
We selected two state-of-the art real-time detectors, YOLO
and CenterNet, and adapted them to phone sequence recog-
nition in the English and Arabic languages. To overcome the
scarcity of training data, three systems (DTS, IaTS, and 1eTS)
were proposed using different transfer learning scenarios.
Two evaluation metrics, one from the speech recognition area
and another from the object detection domain, were used
to evaluate the performance of the proposed systems. For
English phoneme recognition, we conducted the experiments
on the TIMIT corpus. The results showed the effectiveness
of using object detection techniques for phoneme sequence
recognition. A comparison of 12 state-of-the-art methods for
TIMIT phone recognition was presented, and our method
outperformed most of those state-of-the-art techniques. For
Arabic phoneme recognition, a subset of the KSU speech
corpus was used. We compared our results with the avail-
able published results. Two models were examined and they
outperformed the published results. From the results of the
proposed systems, we can conclude that object detection
techniques can be applied successfully to speech recognition
tasks, especially to phoneme sequence recognition. Further-
more, transfer learning between corpora within the same lan-
guage or between corpora from different languages improved
the results.

In future work, we will investigate the effect of adding a
language model to the proposed system. We anticipate this
enhancement will produce better results and the resultant
system may outperform state-of-the art methods with the best
published results.
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