Titration Curve of amino acids

Titration curves

 It is a curve that monitors the pH of a solution as amounts of alkali or acid is added.

- Amino acids are *simple* weak polyprotic acids.
 - Neutral amino acids (as alanine, glycine) are treated as diprotic acids.
 - Acidic amino acids (as aspartic or glutamic acid) and Basic amino acids (as lysine histidine, glutamine, and aspargine) are treated as triprotic acids.

Titration curve of Neutral a.a

This curve has two flat zones, at point b and d; meaning it has 2 ionized groups.

• At point a:

- Before titration
- NH⁺₃CHRCOOH
- The net charge = +1

• At point b:

- $Pk_1 = pH$
- Here it has buffering capacity
- $NH_{3}^{+}CHRCOOH = NH_{3}^{+}CHRCOO^{-}$
- The net charge = +0.5

Titration curve of Neutral a.a

• At point c:

- Isoelectric point (pl)
- pI = pH;
- To calculate pl: (pK₁`+pK₂`) \ 2
- $^{\circ}$ NH+₃CHRCOO⁻ a zwitter ion
- The net charge = 0

• At point d:

• $Pk_2 = pH$

- Here it has buffering capacity
- $NH_{3}^{+}CHRCOO^{-} = NH_{2}^{-}CHRCOO^{-}$
- The net charge = -0.5

Titration curve of Neutral a.a

• At point e:

- End of titration
- NH₂CHRCOO⁻
- The net charge = -1

Lysine is a basic amino acid with an extra amino

group in its side chain.

pKa:

- $1^{st} \alpha$ -COOH will be titrated first = 2.18
- $\circ~2^{nd}~\alpha-NH_3{}^+$ will be titrated next = 8.95
- 3^{rd} R-NH₃⁺ will be titrated last = 10.53

At point a:

- Before titration
- \circ NH⁺₃CH(CH₂)₄NH⁺₃COOH
- The net charge = +2

• At point b:

- $Pk_{a1} = pH$
- Here it has buffering capacity
- $NH_{3}^{+}CH(CH_{2})_{4}NH_{3}^{+}COOH = NH_{3}^{+}CH(CH_{2})_{4}NH_{3}^{+}COO^{-}$
- The net charge = $+2 | +1 \rightarrow +1.5$

At point c:

- NH⁺₃CH(CH₂)₄NH⁺₃COO⁻
- All the α -COOH has been titrated.
- The net charge = +1

At point d:

- $Pk_{a2} = pH$
- Here it has buffering capacity
- $NH_{3}^{+}CH(CH_{2})_{4}NH_{3}^{+}COO^{-} =$ $NH_{2}CH(CH_{2})_{4}NH_{3}^{+}COO^{-}$
- The net charge = $+1 \mid 0 \rightarrow +0.5$

• At point g:

- It is the pl point
- $NH_2CH(CH_2)_4NH_3COO^-$
- The net charge = 0
- Ip = pH, $pI = (pKa_2+pKa_3)/2$

• <u>At point e:</u>

- $NH_2(CH_2)_4NH_3COO^- NH_2(CH_2)_4NH_2COO^-$
- The net charge = $0 \mid -1 \rightarrow -0.5$
- $Pk_{a3} = pH$
- Here it has buffering capacity

At point f:

- End of titration
- NH₂(CH₂)₄NH₂COO⁻
- The net charge = -1
- All has been titrated.

Information obtained from a titration curve

1- The number of ionizable groups in that amino acid, can be detected from the number of titration stages in the curve, (or the number of pK_a 's or number of flat zones in the curve).

2- In acidic amino acids: <u>1st</u> α -COOH will be titrated first , <u>2nd</u> R-COOH will be titrated next, <u>3rd</u> α -NH₃⁺ will be titrated last.

3– The pK_a values of the amino acid can be obtained from the curve which is equal to the pH value at the mid-point of each stage.

- 4- The isoelectric point, pl for each amino acid can be obtained from the curve by detecting the point where the amino acid is <u>ALL</u> in the zwitterion form (net charge = 0.0). The pH at that point is the pl.
 > Or it can be obtained mathematically from:
 - $pI = pKa_{1} + pKa_{2}$ (in the case of a neutral amino acid) 2 $pI = pKa_{1} + pKa_{2}$ (in the case of acidic amino acids) 2 $pI = pKa_{2} + pKa_{3}$ (in the case of basic amino acids)

- 3- Whether the triprotic amino acid is basic or acidic, that can be detected from the pKa_2 .
 - If it's value is closer to the value of pKa_1 (that of the α carboxyl group), then it is an acidic amino acid.
 - $^\circ\,$ If it's value is closer to the value of pKa_3 (that of the R-amino group), then it is basic amino acid
- 5- You can also determine from the curve the pH values at which the amino acid can act as a buffer. (the pH ranges
 - ± 1 from the pH value of each midpoint).

How to Obtain a Titration Curves of Amino Acids?

- 1- Calculate the no. of moles of a.a.
- 2- Calculate the first moles of OH^- (at pK_{a1})

A = no. of moles of a.a / pK_{a1}

3- Calculate the second moles of OH^- added (at pK_{a2})

B = No of moles of a.a + A

4- Calculate the third moles of OH^- added (at pK_{a3})

C = No of moles of a.a + B

5- Calculate no. of moles of OH- added (at pl)

<u>Neutral and Acidic a.a \rightarrow (A+B) /2</u>

<u>Basic a.a</u> \rightarrow (B+C)/2

Example 1

Sketch the pH curve for the titration of 100 ml of 0.1M glycine with KOH? pk_{a1} = 1.71, pk_{a2} = 9.6?

No. of moles of $a.a = M \times V$ = 0.1 × 0.1 = 0.01 mole

The first moles of $OH^{-}(at pK_{a1})$:

A = 0.01 / 1.71 = 0.005 moles

The second moles of OH^- added (at pK_{a2}) :

B = 0.01 + 0.005 = 0.015 moles

**PI = $(pk_{a1} + pk_{a2}) / 2 = 5.66$ **

No. of moles of OH^- added (at pl) = (0.005+0.015)/2=0.01 moles

Example 2

Plot the titration curve of aspartic acid it has a volume of 100 ml and 0.1M when titrated with 0.1M KOH? pk_{a1} = 2.09, pk_{a2} = 3.86, pk_{a3} = 9.82?

No. of moles of $a.a = M \times V$ = 0.1 × 0.1 = 0.01 mole The first moles of OH⁻ (at pK_{a1}) :

A = 0.01 / 2.09 = 0.0048 moles

The second moles of OH^- added (at pK_{a2}):

B = 0.01 + 0.0048 = 0.0148 moles

The third moles of OH⁻ added (at pK_{a3}): C = 0.01 + 0.0148 = 0.0248 moles

*PI = $(pk_{a1} + pk_{a2}) / 2 = 2.975**$

Figure 1-8 Titration curve of aspartic acid. For clarity, the vertical axis is not drawn to scale.

No. of moles of OH^- added (at pl) = (0.0048+0.0148)/2=0.0098 moles

Example 3

- Plot the titration curve of lysine which has a volume of 200 ml and 0.3 M when titrated with 0.1M NaOH? pk_{a1} = 2.18, pk_{a2} = 8.95, pk_{a3} =10.35?
- No. of moles of $a.a = M \times V$ = 0.3 × 0.2= 0.06 mole
- The first moles of $OH^{-}(at pK_{a1})$:
- A = 0.06 / 2.18 = 0.027 moles
- The second moles of OH^- added (at pK_{a2}) :
- B = 0.06 + 0.027 = 0.087 moles
- The third moles of OH^- added (at pK_{a3}):
- C = 0.06 + 0.087 = 0.147 moles
- *PI = $(pk_{a2} + pk_{a3}) / 2 = 9.65**$
- No. of moles of OH⁻ added (at pl) = (0.087+0.147)/2=0.117 moles

Figure 1-9 Titration curve of lysine. For clarity, the vertical axis is not drawn to scale.