

# Titration of a strong acid

- When a strong acid is titrated with a strong base the pH at any point is determined solely by the concentration of un-titrated acid or excess base.
- The conjugated base that is formed has no effect on pH.

## Titration of a weak acid

- When a weak acid is titrated with a strong base, the weak acid dissociates to yield a small amount of H<sup>+</sup>.
- Weak acids or bases do not dissociate completely,
   therefore an equilibrium expression with K<sub>a</sub> must be used.

## Titration of a weak acid

 Weak acid dissociates in aqueous solution partially to give a small amount of H<sup>+</sup> ions.

$$HA \longleftrightarrow H^+ + A^-$$

- When OH<sup>-</sup> ions are added during titration it is neutralized by H<sup>+</sup> ions to produce H<sub>2</sub>O.
- The removal of the H<sup>+</sup> ions disturbs the equilibrium thus more HA molecules will ionize to produce H<sup>+</sup> ions to re-establish the equilibrium.

## Titration of a weak acid cont'ed

- This process will continue until all the HA molecules are ionized.
- Thus the no. of moles of HA will be equal to the no. of moles of proton.

# Titration curve of a monoprotic weak acid



# Example

• Calculate the appropriate values and draw the curve for the titration of 500 ml of 0.1 M weak acid HA; with 0.1 M KOH;  $pK_a = 5$ ;  $pK_b = 9$ 

Point a: the pH before the addition of any base

pH = 
$$\frac{1}{2}$$
 ( pK<sub>a</sub> + p [HA])  
pH =  $\frac{1}{2}$  [(5 + (-log 0.1)]  
pH = 3

**NOTE:** at any point during the titration the pH should be calculated using Henderson-Hasselbalch equation.

Point b: the pH after the addition of 100 ml of KOH

$$pH = pK_a + Log - \frac{[A^-]}{[HA]}$$

The no. of moles  $OH^-$  *added* =  $M \times V = 0.1 \times 0.1 = 0.01$  mole

Thus 0.01 moles of KOH will *react* with 0.01 mole of HA to produce 0.01 mole A<sup>-</sup>

The no. of moles of HA *originally* present =  $0.1 \times 0.5$  = 0.05 mole

The no. of HA *remaining* = 0.05 - 0.01 = 0.04 mole *Total* volume = 500 + 100 = 600 ml

$$pH = pK_a + Log$$
  
 $pH = 5 + Log (0.01/0.04)$   
 $pH = 4.4$ 

Point c: the pH after the addition of 250 ml of KOH (half) pH = pK<sub>a</sub> + Log  $\frac{[A^-]}{[HA]}$ 

The no. of moles  $OH^-$  *added* =  $M \times V = 0.1 \times 0.25 = 0.025$  mole

Thus 0.025 moles of KOH will *react* with 0.025 mole of HA to produce 0.25 mole A<sup>-</sup>

The no. of moles of HA remaining = 0.05 - 0.025 = 0.025 mole

$$-\frac{[A^{-}]}{pH = pK_a + Log}$$
  $\frac{[HA]}{pH = 5 + Log (0.025/0.025)}$   
 $pH = 5$ 

#### <u>OR</u>

At this point half the weak acid HA is titrated, since the reaction between HA and KOH is one to one reaction and they both have the same concentration

$$HA + KOH \longleftrightarrow H_2O + KA$$

$$[HA] = [A^-]$$

Monoprotic acid (one proton) that reacts with a base containing one hydroxyl group (one OH<sup>-</sup>)

Ratio = 
$$[A^{-}]/[HA] = 1$$

$$pH = pK_a + Log [A^-]/[HA]$$

$$pH = 5 + Log 1$$

$$pH = 5 + 0 = 5$$

Point d: the pH after the addition of 375 ml of KOH pH = pK<sub>a</sub> + Log  $\frac{[A^-]}{[HA]}$ 

The no. of moles  $OH^-$  *added* =  $M \times V = 0.1 \times 0.375 = 0.0375$  mole

Thus 0.0375 moles of KOH will *react* with 0.0375 mole of HA to produce 0.0375 mole A<sup>-</sup>

The no. of moles of HA remaining = 0.05 - 0.0375 = 0.0125 mole

pH = pK<sub>a</sub> + Log 
$$\frac{[A^-]}{[HA]}$$
  
pH = 5 + Log (0.0375/0.0125)  
pH = 5.48

#### **NOTICE:**

- When the acid is *less* than half titrated the pH is less than pK<sub>a</sub>
- When the acid is half titrated the pH = pK<sub>a</sub>
- When the acid is more than half titrated the pH is greater than pK<sub>a</sub>

Point e: When 500 ml of KOH is added pOH =  $\frac{1}{2}$  (pK<sub>b</sub> + p [A<sup>-</sup>])

The no. of moles  $OH^-$  **added** =  $M \times V = 0.1 \times 0.5 = 0.05$  mole Thus 0.05 moles of KOH will **react** with 0.05 mole of HA to produce 0.05 mole  $A^-$ 

Molarity of  $A^{-}$  = no. of moles / vol. in L The total volume of whole solution = 1000 ml = 1 L

# Molarity of $A^{-}$ = no. of moles / vol. in L Molarity of $A^{-}$ = 0.05 / 1 = 0.05 M

$$K_w = K_a \times K_b$$
  
 $K_b = K_w / K_a = 10^{-14} / 10^{-5} = 10^{-9}$ 

pOH = 
$$\frac{1}{2}$$
 (pK<sub>b</sub> + p [A<sup>-</sup>])  
pOH =  $\frac{1}{2}$  (9 + 1.3)  
pOH = 5.15

$$pK_{w} = pH + pOH$$
  
 $pH = pK_{w} - pOH$   
 $pH = 14 - 5.15 = 8.85$ 

# Titration of a Weak Acid Cont'ed



### Titration of a Weak Acid Cont'ed

- From the previous example:
  - a) All HA is in the form of CH<sub>3</sub>COOH
  - b)  $[CH_3COOH] > [CH_3COO^-]$
  - c)  $[CH_3COOH] = [CH_3COO^-]$
  - d)  $[CH_3COOH] < [CH_3COO^-]$
  - e) All as CH<sub>3</sub>COO<sup>-</sup>

# How to calculated the pH!

- The pH is calculated through different ways:
- At starting point pH= (pKa+p[HA])/2
- $\triangleright$  At any point within the curve (after, in or after middle titration) pH = pKa+ log[A<sup>-</sup>]/[HA]
- At end point pOH =  $(pKb+p[A^{-}])/2$ pH =  $pK_w - pOH$