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PREFACE

The theory and practice of time series analysis have developed rapidly since the appear-
ance in 1970 of the seminal work of George E. P. Box and Gwilym M. Jenkins, Time
Series Analysis: Forecasting and Control, now available in its third edition (1994) with
co-author Gregory C. Reinsel. Many books on time series have appeared since then, but
some of them give too little practical application, while others give too little theoretical
background. This book attempts to present both application, and theory at a level acces-
sible to a wide variety of students and practitioners. Our approach is to mix application
and theory throughout the book as they are naturally needed.

The book was developed for a one-semester course usually attended by students in
statistics, economics, business, engineering, and quantitative social sciences. Basic
applied statistics through multiple linear regression is assumed. Calculus is assumed
only to the extent of minimizing sums of squares, but a calculus-based introduction to
statistics is necessary for a thorough understanding of some of the theory. However,
required facts concerning expectation, variance, covariance, and correlation are
reviewed in appendices. Also, conditional expectation properties and minimum mean
square error prediction are developed in appendices. Actual time series data drawn from
various disciplines are used throughout the book to illustrate the methodology. The book
contains additional topics of a more advanced nature that can be selected for inclusion in
a course if the instructor so chooses.

All of the plots and numerical output displayed in the book have been produced
with the R software, which is available from the R Project for Statistical Computing at
www.r-project.org. Some of the numerical output has been edited for additional clarity
or for simplicity. R is available as free software under the terms of the Free Software
Foundation's GNU General Public License in source code form. It runs on a wide vari-
ety of UNIX platforms and similar systems, Windows, and MacOS.

R is a language and environment for statistical computing and graphics, provides a
wide variety of statistical (e.g., time-series analysis, linear and nonlinear modeling, clas-
sical statistical tests) and graphical techniques, and is highly extensible. The extensive
appendix An Introduction to R, provides an introduction to the R software specially
designed to go with this book. One of the authors (KSC) has produced a large number of
new or enhanced R functions specifically tailored to the methods described in this book.
They are listed on page 468 and are available in the package named TSA on the R
Project’s Website at www.r-project.org. We have also constructed R command script
files for each chapter. These are available for download at www.stat.uiowa.edu/
~kchan/TSA.htm. We also show the required R code beneath nearly every table and
graphical display in the book. The datasets required for the exercises are named in each
exercise by an appropriate filename; for example, larain for the Los Angeles rainfall
data. However, if you are using the TSA package, the datasets are part of the package
and may be accessed through the R command data(larain), for example.

All of the datasets are also available at the textbook website as ACSCII files with
variable names in the first row. We believe that many of the plots and calculations
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described in the book could also be obtained with other software, such as SAS®, Splus©,
Statgraphics®, SCA®, EViews®, RATS®, Ox®, and others.

This book is a second edition of the book Time Series Analysis by Jonathan Cryer,
published in 1986 by PWS-Kent Publishing (Duxbury Press). This new edition contains
nearly all of the well-received original in addition to considerable new material, numer-
ous new datasets, and new exercises. Some of the new topics that are integrated with the
original include unit root tests, extended autocorrelation functions, subset ARIMA mod-
els, and bootstrapping. Completely new chapters cover the topics of time series regres-
sion models, time series models of heteroscedasticity, spectral analysis, and threshold
models. Although the level of difficulty in these new chapters is somewhat higher than
in the more basic material, we believe that the discussion is presented in a way that will
make the material accessible and quite useful to a broad audience of users. Chapter 15,
Threshold Models, is placed last since it is the only chapter that deals with nonlinear
time series models. It could be covered earlier, say after Chapter 12. Also, Chapters 13
and 14 on spectral analysis could be covered after Chapter 10.

We would like to thank John Kimmel, Executive Editor, Statistics, at Springer, for
his continuing interest and guidance during the long preparation of the manuscript. Pro-
fessor Howell Tong of the London School of Economics, Professor Henghsiu Tsai of
Academica Sinica, Taipei, Professor Noelle Samia of Northwestern University, Profes-
sor W. K. Li and Professor Kai W. Ng, both of the University of Hong Kong, and Profes-
sor Nils Christian Stenseth of the University of Oslo kindly read parts of the manuscript,
and Professor Jun Yan used a preliminary version of the text for a class at the University
of Towa. Their constructive comments are greatly appreciated. We would like to thank
Samuel Hao who helped with the exercise solutions and read the appendix: An Introduc-
tion to R. We would also like to thank several anonymous reviewers who read the manu-
script at various stages. Their reviews led to a much improved book. Finally, one of the
authors (JDC) would like to thank Dan, Marian, and Gene for providing such a great
place, Casa de Artes, Club Santiago, Mexico, for working on the first draft of much of
this new edition.

Iowa City, Iowa Jonathan D. Cryer
January 2008 Kung-Sik Chan
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CHAPTER 1

INTRODUCTION

Data obtained from observations collected sequentially over time are extremely com-
mon. In business, we observe weekly interest rates, daily closing stock prices, monthly
price indices, yearly sales figures, and so forth. In meteorology, we observe daily high
and low temperatures, annual precipitation and drought indices, and hourly wind
speeds. In agriculture, we record annual figures for crop and livestock production, soil
erosion, and export sales. In the biological sciences, we observe the electrical activity of
the heart at millisecond intervals. In ecology, we record the abundance of an animal spe-
cies. The list of areas in which time series are studied is virtually endless. The purpose
of time series analysis is generally twofold: to understand or model the stochastic mech-
anism that gives rise to an observed series and to predict or forecast the future values of
a series based on the history of that series and, possibly, other related series or factors.

This chapter will introduce a variety of examples of time series from diverse areas
of application. A somewhat unique feature of time series and their models is that we
usually cannot assume that the observations arise independently from a common popu-
lation (or from populations with different means, for example). Studying models that
incorporate dependence is the key concept in time series analysis.

1.1 Examples of Time Series

In this section, we introduce a number of examples that will be pursued in later chapters.

Annual Rainfall in Los Angeles

Exhibit 1.1 displays a time series plot of the annual rainfall amounts recorded in Los
Angeles, California, over more than 100 years. The plot shows considerable variation in
rainfall amount over the years—some years are low, some high, and many are
in-between in value. The year 1883 was an exceptionally wet year for Los Angeles,
while 1983 was quite dry. For analysis and modeling purposes we are interested in
whether or not consecutive years are related in some way. If so, we might be able to use
one year’s rainfall value to help forecast next year’s rainfall amount. One graphical way
to investigate that question is to pair up consecutive rainfall values and plot the resulting
scatterplot of pairs.

Exhibit 1.2 shows such a scatterplot for rainfall. For example, the point plotted near
the lower right-hand corner shows that the year of extremely high rainfall, 40 inches in
1883, was followed by a middle of the road amount (about 12 inches) in 1884. The point
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near the top of the display shows that the 40 inch year was preceded by a much more
typical year of about 15 inches.

Exhibit 1.1  Time Series Plot of Los Angeles Annual Rainfall
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> library (TSA)
> win.graph(width=4.875, height=2.5,pointsize=8)
> data(larain); plot(larain,ylab='Inches',6 xlab="'Year',6 type='0")

Exhibit 1.2  Scatterplot of LA Rainfall versus Last Year’s LA Rainfall
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> win.graph(width=3,height=3,pointsize=8)
> plot (y=larain,x=zlag(larain),hylab="'Inches',
xlab="'Previous Year Inches')
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The main impression that we obtain from this plot is that there is little if any infor-
mation about this year’s rainfall amount from last year’s amount. The plot shows no
“trends” and no general tendencies. There is little correlation between last year’s rainfall
amount and this year’s amount. From a modeling or forecasting point of view, this is not
a very interesting time series!

An Industrial Chemical Process

As a second example, we consider a time series from an industrial chemical process.
The variable measured here is a color property from consecutive batches in the process.
Exhibit 1.3 shows a time series plot of these color values. Here values that are neighbors
in time tend to be similar in size. It seems that neighbors are related to one another.

Exhibit 1.3 Time Series Plot of Color Property from a Chemical Process

Color Property

Batch

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(color)
> plot (color,ylab="'Color Property',6 xlab='Batch', type='0")

This can be seen better by constructing the scatterplot of neighboring pairs as we
did with the first example.

Exhibit 1.4 displays the scatterplot of the neighboring pairs of color values. We see
a slight upward trend in this plot—Iow values tend to be followed in the next batch by
low values, middle-sized values tend to be followed by middle-sized values, and high
values tend to be followed by high values. The trend is apparent but is not terribly
strong. For example, the correlation in this scatterplot is about 0.6.
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Exhibit 1.4  Scatterplot of Color Value versus Previous Color Value
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> win.graph(width=3,height=3,pointsize=8)
> plot (y=color,x=zlag(color),ylab="'Color Property',
xlab="'Previous Batch Color Property')

Annual Abundance of Canadian Hare

Our third example concerns the annual abundance of Canadian hare. Exhibit 1.5 gives
the time series plot of this abundance over about 30 years. Neighboring values here are
very closely related. Large changes in abundance do not occur from one year to the next.
This neighboring correlation is seen clearly in Exhibit 1.6 where we have plotted abun-
dance versus the previous year’s abundance. As in the previous example, we see an
upward trend in the plot—Ilow values tend to be followed by low values in the next year,
middle-sized values by middle-sized values, and high values by high values.
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Exhibit 1.5 Abundance of Canadian Hare
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> win.graph(width=4.875, height=2.5,pointsize=8)
> data (hare); plot (hare,ylab='Abundance',xlab="'Year', type='0")

Exhibit 1.6 Hare Abundance versus Previous Year’s Hare Abundance

o
o _| o
o o o o
o
o
o o
g 3 °
% o
x| o
5
o
3 _
< v °
o © ° o
e 8 o o o
oo o
o
o - ® o
T T T T T
0 20 40 60 80

Previous Year Abundance

> win.graph (width=3, height=3,pointsize=8)
> plot (y=hare,x=zlag(hare),h ylab='Abundance"',
xlab="'Previous Year Abundance')
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Monthly Average Temperatures in Dubuque, lowa

The average monthly temperatures (in degrees Fahrenheit) over a number of years
recorded in Dubuque, Towa, are shown in Exhibit 1.7.

Exhibit 1.7 Average Monthly Temperatures, Dubuque, lowa
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> win.graph(width=4.875, height=2.5,pointsize=8)
> data (tempdub) ; plot (tempdub,ylab='Temperature',type='0o")

This time series displays a very regular pattern called seasonality. Seasonality for
monthly values occurs when observations twelve months apart are related in some man-
ner or another. All Januarys and Februarys are quite cold but they are similar in value
and different from the temperatures of the warmer months of June, July, and August, for
example. There is still variation among the January values and variation among the June
values. Models for such series must accommodate this variation while preserving the
similarities. Here the reason for the seasonality is well understood—the Northern
Hemisphere’s changing inclination toward the sun.

Monthly Oil Filter Sales

Our last example for this chapter concerns the monthly sales to dealers of a specialty oil
filter for construction equipment manufactured by John Deere. When these data were
first presented to one of the authors, the manager said, “There is no reason to believe
that these sales are seasonal.” Seasonality would be present if January values tended to
be related to other January values, February values tended to be related to other Febru-
ary values, and so forth. The time series plot shown in Exhibit 1.8 is not designed to dis-
play seasonality especially well. Exhibit 1.9 gives the same plot but amended to use
meaningful plotting symbols. In this plot, all January values are plotted with the charac-
ter J, all Februarys with F, all Marches with M, and so forth.” With these plotting sym-
bols, it is much easier to see that sales for the winter months of January and February all
tend to be high, while sales in September, October, November, and December are gener-
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ally quite low. The seasonality in the data is much easier to see from this modified time
series plot.

Exhibit 1.8 Monthly Oil Filter Sales
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> data(oilfilters); plot(oilfilters,type='o',ylab="'Sales')

Exhibit 1.9 Monthly Oil Filter Sales with Special Plotting Symbols
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J=January (and June and July), Time
F=February, M=March (and May), and so forth

> plot (oilfilters,type='1"',ylab="'Sales"')
> points(y=oilfilters,x=time(oilfilters),
pch=as.vector (season(oilfilters)))

TIn reading the plot, you will still have to distinguish between Januarys, Junes, and Julys,
between Marches and Mays, and Aprils and Augusts, but this is easily done by looking at
neighboring plotting characters.
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In general, our goal is to emphasize plotting methods that are appropriate and use-
ful for finding patterns that will lead to suitable models for our time series data. In later
chapters, we will consider several different ways to incorporate seasonality into time
series models.

1.2 A Model-Building Strategy

Finding appropriate models for time series is a nontrivial task. We will develop a multi-
step model-building strategy espoused so well by Box and Jenkins (1976). There are
three main steps in the process, each of which may be used several times:

1. model specification (or identification)
2. model fitting, and
3. model diagnostics

In model specification (or identification), the classes of time series models are
selected that may be appropriate for a given observed series. In this step we look at the
time plot of the series, compute many different statistics from the data, and also apply
any knowledge of the subject matter in which the data arise, such as biology, business,
or ecology. It should be emphasized that the model chosen at this point is fentative and
subject to revision later on in the analysis.

In choosing a model, we shall attempt to adhere to the principle of parsimony; that
is, the model used should require the smallest number of parameters that will adequately
represent the time series. Albert Einstein is quoted in Parzen (1982, p. 68) as remarking
that “everything should be made as simple as possible but not simpler.”

The model will inevitably involve one or more parameters whose values must be
estimated from the observed series. Model fitting consists of finding the best possible
estimates of those unknown parameters within a given model. We shall consider criteria
such as least squares and maximum likelihood for estimation.

Model diagnostics is concerned with assessing the quality of the model that we
have specified and estimated. How well does the model fit the data? Are the assump-
tions of the model reasonably well satisfied? If no inadequacies are found, the modeling
may be assumed to be complete, and the model may be used, for example, to forecast
future values. Otherwise, we choose another model in the light of the inadequacies
found; that is, we return to the model specification step. In this way, we cycle through
the three steps until, ideally, an acceptable model is found.

Because the computations required for each step in model building are intensive,
we shall rely on readily available statistical software to carry out the calculations and do
the plotting.

1.3 Time Series Plots in History

According toTufte (1983, p. 28), “The time-series plot is the most frequently used form
of graphic design. With one dimension marching along to the regular rhythm of sec-
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onds, minutes, hours, days, weeks, months, years, or millennia, the natural ordering of
the time scale gives this design a strength and efficiency of interpretation found in no
other graphic arrangement.”

Exhibit 1.10 reproduces what appears to be the oldest known example of a time
series plot, dating from the tenth (or possibly eleventh) century and showing the inclina-
tions of the planetary orbits. " Commenting on this artifact, Tufte says “It appears as a
mysterious and isolated wonder in the history of data graphics, since the next extant
graphic of a plotted time-series shows up some 800 years later.”

Exhibit 1.10 A Tenth-Century Time Series Plot
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1.4 An Overview of the Book

Chapter 2 develops the basic ideas of mean, covariance, and correlation functions and
ends with the important concept of stationarity. Chapter 3 discusses trend analysis and
investigates how to estimate and check common deterministic trend models, such as
those for linear time trends and seasonal means.

Chapter 4 begins the development of parametric models for stationary time series,
namely the so-called autoregressive moving average (ARMA) models (also known as
Box-Jenkins models). These models are then generalized in Chapter 5 to encompass
certain types of stochastic nonstationary cases—the ARIMA models.

Chapters 6, 7, and 8 form the heart of the model-building strategy for ARIMA mod-
eling. Techniques are presented for tentatively specifying models (Chapter 6), effi-
ciently estimating the model parameters using least squares and maximum likelihood
(Chapter 7), and determining how well the models fit the data (Chapter 8).

Chapter 9 thoroughly develops the theory and methods of minimum mean square
error forecasting for ARIMA models. Chapter 10 extends the ideas of Chapters 4

T From Tufte (1983, p. 28).
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through 9 to stochastic seasonal models. The remaining chapters cover selected topics
and are of a somewhat more advanced nature.

EXERCISES

1.1

1.2

1.3

1.4

1.5

1.6

Use software to produce the time series plot shown in Exhibit 1.2, on page 2. The
data are in the file named larain.”

Produce the time series plot displayed in Exhibit 1.3, on page 3. The data file is
named color.

Simulate a completely random process of length 48 with independent, normal val-
ues. Plot the time series plot. Does it look “random”? Repeat this exercise several
times with a new simulation each time.

Simulate a completely random process of length 48 with independent, chi-square
distributed values, each with 2 degrees of freedom. Display the time series plot.
Does it look “random” and nonnormal? Repeat this exercise several times with a
new simulation each time.

Simulate a completely random process of length 48 with independent, #-distrib-
uted values each with 5 degrees of freedom. Construct the time series plot. Does it
look “random” and nonnormal? Repeat this exercise several times with a new
simulation each time.

Construct a time series plot with monthly plotting symbols for the Dubuque tem-
perature series as in Exhibit 1.9, on page 7. The data are in the file named temp-
dub.

TIf you have installed the R package TSA, available for download at www.r-project.org, the

larain data are accessed by the R command: data(larain). An ASCII file of the data is also
available on the book Website at www.stat.uiowa.edu/~kchan/TSA htm.



CHAPTER 2

FUNDAMENTAL CONCEPTS

This chapter describes the fundamental concepts in the theory of time series models. In
particular, we introduce the concepts of stochastic processes, mean and covariance func-
tions, stationary processes, and autocorrelation functions.

2.1 Time Series and Stochastic Processes

The sequence of random variables {Y;: =0, £1, £2, +3,...} is called a stochastic
process and serves as a model for an observed time series. It is known that the complete
probabilistic structure of such a process is determined by the set of distributions of all
finite collections of the Y’s. Fortunately, we will not have to deal explicitly with these
multivariate distributions. Much of the information in these joint distributions can be
described in terms of means, variances, and covariances. Consequently, we concentrate
our efforts on these first and second moments. (If the joint distributions of the Y’s are
multivariate normal distributions, then the first and second moments completely deter-
mine all the joint distributions.)

2.2 Means, Variances, and Covariances

For a stochastic process {Y,: t =0, £1, £2, £3,...}, the mean function is defined by
u, = E(Y,) fort=0, £1,£2, ... 2.2.1)

That is, 1, is just the expected value of the process at time ¢. In general, p, can be differ-
ent at each time point z.
The autocovariance function, v, , is defined as

v, , = Cov(Y,,Y,) fort,s =0, £1,+2, ... (2.2.2)

where Cov(Y,, ¥) = EL(Y, = p)(Y; — )l = E(Y,Y)) — i .
The autocorrelation function, p, , is given by

p, , = Corr(Y,,Y)) fort, s =0, 1, %2, ... (2.2.3)

where
Cov(Yt,YS) _ Vs (22.4)
JVar(Yt)Var(Ys) «/Vt, Vs

Corr(Y,,Y,) =

11
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We review the basic properties of expectation, variance, covariance, and correlation
in Appendix A on page 24.

Recall that both covariance and correlation are measures of the (linear) dependence
between random variables but that the unitless correlation is somewhat easier to inter-
pret. The following important properties follow from known results and our definitions:

Ve = Var(Y, Pri = 1
Te,s = Vst Prs = Pyt (2.2.5)

s s N

|Y,’ S| < f\lyt, tyx, K |pt, s| <1

Values of p, ; near £1 indicate strong (linear) dependence, whereas values near zero
indicate weak (linear) dependence. If p, ; = 0, we say that Y, and Y| are uncorrelated.

To investigate the covariance properties of various time series models, the follow-
ing result will be used repeatedly: If ¢, ¢,,..., ¢,, and dy, d,, ..., d,, are constants and ¢,
ty,..., t,, and sy, §5,..., 5, are time points, then

m n
Cov Z Cthi’ Z d]YSJ

1 n
= 2 2 cdiCov(Y,, Yy) (2.2.6)
i=1 J= 1 i J

i=1 j=1

The proof of Equation (2.2.6), though tedious, is a straightforward application of
the linear properties of expectation. As a special case, we obtain the well-known result

n n n o i-1
Var z Y, | = z cl-ZVar(Ylv) +2 Z z cichov(Ylv, Y,) 2.2.7)
i=1 ! i=1 ! i=2 j=1 tJ

The Random Walk

Let ey, e5,... be a sequence of independent, identically distributed random variables
each with zero mean and variance csez. The observed time series, {Y,: t=1, 2,...}, is
constructed as follows:

Yy =¢
h=etre (2.2.8)
Y,=e +te,+ +e,
Alternatively, we can write
Y, =Y, _ | +e (2.2.9)

with “initial condition” Y| = e;. If the ¢’s are interpreted as the sizes of the “steps” taken
(forward or backward) along a number line, then Y; is the position of the “random
walker” at time ¢. From Equation (2.2.8), we obtain the mean function
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u, = E(Y,) = E(e;+e,+ - +e,) = E(e)) +E(ey) +--- +E(e,)
=0+0+--+40

so that
n,=0 forall¢ (2.2.10)

We also have
Var(Y,)

Var(e; +e,+ - +e,) = Var(e|) + Var(ey) + -+ + Var(e,)

2 24 ... 2
c,+06,+ +0G,

so that
Var(Y,) = tc? (2.2.11)

Notice that the process variance increases linearly with time.
To investigate the covariance function, suppose that 1 < <s. Then we have

Vis = Cov(Y,,Y) = Cov(ej+ey+ - +e,,e +e,+ - +e,+e, |+ +e)

From Equation (2.2.6), we have

N

t
Vs = Z z Cov(e;, ej)

i=1 j=1

However, these covariances are zero unless i = j, in which case they equal Var(e;) = Gg .
There are exactly 7 of these so thaty, ;= tcez .

Since y; ¢ =y, this specifies the autocovariance function for all time points 7 and s
and we can write

Vs = 16} for 1<t<s (22.12)

The autocorrelation function for the random walk is now easily obtained as

p for 1<t<s (2.2.13)

Yoo f
s N
N

The following numerical values help us understand the behavior of the random

walk.
= [ = 0.707 = 8 = 0.943
P12 = 5 =Y Pg 9 = 9~

24 1
Paas = 55 = 0980 py o5 = «/2% = 0.200

The values of Y at neighboring time points are more and more strongly and posi-
tively correlated as time goes by. On the other hand, the values of Y at distant time
points are less and less correlated.

A simulated random walk is shown in Exhibit 2.1 where the e’s were selected from
a standard normal distribution. Note that even though the theoretical mean function is
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zero for all time points, the fact that the variance increases over time and that the corre-
lation between process values nearby in time is nearly 1 indicate that we should expect
long excursions of the process away from the mean level of zero.

The simple random walk process provides a good model (at least to a first approxi-
mation) for phenomena as diverse as the movement of common stock price, and the
position of small particles suspended in a fluid—so-called Brownian motion.

Exhibit 2.1 Time Series Plot of a Random Walk

Random Walk

I I I I I I I
0 10 20 30 40 50 60

Time

> win.graph(width=4.875, height=2.5,pointsize=8)
> data(rwalk) # rwalk contains a simulated random walk
> plot (rwalk, type='o',ylab="'Random Walk')

A Moving Average
As a second example, suppose that {Y,} is constructed as

e, te,
Y, = — (2.2.14)
where (as always throughout this book) the e’s are assumed to be independent and iden-
tically distributed with zero mean and variance 03. Here

_ e, te _ E(Et)+E(et71)
E(Y,) = E{ > } = 5

My

=0

and
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Var( Yz)

Var{et-'-el_]} _ Var(et)+ Var(et_l)
4

I
e
D
a
[\

Also

e +e e, +e
Cov(Y,Y, ) = Cov{ r o1l t_z}

2 7 2
Cov(e,e, )+ Cov(e,e,_,)+Covie,_,e,_)
4

Cov(el_ s el_z)
+ S ———
4
Cov(e,_1,€,_1) )
= S E— (as all the other covariances are zero)

0.2502

or
Y, ,_ 1 = 02502 for all ¢ (2.2.15)

Furthermore,

Cov(Y, Y, ,)

Cov ete,_| € _rte 3
2 ’ 2

=0 since the e's are independent.

Similarly, Cov(Y;, Y;_;) = 0 for k > 1, so we may write

0.562 forlr—s| =0
Yis =) 02562 for|t—s| =1
0 for |t —s| > 1

For the autocorrelation function, we have

1 forl|t—s/=0
Prs =31 05 forlt—s| =1 (2.2.16)
0 for|t—s|>1

since 0.2562/0.562=0.5.

Notice that py | = p3 2 = P4 3 = Pg g = 0.5. Values of ¥ precisely one time unit apart
have exactly the same correlation no matter where they occur in time. Furthermore, p3 |
= P42 =Py -2 and, more generally, p, ,_ is the same for all values of . This leads us to
the important concept of stationarity.
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2.3 Stationarity

To make statistical inferences about the structure of a stochastic process on the basis of
an observed record of that process, we must usually make some simplifying (and pre-
sumably reasonable) assumptions about that structure. The most important such
assumption is that of stationarity. The basic idea of stationarity is that the probability
laws that govern the behavior of the process do not change over time. In a sense, the pro-
cess is in statistical equilibrium. Specifically, a process {Y,} is said to be strictly sta-
tionary if the joint distribution of Y, I Y, fyrees Y, 0 is the same as the joint distribution of
Yt1 iy Y,2 kreees Ytn _ for all choices of time points 7, t,,..., t,, and all choices of time
lag k.

Thus, when n = 1 the (univariate) distribution of Y, is the same as that of Y, _ ; for
all ¢ and k; in other words, the Y’s are (marginally) identically distributed. It then follows
that E(Y,) = E(Y; _ ;) for all # and k so that the mean function is constant for all time.
Additionally, Var(Y;) = Var(Y, _ ;) for all ¢ and & so that the variance is also constant over
time.

Setting n = 2 in the stationarity definition we see that the bivariate distribution of Y,
and Y, must be the same as that of ¥, _; and Y, _; from which it follows that Cov(Y,, Yy)
=Cov(Y; _, Yy _p) for all ¢, 5, and k. Putting k = s and then k = ¢, we obtain

yt, s Cov(Yt—s’ YO)
Cov(Yy, Y, )
COV(YO, Y|l‘—s|)

= "o, |t

That is, the covariance between Y; and Y depends on time only through the time differ-
ence |t — s| and not otherwise on the actual times ¢ and s. Thus, for a stationary process,
we can simplify our notation and write
Y = Cov(Y,, Y, ;) and prp = Corr(Y, Y, 1) (2.3.1)

Note also that

Tk
Pr = —

Yo

The general properties given in Equation (2.2.5) now become

Yo = Var(Y) pg =1
Yie = Y_k Pr = Pk 2.3.2)
il <70 [

If a process is strictly stationary and has finite variance, then the covariance func-
tion must depend only on the time lag.
A definition that is similar to that of strict stationarity but is mathematically weaker
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is the following: A stochastic process {Y,} is said to be weakly (or second-order)
stationary if

1. The mean function is constant over time, and

2. Yok = Yok for all time ¢ and lag k

In this book the term stationary when used alone will always refer to this weaker form of
stationarity. However, if the joint distributions for the process are all multivariate normal
distributions, it can be shown that the two definitions coincide. For stationary processes,
we usually only consider £ > 0.

White Noise

A very important example of a stationary process is the so-called white noise process,
which is defined as a sequence of independent, identically distributed random variables
{e,}. Its importance stems not from the fact that it is an interesting model itself but from
the fact that many useful processes can be constructed from white noise. The fact that
{e,} is strictly stationary is easy to see since

Pr(et1 <xy, etzﬁxz, e : <x,)

Pr(ell <x, )Pr(et2 < x2)~--Pr(etn <x,) (by independence)

Pr(el1 k<X )Pr(etz_k < xz)"'Pr(eln_k <x,)

(identical distributions)

Pr(e[1 _kSxp et2 kS X s etn _S$x,) (by independence)

as required. Also, p, = E(e,) is constant and

_ Var(e,) fork =0
k 0 for k=0

Alternatively, we can write

: 1 fork = 0 (2.3.3)
Pk= 10 for k#0 o

The term white noise arises from the fact that a frequency analysis of the model shows
that, in analogy with white light, all frequencies enter equally. We usually assume that
the white noise process has mean zero and denote Var(e,) by Gez .

The moving average example, on page 14, where Y, = (e, + e, _ 1)/2, is another
example of a stationary process constructed from white noise. In our new notation, we
have for the moving average process that

1 fork = 0
Py =105 for |k| =1
0 for |k =2
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Random Cosine Wave

As a somewhat different example,Jr consider the process defined as follows:

t

Y, = cos[Zn(l—t2+<Dﬂ fortr = 0, £1,£2, ...

where @ is selected (once) from a uniform distribution on the interval from 0 to 1. A
sample from such a process will appear highly deterministic since Y, will repeat itself
identically every 12 time units and look like a perfect (discrete time) cosine curve. How-
ever, its maximum will not occur at 7 = 0 but will be determined by the random phase ®.
The phase @ can be interpreted as the fraction of a complete cycle completed by time ¢ =
0. Still, the statistical properties of this process can be computed as follows:

E(Y)) = E{cos[Zn(ﬁ+®>]}

= jcos[2n(1—t§ + ¢ﬂd¢
0
= %rsin[Zn(é + H
0=0

= 21n[s1n(2nﬁ + 27:) - s1n(2n12)}

But this is zero since the sines must agree. So p, = 0 for all 7.
Also
Vo5 = E{cos [275(5 + @)}COS[ZE(% + CI))}}

j(l) cos[Zn(l—% + ﬂcos [271(1—% + ﬂdd)
A oo o2
= 1{003[275( H + ——sm[ (t_l‘%:‘ + 2¢)] 1 }

¢=0

1

T This example contains optional material that is not needed in order to understand most of
the remainder of this book. It will be used in Chapter 13, Introduction to Spectral Analysis.
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So the process is stationary with autocorrelation function
k
Py = c€os 2n1— fork = 0, £1, 2, ... (2.3.4)

This example suggests that it will be difficult to assess whether or not stationarity is
a reasonable assumption for a given time series on the basis of the time sequence plot of
the observed data.

The random walk of page 12, where Y,=e te,++e, is also constructed
from white noise but is not stationary. For example, the variance function, Var(Y,) =
tcg , 1S not constant; furthermore, the covariance function Vis = tcg for 0 <t < s does
not depend only on time lag. However, suppose that instead of analyzing {Y;} directly,
we consider the differences of successive Y-values, denoted VY,. Then VY, =Y, - Y, | =
e,, so the differenced series, {VY,}, is stationary. This represents a simple example of a
technique found to be extremely useful in many applications. Clearly, many real time
series cannot be reasonably modeled by stationary processes since they are not in statis-
tical equilibrium but are evolving over time. However, we can frequently transform non-
stationary series into stationary series by simple techniques such as differencing. Such

techniques will be vigorously pursued in the remaining chapters.

2.4 Summary

In this chapter we have introduced the basic concepts of stochastic processes that serve
as models for time series. In particular, you should now be familiar with the important
concepts of mean functions, autocovariance functions, and autocorrelation functions.
We illustrated these concepts with the basic processes: the random walk, white noise, a
simple moving average, and a random cosine wave. Finally, the fundamental concept of
stationarity introduced here will be used throughout the book.

EXERCISES

2.1 Suppose E(X) =2, Var(X) =9, E(Y) =0, Var(Y) =4, and Corr(X,Y) = 0.25. Find:
@) Var(X+Y).
(b) Cov(X, X +Y).
(©) CorrX+Y,X-7Y).

2.2 If X and Y are dependent but Var(X) = Var(Y), find Cov(X + ¥, X - Y).

2.3 Let X have a distribution with mean p and variance 62, and let Y; = X for all 7.
(a) Show that {Y,} is strictly and weakly stationary.
(b) Find the autocovariance function for {Y,}.
(c) Sketch a “typical” time plot of Y.
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2.5

2.6

2.7

2.8

2.9

2.10

Fundamental Concepts

Let {e,} be a zero mean white noise process. Suppose that the observed process is

Y,=e,+ 0e,_ |, where 0 is either 3 or 1/3.

(a) Find the autocorrelation function for {Y;} both when 0 = 3 and when 0 = 1/3.

(b) You should have discovered that the time series is stationary regardless of the
value of 0 and that the autocorrelation functions are the same for 6 =3 and 6 =
1/3. For simplicity, suppose that the process mean is known to be zero and the
variance of Y, is known to be 1. You observe the series {¥;} fort=1,2,...,n
and suppose that you can produce good estimates of the autocorrelations py.
Do you think that you could determine which value of 0 is correct (3 or 1/3)
based on the estimate of p;? Why or why not?

Suppose Y, =5 + 2t + X,, where {X,} is a zero-mean stationary series with autoco-

variance function yy.

(a) Find the mean function for {Y,}.

(b) Find the autocovariance function for {Y,}.

(c) Is {Y;} stationary? Why or why not? {

X, for ¢t odd

X, +3 for ¢ even.

(a) Show that Cov(Y, Y,_,) is free of ¢ for all lags k.

(b) Is {Y,} stationary?

Suppose that {Y;} is stationary with autocovariance function yy.

(a) Show that W,=VY,=Y,—-Y,_ is stationary by finding the mean and autoco-
variance function for { W,}.

(b) Show that U, = V2Y,= V[Y, - Y,_] = Y, - 2Y,_| + Y,_, is stationary. (You need
not find the mean and autocovariance function for {U,}.)

Suppose that {Y,} is stationary with autocovariance function y;. Show that for any

fixed positive integer n and any constants ¢y, ¢s,..., ¢, the process { W,} defined

by W, =cY,+c,Y, | +--+c,Y,_, . Iisstationary. (Note that Exercise

2.7 is a special case of this result.)

Suppose Y; = B + Byt + X, where {X,} is a zero-mean stationary series with auto-

covariance function y; and B and 3; are constants.

(a) Show that {Y,} is not stationary but that W, = VY,=Y,—Y,_ is stationary.

(b) In general, show that if Y, = p, + X, where {X;} is a zero-mean stationary
series and p, is a polynomial in 7 of degree d, then V'Y, = Vvl Y,) is sta-
tionary for m > d and nonstationary for 0 <m < d.

Let {X;} be a zero-mean, unit-variance stationary process with autocorrelation

function py. Suppose that 1, is a nonconstant function and that o, is a positive-val-

ued nonconstant function. The observed series is formed as Y, = ; + 6,X,.

(a) Find the mean and covariance function for the {Y,} process.

(b) Show that the autocorrelation function for the {Y,} process depends only on
the time lag. Is the {Y,} process stationary?

(¢) Is it possible to have a time series with a constant mean and with
Corr(Y,,Y, ) free of t but with {Y;} not stationary?

Let {X,} be a stationary time series, and define ¥, =
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2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

Suppose Cov(X;,X; _ ;) = v is free of ¢ but that E(X,) = 3.

(a) Is {X,} stationary?

(b)Let Y, =7 -3t + X,. Is {Y,} stationary?

Suppose that Y, = e, — ¢,_,. Show that {Y;} is stationary and that, for k > 0, its
autocorrelation function is nonzero only for lag k = 12.

LetY,=e,—0(e, _ 1)2. For this exercise, assume that the white noise series is nor-
mally distributed.

(a) Find the autocorrelation function for {Y;}.

(b) Is {Y,} stationary?

Evaluate the mean and covariance function for each of the following processes. In
each case, determine whether or not the process is stationary.

(a) Yt= 90 +1e;.

(b) W,= VY,, where Y, is as given in part (a).

(¢) Y,=e;e,_ . (You may assume that {e,} is normal white noise.)

Suppose that X is a random variable with zero mean. Define a time series by
Y,=(-1'X.

(a) Find the mean function for {Y,}.

(b) Find the covariance function for {Y;}.

(c) Is {Y;} stationary?

Suppose Y; = A + X,, where {X,} is stationary and A is random but independent of
{X,}. Find the mean and covariance function for {Y;} in terms of the mean and
autocovariance function for {X;} and the mean and variance of A.

Let {Y;} be stationary with autocovariance function y;. Let Y = IZZ?: e
Show that

_ n-1
Var(Y) = ﬁ)_'_% Z (1—1—6)}%
M=

n

Let {Y;} be stationary with autocovariance function y;. Define the sample vari-
ance as S2 = n—iitil(n— Y)2.

. n n — _
(a) First show that Z (Y;—H)2 = Z (YI—Y)2+n(Y—p)2.

t=1 t=1
(b) Use part (a) to show that
_ 2 n=1 k

E(S?) = Ty - —V. =Yy — (—-) :

(¢) E(S7) n_lYo o1 ar(Y) Yo n_lkgl 1 nyk
(Use the results of Exercise 2.17 for the last expression.)

(d) If {Y,} is a white noise process with variance 7y, show that E(SZ) = Yo
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2.19

2.20

2.21

2.22

Fundamental Concepts

Let Y| = 0 + ey, and then for # > 1 define Y, recursively by ¥, =0y + Y,_| + e,.

Here 6 is a constant. The process {Y;} is called a random walk with drift.

(a) Show that ¥, may be rewritten as Y, = teo te,te, |+ te.

(b) Find the mean function for Y,.

(c) Find the autocovariance function for Y.

Consider the standard random walk model where Y, =Y,_ | + ¢, with Y| = ¢;.

(a) Use the representation of Y, above to show that p, = p, _ | for # > 1 with initial
condition p; = E(e;) = 0. Hence show that p, = 0 for all 7.

(b) Similarly, show that Var(Y,) = Var(Y;_ ) + 63 for t > 1 with Var(Y;) = Gez
and hence Var(Y,) = tc2.

(c)ForO0<t<s,use Y=Y, +e¢,|+e€,9+ "+ e toshow that Cov(Y, Y) =
Var(Y,) and, hence, that Cov(Y,, Y;) = min(t, s)c2.

For a random walk with random starting value, let Y, =Yy+te +e, |+ +e

for ¢ > 0, where Y|, has a distribution with mean i and variance 03 . Suppose fur-

ther that Y, ey,..., e, are independent.

(a) Show that E(Y;) = p for all ¢.

(b) Show that Var(Y,) = tcg +68 .

(¢) Show that Cov(Y,, Y,) = min(z, 5)62 +63 .
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Let {e,} be a zero-mean white noise process, and let ¢ be a constant with |c < 1.

Define Y, recursively by Y, =cY,_| + e, with Y| =¢;.

(a) Show that E(Y,) = 0.

(b) Show that Var(Y,) = 62 (1 + ¢ +c* ++- + ¢* ~2). Is {¥,} stationary?

(¢) Show that

(d) Show that Corr(Y,Y,) = for0<r<s.

Var( Y, )
Var(Y,)

Var(Y
Corr(Y,,Y,_}) = ck % for k>0
A} ar
t

Hint: Argue that Y, _ ; is independent of ¢,. Then use
Cov(Y,Y,_)=Cov(cY,_|+e,Y, 1)
(d) For large ¢, argue that

Corr(Y,,Y,_|) =c and, in general,

2
c
Var(Yt)zl_eC2 and Corr(Yt,Yt_k)zck for k>0
so that {Y,} could be called asymptotically stationary. e
(e) Suppose now that we alter the initial condition and put Y| = L Show

that now {Y,} is stationary. 1-¢2
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2.23

2.24

2.25

2.26

2.27

2.28

Two processes {Z,} and {Y;} are said to be independent if for any time points ¢,
ty,..., b, and sy, §5,..., 5, the random variables {Ztl, th, ey Ztm } are independent
of the random variables {YSI’ Y‘vz, . st}. Show that if {Z} and {Y;} are inde-
pendent stationary processes, then W, = Z, + Y, is stationary.

Let {X,} be a time series in which we are interested. However, because the mea-
surement process itself is not perfect, we actually observe Y, = X, + ¢,. We assume
that {X,} and {e,;} are independent processes. We call X, the signal and e, the
measurement noise or error process.

If {X,} is stationary with autocorrelation function p;, show that {Y,} is also sta-
tionary with
Pk

Corr(Y, Y, ;) = ————
N 1+062/62
e X

for k>1

We call 0)2(/ 03 the signal-to-noise ratio, or SNR. Note that the larger the SNR,
the closer the autocorrelation function of the observed process {Y;} is to the auto-
correlation function of the desired signal {X,}.

k
Suppose Y, = By + z [A;cos(2nf;t) + B;sin(2nf;1)], where By, f1, fa,..., [} are

constants and A, Az,l.:,lAk, By, B», ..., B are independent random variables with

zero means and variances Var(A;) = Var(B;) = ciz. Show that {Y,} is stationary

and find its covariance function.

Define the function Fz, = %E[(Yt - YS)Z] . In geostatistics, I',  is called the

semivariogram.

(a) Show that for a stationary process s =v- Vie—s| -

(b) A process is said to be intrinsically stationary if ', ; depends only on the time
difference |t — s|. Show that the random walk process is intrinsically station-
ary.

For a fixed, positive integer r and constant ¢, consider the time series defined by

Y, = e, + e, |+ ¢2"’z—2+ e+ oTe, .

(a) Show that this process is stationary for any value of ¢.

(b) Find the autocorrelation function.

(Random cosine wave extended) Suppose that

Y, = Rcos(2n(ft + D)) fortr = 0,%1,£2, ...
where 0 < f < Y2 is a fixed frequency and R and @ are uncorrelated random vari-
ables and with @ uniformly distributed on the interval (0,1).

(a) Show that E(Y;) = 0 for all ¢. |
(b) Show that the process is stationary with vy, = EE(Rz)cos(ank).

Hint: Use the calculations leading up to Equation (2.3.4), on page 19.
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2.29

2.30

Fundamental Concepts

(Random cosine wave extended further) Suppose that

n
Y, = _ZIR/'COS[ZTEO.CI'[+Q/')] fort = 0,%1, £2, ...
j:

where 0 < f] < f, < --- <f,, < V2 are m fixed frequencies, and R}, @, Ry, O»,...,

R,,, ®,, are uncorrelated random variables with each ®; uniformly distributed on

the interval (0,1).

(a) Show that E(Y,) =0 for all #.

(b) Show that the process is stationary with 7y,
Hint: Do Exercise 2.28 first.

(Mathematical statistics required) Suppose that

Y, = Rcos[2n(ft + ®@)] fort = 0,1, %2, ...

%ng(R})cos(zm; k) .

where R and @ are independent random variables and fis a fixed frequency. The
phase @ is assumed to be uniformly distributed on (0, 1), and the amplitude R has
a Rayleigh distribution with pdf f(r) = re™" */2 for r > 0. Show that for each
time point ¢, ¥, has a normal distribution. (Hint: Let ¥ = Rcos[2n(ft + ®)] and
X = Rsin[2n(ft + ®)]. Now find the joint distribution of X and Y. It can also be
shown that all of the finite dimensional distributions are multivariate normal and
hence the process is strictly stationary.)

Appendix A: Expectation, Variance, Covariance,

and Correlation

In this appendix, we define expectation for continuous random variables. However, all
of the properties described hold for all types of random variables, discrete, continuous,
or otherwise. Let X have probability density function f(x) and let the pair (X,Y) have
joint probability density function f(x,y).

o0
The expected value of X is defined as E(X) = I xf(x)dx .

o0
(If j |x|f(x)dx < o0 ; otherwise E(X) is undefined.) E(X) is also called the expectation
Lo

of X or the mean of X and is often denoted p or py.

Properties of Expectation

o0
If h(x) is a function such that J. |h(x)|f(x)dx < o0, it may be shown that
Lo

ELACOT = | hCoftods

o0 o0
Similarly, if j j |h(xp)|f(x, y)dxdy < o , it may be shown that
oo *oo
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EhxX 0] = [ | h(x y)fe, y)dxdy Q2.A1)

As a corollary to Equation (2.A.1), we easily obtain the important result
E(aX+bY+c) = aE(X)+bE(Y)+c 2.A.2)

We also have

Exyy = [ [ xyfte,y)drdy (2.A3)

The variance of a random variable X is defined as
Var(X) = E{[X-E(X)]?} (2.A.4)

. 2 . . . 2
(provided E(X~) exists). The variance of X is often denoted by “ or 0}2(.

Properties of Variance

Var(X)=0 (2.A5)
Var(a+bX) = b*Var(X) (2.A.6)

If X and Y are independent, then
Var(X+Y) = Var(X) + Var(Y) 2.A.7)

In general, it may be shown that
Var(X) = E(X?)-[E(X)]? (2.A.8)

The positive square root of the variance of X is called the standard deviation of X and
is often denoted by o or 6. The random variable (X — py)/cy is called the standard-
ized version of X. The mean and standard deviation of a standardized variable are
always zero and one, respectively.

The covariance of X and Y is defined as Cov(X, Y) = E[(X - py)(Y —puy)].

Properties of Covariance

Cov(a+bX,c+dY) = bdCov(X,Y) (2.A.9)
Var(X+Y) = Var(X) + Var(Y)+2Cov(X, Y) (2.A.10)
Cov(X+Y,Z) = Cov(X,Z)+ Cov(Y, Z) (2.A.11)
Cov(X, X) = Var(X) (2.A.12)

Cov(X,Y) = Cov(Y, X) (2.A.13)

If X and Y are independent,
Cov(X,Y) =0 (2.A.14)
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The correlation coefficient of X and Y, denoted by Corr(X, Y) or p, is defined as
Cov(X,Y)

JVar(X)Var(Y)

Alternatively, if X* is a standardized X and Y* is a standardized Y, then p = E(X*Y*).

p=Corr(X,Y) =

Properties of Correlation
-1 <Corr(X,Y)< 1 (2.A.15)
Corr(a+bX,c+dY) = sign(bd)Corr(X,Y)
1if bd>0
where sign(bd) = 4 0ifbd = 0
-1if bd<0

(2.A.16)

Corr(X, Y) = £1 if and only if there are constants a and b such that Pr(Y =a + bX) = 1.



CHAPTER 3

TRENDS

In a general time series, the mean function is a totally arbitrary function of time. In a sta-
tionary time series, the mean function must be constant in time. Frequently we need to
take the middle ground and consider mean functions that are relatively simple (but not
constant) functions of time. These trends are considered in this chapter.

3.1 Deterministic Versus Stochastic Trends

“Trends” can be quite elusive. The same time series may be viewed quite differently by
different analysts. The simulated random walk shown in Exhibit 2.1 might be consid-
ered to display a general upward trend. However, we know that the random walk pro-
cess has zero mean for all time. The perceived trend is just an artifact of the strong
positive correlation between the series values at nearby time points and the increasing
variance in the process as time goes by. A second and third simulation of exactly the
same process might well show completely different “trends.” We ask you to produce
some additional simulations in the exercises. Some authors have described such trends
as stochastic trends (see Box, Jenkins, and Reinsel, 1994), although there is no gener-
ally accepted definition of a stochastic trend.

The average monthly temperature series plotted in Exhibit 1.7 on page 6, shows a
cyclical or seasonal trend, but here the reason for the trend is clear—the Northern
Hemisphere’s changing inclination toward the sun. In this case, a possible model might
be Y; = u; + X;, where p, is a deterministic function that is periodic with period 12; that
is 1, should satisfy

W= K for all ¢

‘We might assume that X, the unobserved variation around |, has zero mean for all ¢ so
that indeed p, is the mean function for the observed series Y,. We could describe this
model as having a deterministic trend as opposed to the stochastic trend considered
earlier. In other situations we might hypothesize a deterministic trend that is linear in
time (thatis, p,= g+ B;?) or perhaps a quadratic time trend, p, =g+ B¢+ [32t2. Note
that an implication of the model Y, = p; + X; with E(X,) = 0 for all 7 is that the determin-
istic trend p, applies for all time. Thus, if u, = By + Bz, we are assuming that the same
linear time trend applies forever. We should therefore have good reasons for assuming
such a model—not just because the series looks somewhat linear over the time period
observed.

27
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In this chapter, we consider methods for modeling deterministic trends. Stochastic
trends will be discussed in Chapter 5, and stochastic seasonal models will be discussed
in Chapter 10. Many authors use the word trend only for a slowly changing mean func-
tion, such as a linear time trend, and use the term seasonal component for a mean func-
tion that varies cyclically. We do not find it useful to make such distinctions here.

3.2 Estimation of a Constant Mean

We first consider the simple situation where a constant mean function is assumed. Our
model may then be written as

Y, = u+X, (3.2.1)

where E(X;) = 0 for all . We wish to estimate p with our observed time series Yy, Y5,...,
Y,,. The most common estimate of p is the sample mean or average defined as

Y = Y, (3.2.2)
1

S =
INgE

t

Under the minimal assumptions of Equation (3.2.1), we see that E(Y ) = p; there-
fore Y is an unbiased estimate of . To investigate the precision of ¥ as an estimate of
u, we need to make further assumptions concerning X.

Suppose that {Y,}, (or, equivalently, {X,} of Equation (3.2.1)) is a stationary time
series with autocorrelation function p;. Then, by Exercise 2.17, we have

varry = 1 7S (1-W)p,

Nlk=-n+1

=

_1 2"_1(1 k)
=21+ -z
w22 e

(3.2.3)

-
(=]

Notice that the first factor, yg/n, is the process (population) variance divided by the sam-
ple size—a concept with which we are familiar in simpler random sampling contexts. If
the series {X,} of Equation (3.2.1) is just white noise, then p; = 0 for k > 0 and Var(Y)
reduces to simply yy/n.

In the (stationary) moving average model Y, = ¢; — Y2¢; _ |, we find that p; = 0.4
and p;, = 0 for k > 1. In this case, we have

yﬂl + 2(1 —’1) (—0.4)}
%0[1 —O.S(H; 1)}

For values of n usually occurring in time series (n > 50, say), the factor (n — 1)/n
will be close to 1, so that we have

Var(Y)
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Var(Y) = 0.21{;O

We see that the negative correlation at lag 1 has improved the estimation of the mean
compared with the estimation obtained in the white noise (random sample) situation.
Because the series tends to oscillate back and forth across the mean, the sample mean
obtained is more precise.

On the other hand, if p; > 0 for all k > 1, we see from Equation (3.2.3) that Var(Y)
will be larger than yy/n. Here the positive correlations make estimation of the mean
more difficult than in the white noise case. In general, some correlations will be positive
and some negative, and Equation (3.2.3) must be used to assess the total effect.

For many stationary processes, the autocorrelation function decays quickly enough
with increasing lags that

ki0|p < (3.2.4)

(The random cosine wave of Chapter 2 is an exception.)
Under assumption (3.2.4) and given a large sample size n, the following useful
approximation follows from Equation (3.2.3) (See Anderson, 1971, p. 459, for example)

o0
Var(Y) ~ %) ) ;wpk for large n (3.2.5)

Notice that to this approximation the variance is inversely proportional to the sample
size n.

As an example, suppose that p; = (])‘k' for all k, where ¢ is a number strictly between
—1 and +1. Summing a geometric series yields

= _(1+d)Yo
Var(Y) = -—=— 3.2.6)
(I-¢)n
For a nonstationary process (but with a constant mean), the precision of the sample
mean as an estimate of p can be strikingly different. As a useful example, suppose that
in Equation (3.2.1) {X,} is a random walk process as described in Chapter 2. Then
directly from Equation (2.2.8) we have

Il
|<>—a
S
i
~

Var(Y)
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= nizVar(e1 +2e5+3ey+ -+ ne,)

IQ
[SIENS)

G
=1

k

S

so that
Var(Y) = o2(2n + 11 (3.2.7)
€ 6n
Notice that in this special case the variance of our estimate of the mean actually

increases as the sample size n increases. Clearly this is unacceptable, and we need to
consider other estimation techniques for nonstationary series.

3.3 Regression Methods

The classical statistical method of regression analysis may be readily used to estimate
the parameters of common nonconstant mean trend models. We shall consider the most
useful ones: linear, quadratic, seasonal means, and cosine trends.

Linear and Quadratic Trends in Time

Consider the deterministic time trend expressed as

W, = B+ Byt (3.3.1)

where the slope and intercept, | and B respectively, are unknown parameters. The
classical least squares (or regression) method is to choose as estimates of 3; and B val-
ues that minimize

0By B) = 3 [¥,—(By+B DI
t=1

The solution may be obtained in several ways, for example, by computing the partial
derivatives with respect to both ’s, setting the results equal to zero, and solving the
resulting linear equations for the 3’s. Denoting the solutions by By and (3; , we find that

B ==
z (t—t_)2 (3.3.2)

A

By = v-Bir

where ¢ =(n+ 1)/2is the average of 1, 2,..., n. These formulas can be simplified some-
what, and various versions of the formulas are well-known. However, we assume that
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the computatior}\s will /l\)e done by statistical software and we will not pursue other
expressions for 3 and {3, here.

Example

Consider the random walk process that was shown in Exhibit 2.1. Suppose we (mistak-
enly) treat this as a linear time trend and estimate the slope and intercept by
least-squares regression. Using statistical software we obtain Exhibit 3.1.

Exhibit 3.1 Least Squares Regression Estimates for Linear Time Trend

Estimate Std. Error t value Pr(>|t])
Intercept —1.008 0.2972 -3.39 0.00126
Time 0.1341 0.00848 15.82 < 0.0001

> data (rwalk)
> modell=1m(rwalk~time (rwalk))
> summary (modell)

So here the estimated slope and intercept are 61 =0.1341 and ﬁo =—1.008, respec-
tively. Exhibit 3.2 displays the random walk with the least squares regression trend line
superimposed. We will interpret more of the regression output later in Section 3.5 on
page 40 and see that fitting a line to these data is not appropriate.

Exhibit 3.2 Random Walk with Linear Time Trend

0 10 20 30 40 50 60

Time

> win.graph(width=4.875, height=2.5,pointsize=8)
> plot (rwalk, type='o',ylab="'y")
> abline (modell) # add the fitted least squares line from modell
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Cyclical or Seasonal Trends

Consider now modeling and estimating seasonal trends, such as for the average monthly
temperature data in Exhibit 1.7. Here we assume that the observed series can be repre-
sented as
Y, =p +X,

where E(X;) =0 for all «.

The most general assumption for i, with monthly seasonal data is that there are 12
constants (parameters), B, B,...., and B,, giving the expected average temperature for
each of the 12 months. We may write

B,  forr=1,13,25,..
B,  forr=2,14,26,..

B, (3.3.3)

B,  forr=12,24,36,..

This is sometimes called a seasonal means model.

As an example of this model consider the average monthly temperature data shown
in Exhibit 1.7 on page 6. To fit such a model, we need to set up indicator variables
(sometimes called dummy variables) that indicate the month to which each of the data
points pertains. The procedure for doing this will depend on the particular statistical
software that you use. We also need to note that the model as stated does not contain an
intercept term, and the software will need to know this also. Alternatively, we could use
an intercept and leave out any one of the ’s in Equation (3.3.3).

Exhibit 3.3 displays the results of fitting the seasonal means model to the tempera-
ture data. Here the t-values and Pr(>[t|)-values reported are of little interest since they
relate to testing the null hypotheses that the 3’s are zero—not an interesting hypothesis
in this case.

Exhibit 3.3 Regression Results for the Seasonal Means Model

Estimate  Std. Error t-value Pr(>|t)
January 16.608 0.987 16.8 < 0.0001
February 20.650 0.987 20.9 < 0.0001
March 32.475 0.987 32.9 < 0.0001
April 46.525 0.987 47.1 < 0.0001
May 58.092 0.987 58.9 < 0.0001
June 67.500 0.987 68.4 < 0.0001

July 71.717 0.987 72.7 < 0.0001
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Estimate  Std. Error t-value Pr(>|1)
August 69.333 0.987 70.2 < 0.0001
September 61.025 0.987 61.8 < 0.0001
October 50.975 0.987 51.6 < 0.0001
November 36.650 0.987 37.1 < 0.0001
December 23.642 0.987 24.0 < 0.0001

data (tempdub)

month.=season (tempdub) # period added to improve table display
model2=1m(tempdub~month.-1) # -1 removes the intercept term
summary (model2)

vV V. V V

Exhibit 3.4 shows how the results change when we fit a model with an intercept
term. The software omits the January coefficient in this case. Now the February coeffi-
cient is interpreted as the difference between February and January average tempera-
tures, the March coefficient is the difference between March and January average
temperatures, and so forth. Once more, the ¢-values and Pr(>|t|) (p-values) are testing
hypotheses of little interest in this case. Notice that the Intercept coefficient plus the
February coefficient here equals the February coefficient displayed in Exhibit 3.3.

Exhibit 3.4 Results for Seasonal Means Model with an Intercept

Estimate  Std. Error t-value Pr(>|t)
Intercept 16.608 0.987 16.83 < 0.0001
February 4.042 1.396 2.90 0.00443
March 15.867 1.396 11.37 < 0.0001
April 29917 1.396 21.43 < 0.0001
May 41.483 1.396 29.72 < 0.0001
June 50.892 1.396 36.46 < 0.0001
July 55.108 1.396 39.48 < 0.0001
August 52.725 1.396 37.78 < 0.0001
September 44.417 1.396 31.82 < 0.0001
October 34.367 1.396 24.62 < 0.0001
November 20.042 1.396 14.36 < 0.0001
December 7.033 1.396 5.04 < 0.0001

> model3=1m(tempdub~month.) # January is dropped automatically
> summary (model3)
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Cosine Trends

The seasonal means model for monthly data consists of 12 independent parameters and
does not take the shape of the seasonal trend into account at all. For example, the fact
that the March and April means are quite similar (and different from the June and July
means) is not reflected in the model. In some cases, seasonal trends can be modeled eco-
nomically with cosine curves that incorporate the smooth change expected from one
time period to the next while still preserving the seasonality.

Consider the cosine curve with equation

W, = Beos(2nfi + @) (3.3.4)

We call B (> 0) the amplitude, f the frequency, and @ the phase of the curve. As ¢ varies,
the curve oscillates between a maximum of f and a minimum of —3. Since the curve
repeats itself exactly every 1/f time units, 1/fis called the period of the cosine wave. As
noted in Chapter 2, @ serves to set the arbitrary origin on the time axis. For monthly
data with time indexed as 1, 2,..., the most important frequency is f= 1/12, because such
a cosine wave will repeat itself every 12 months. We say that the period is 12.

Equation (3.3.4) is inconvenient for estimation because the parameters 3 and ® do
not enter the expression linearly. Fortunately, a trigonometric identity is available that
reparameterizes (3.3.4) more conveniently, namely

Beos(2nft + @) = B, cos(2mft) + B,sin(2mft) (3.3.5)
where
B=JBi+B3, @ = atan(-B,/p)) (3.3.6)

and, conversely,
B, = Bcos(®), B, = Bsin(D) (3.3.7)

To estimate the parameters $; and , with regression techniques, we simply use
cos(2nft) and sin(2mft) as regressors or predictor variables.
The simplest such model for the trend would be expressed as

u, = By + Bycos(2nft) + B,sin(2nft) (3.3.8)

Here the constant term, 3, can be meaningfully thought of as a cosine with frequency
ZEero.

In any practical example, we must be careful how we measure time, as our choice
of time measurement will affect the values of the frequencies of interest. For example, if
we have monthly data but use 1, 2, 3,... as our time scale, then 1/12 would be the most
interesting frequency, with a corresponding period of 12 months. However, if we mea-
sure time by year and fractional year, say 1980 for January, 1980.08333 for February of
1980, and so forth, then a frequency of 1 corresponds to an annual or 12 month periodic-
1ty.

Exhibit 3.5 is an example of fitting a cosine curve at the fundamental frequency to
the average monthly temperature series.
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Exhibit 3.5 Cosine Trend Model for Temperature Series

Coefficient Estimate  Std. Error t-value Pr(>|t))
Intercept 46.2660 0.3088 149.82 < 0.0001
cos(2mt) —26.7079 0.4367 —61.15 < 0.0001
sin(2mt) -2.1697 0.4367 —-4.97 <0.0001

> har.=harmonic (tempdub, 1)
> model4=1m(tempdub~har.)
> summary (model4)

In this output, time is measured in years, with 1964 as the starting value and a fre-
quency of 1 per year. A graph of the time series values together with the fitted cosine
curve is shown in Exhibit 3.6. The trend fits the data quite well with the exception of
most of the January values, where the observations are lower than the model would pre-
dict.

Exhibit 3.6 Cosine Trend for the Temperature Series
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win.graph(width=4.875, height=2.5,pointsize=8)

plot (ts(fitted (modeld) , freq=12,start=c(1964,1)),
ylab="'Temperature',6 type="'1",

ylim=range (c (fitted (model4d) , tempdub))); points (tempdub)

# ylim ensures that the y axis range fits the raw data and the
fitted values

\%

\%

\%

Additional cosine functions at other frequencies will frequently be used to model
cyclical trends. For monthly series, the higher harmonic frequencies, such as 2/12 and
3/12, are especially pertinent and will sometimes improve the fit at the expense of add-
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ing more parameters to the model. In fact, it may be shown that any periodic trend with
period 12 may be expressed exactly by the sum of six pairs of cosine-sine functions.
These ideas are discussed in detail in Fourier analysis or spectral analysis. We pursue
these ideas further in Chapters 13 and 14.

3.4 Reliability and Efficiency of Regression Estimates

We assume that the series is represented as Y, = i, + X;, where |, is a deterministic trend
of the kind considered above and {X,} is a zero-mean stationary process with autocova-
riance and autocorrelation functions y; and py, respectively. Ordinary regression esti-
mates parameters in a linear model according to the criterion of least squares regardless
of whether we are fitting linear time trends, seasonal means, cosine curves, or whatever.

We first consider the easiest case—the seasonal means. As mentioned earlier, the
least squares estimates of the seasonal means are just seasonal averages; thus, if we have
N (complete) years of monthly data, we can write the estimate for the mean for the jth
season as

A 1N—1
Bj =N Z Yj+12i
i=0

A —
Since Bj is an average like Y but uses/\only every 12th observation, Equation
(3.2.3) can be easily modified to give Var(Bj). We replace n by N (years) and p; by

P12k to get
A Yo N-1 k .
var(B)) = & 1+2k§1(1—ﬁ)p12k forj=1,2,.., 12 (3.4.1)

We notice that if {X;} is white noise, then Var(ﬁj) reduces to yy/N, asAexpected. Fur-
thermore, if several p; are nonzero but p;,; = 0, then we still have Var(Bj) = y9/N.In
any case, only the seasonal autocorrelations, pj,, P4, P3gs--., enter into Equation
(3.4.1). Since N will rarely be very large (except perhaps for quarterly data), approxima-
tions like those shown in Equation (3.2.5) will usually not be useful.

We turn now to the cosine trends expressed as in Equation (3.3.8). For any fre-
quency of the form f'= m/n, where m /i\s an int/\eger satisfying 1 <m < n/2, explicit expres-
sions are available for the estimates ; and B,, the amplitudes of the cosine and sine:

61 = % i [cos(znnmt) Yt} 62 = ’% i“ [sin(zzmt) Yt} 3.4.2)
= t

=1

(These are effectively the correlations between the time series {Y,} and the cosine and
sine waves with frequency m/n.)

Because these are linear functions of {Y;}, we may evaluate their variances using
Equation (2.2.6). We find
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2 -1
Var(Bl) = o 1+i i“ SZ cos(znnmt) cos(ZTZm) Py (3.4.3)
5§ =

where we have used the fact that z [cos(27:mt/n)]2 = n/2. However, the double
sum in Equat10n (3.4.3) does not, in general reduce further. A similar expression holds
for Var([32) if we replace the cosines by sines.

If {X,} is white noise, we get just 2yy/n. If p; # 0, p; =0 for k> 1, and m/n = 1/12,
then the variance reduces to

2 4p,n-1
Var(Bl) YO 1+ % > cos(%t) cos(mg l) (3.4.4)
t=1

To illustrate the effect of the cosine terms, we have calculated some representative val-
ues:

n var(B)

s (s

o (T

I

g G 20,e0x(3) = (52)cr+ 17320 349

If p; = —0.4, then the large sample multiplier in Equation (3.4.5) is 1+1.732(-0.4) =
0.307 and the variance is reduced by about 70% when compared with the white noise
case.

In some circumstances, seasonal means and cosine trends could be considered as
competing models for a cyclical trend. If the simple cosine model is an adequate model,
how much do we lose if we use the less parsimonious seasonal means model? To
approach this problem, we must first consider how to compare the models. The parame-
ters themselves are not directly comparable, but we can compare the estimates of the
trend at comparable time points.

Consider the two estimates for the trend in January; that is, p;. With seasonal
means, this estimate is just the January average, which has variance given by Equation
(3.4.1). With the cosine trend model, the corresponding estimate is
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BO + 51005(?2) + stmﬁz)

To computg the variancg of this estimate, we need one more fact: With this model, the
estimates [30, Bl, and B2 are uncorrelated.” This follows from the orthogonality rela-
tionships of the cosines and sines involved. See Bloomfield (1976) or Fuller (1996) for
more details. For the cosine model, then, we have

2
var(f) = Var(Bo) + Var(Bl)[cosGZH n Var(ﬁz)[smﬁzﬂ (3.4.6)
For our first comparison, assume that the stochastic component is white noise. Then
the variance of our estimate in the seasonal means model is just yy/N. For the cosine
model, we use Equation (3.4.6), and Equation (3.4.4) and its sine equivalent, to obtain

Var(ﬁl) = Y;{l + 2[003(6)}2 + Z[Sin@)r}
sl
n

since (cos0)Z + (sin)2 = 1. Thus the ratio of the standard deviation in the cosine
model to that in the seasonal means model is

3y0/n _ BN
Yo/ N n

In particular, for the monthly temperature series, we have n = 144 and N = 12; thus, the

ratio is
/—3( 12) =05
144

Thus, in the cosine model, we estimate the January effect with a standard deviation that
is only half as large as it would be if we estimated with a seasonal means model—a sub-
stantial gain. (Of course, this assumes that the cosine trend plus white noise model is the
correct model.)

Suppose now that the stochastic component is such that p; # 0 but p; =0 for k > 1.
With a seasonal means model, the variance of the estimated January effect will be
unchanged (see Equation (3.4.1) on page 36). For the cosine trend model, if we have a
reasonably large sample size, we may use Equation /\(3 4.5), an identical expression for
Var(Bz) and Equation (3.2.3) on page 28 for Var(f3) to obtain

T This assumes that 1/12 is a “Fourier frequency”; that is, it is of the form m/n. Otherwise,
these estimates are only approximately uncorrelated.
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Yo

2n
—n—{l +2p, + 2[1 + 2plcos(ﬁ)]}
Yo (71)
n{3 +2p1[1 + 2cos G ]}

If p; =-0.4, then we have 0.814yy/n, and the ratio of the standard deviation in the cosine
case to the standard deviation in the seasonal means case is

Yo/ N N n

If we take n = 144 and N = 12, the ratio is

0.814(12) _ 196
N 144 '

a very substantial reduction indeed!

‘We now turn to linear tj\me trends. For these trends, an alternative formula to Equa-
tion (3.3.2) on page 30 for B; is more convenient. It can be shown that the least squares
estimate of the slope may be written

V‘”(ﬁ])

n
. z (t-1)Y,
B = =— (3.4.7)
S (1-1)?
t=1
Since the estimate is a linear combination of Y-values, some progress can be made in
evaluating its variance. We have

12y, noso ~ -
3 5 2 Zl(f—t)(s—t)pH (3.4.8)

1+
n(n?-1|  n(n?-1)%5 &

Var(ﬁl) =

where we have used Ztn _(fl— 1)?= n(n?— 1)/12. Again the double sum does not in gen-
eral reduce.

To illustrate the effect of Equation (3.4.8), consider again the case where p; # 0 but
py = 0 for k > 1. Then, after some algebraic manipulation, again involving the sum of
consecutive integers and their squares, Equation (3.4.8) can be reduced to

A 12'}/0 3
Var(B) = —[1+2 (1—-)}
For large n, we can neglect the 3/n term and use

12y,(1 +2p))

Var([/?;l) = n(nz— D

(3.4.9)
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If p; =-0.4, then 1 + 2p; = 0.2, and then the variance of [/3\1 is only 20% of what it
would be if {X,} were white noise. Of course, if p; > 0, then the variance would be
larger than for the white noise case.

We turn now to comparing the least squares estimates with the so-called best linear
unbiased estimates (BLUE) or the generalized least squares (GLS) estimates. If the
stochastic component {X,} is not white noise, estimates of the unknown parameters in
the trend function may be made; they are linear functions of the data, are unbiased, and
have the smallest variances among all such estimates—the so-called BLUE or GLS
estimates. These estimates and their variances can be expressed fairly explicitly by
using certain matrices and their inverses. (Details may be found in Draper and Smith
(1981).) However, constructing these estimates requires complete knowledge of the
covariance function of the stochastic component, a function that is unknown in virtually
all real applications. It is possible to iteratively estimate the covariance function for {X,}
based on a preliminary estimate of the trend. The trend is then estimated again using the
estimated covariance function for {X;} and thus iterated to an approximate BLUE for
the trend. This method will not be pursued here, however.

Fortunately, there are some results based on large sample sizes that support the use
of the simpler least squares estimates for the types of trends that we have considered. In
particular, we have the following result (see Fuller (1996), pp. 476-480, for more
details): We assume that the trend is either a polynomial in time, a trigonometric poly-
nomial, seasonal means, or a linear combination of these. Then, for a very general sta-
tionary stochastic component {X,}, the least squares estimates for the trend have the
same variance as the best linear unbiased estimates for large sample sizes.

Although the simple least squares estimates may be asymptotically efficient, it does
not follow that the estimated standard deviations of the coefficients as printed out by all
regression routines are correct. We shall elaborate on this point in the next section. We
also caution the reader that the result above is restricted to certain kinds of trends and
cannot, in general, be extended to regression on arbitrary predictor variables, such as
other time series. For example, Fuller (1996, pp. 518-522) shows that if Y, = BZ, + X,
where {X,} has a simple stochastic structure but {Z,} is also a stationary series, then the
least squares estimate of 3 can be very inefficient and biased even for large samples.

3.5 Interpreting Regression Output

We have already noted that the standard regression routines calculate least squares esti-
mates of the unknown regression coefficients—the betas. As such, the estimates are rea-
sonable under minimal assumptions on the stochastic component {X,}. However, some
of the properties of the regression output depend heavily on the usual regression
assumption that {X,} is white noise, and some depend on the further assumption that
{X,} is approximately normally distributed. We begin with the items that depend least
on the assumptions.

Consider the regression output shown in Exhibit 3.7. We shall write ﬁt for the esti-
mated trend regardless of the assumed parametric form for p,. For example, for the lin-
ear time trend, we have p, = B + B;¢. For each #, the unobserved stochastic component
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X, can be estimated (predicted) by Y, — ﬁt. If the {X,} process has constant variance,
then we can estimate the standard deviation of X,, namely A/1(70, by the residual stan-
dard deviation

1 1 A
= Y, —[1)2
s ”‘P;;( —H) (3.5.1)

where p is the number of parameters estimated in p, and n — p is the so-called degrees of
freedom for s. The value of s gives an absolute measure of the goodness of fit of the esti-
mated trend—the smaller the value of s, the better the fit. However, a value of s of, say,
60.74 is somewhat difficult to interpret.

A unitless measure of the goodness of fit of the trend is the value of Rz, also called
the coefficient of determination or multiple R-squared. One interpretation of R? is that
it is the square of the sample correlation coefficient between the observed series and the
estimated trend. It is also the fraction of the variation in the series that is explained by
the estimated trend. Exhibit 3.7 is a more complete regression output when fitting the
straight line to the random walk data. This extends what we saw in Exhibit 3.1 on page
31

Exhibit 3.7 Regression Output for Linear Trend Fit of Random Walk

Estimate Std. Error t-value Pr(>|t)
Intercept —1.007888 0.297245 -3.39 0.00126
Time 0.134087 0.008475 15.82 < 0.0001
Residual standard error 1.137 with 58 degrees of freedom
Multiple R-Squared 0.812
Adjusted R-squared 0.809
F-statistic 250.3 with 1 and 58 df; p-value < 0.0001

> modell=1m(rwalk~time (rwalk))
> summary (modell)

According to Exhibit 3.7, about 81% of the variation in the random walk series is
explained by the linear time trend. The adjusted R-squared value is a small adjustment
to R that yields an approximately unbiased estimate based on the number of parameters
estimated in the trend. It is useful for comparing models with different numbers of
parameters. Various formulas for computing R? may be found in any book on regres-
sion, such as Draper and Smith (1981). The standard deviations of the coefficients
labeled Std. Error on the output need to be interpreted carefully. They are appropriate
only when the stochastic component is white noise—the usual regression assumption.
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For example, in Exhibit 3.7 the value 1.137 is obtained from the square root of the value
given by Equation (3.4.8) when p; = 0 for £ > 0 and with vy, estimated by 52, that is, to

within rounding,
2
0.008475 = [12(L.137)°
60(602-1)

The important point is that these standard deviations assume a white noise stochastic
component that will rarely be true for time series.

The t-values or #-ratios shown in Exhibit 3.7 are just the estimated regression coef-
ficients, each divided by their respective standard errors. If the stochastic component is
normally distributed white noise, then these ratios provide appropriate test statistics for
checking the significance of the regression coefficients. In each case, the null hypothesis
is that the corresponding unknown regression coefficient is zero. The significance levels
and p-values are determined from the 7-distribution with n — p degrees of freedom.

3.6 Residual Analysis

As we have already noted, the unobserved stochastic component {X,} can be estimated,
or predicted, by the residual

A A
Xt = Yt—p.t 3.6.1)

Predicted is really a better term. We reserve the term estimate for the guess of an
unknown parameter and the term predictor for an estimate of an unobserved random
variable. We call X the residual corresponding to the 7th observation. If the trend model
is reasonably correct, then the residuals should behave roughly like the true stochastic
component, and various assumptions about the stochastic component can be assessed by
looking at the residuals. If the stochastic component is white noise, then the residuals
should behave roughly like independent (normal) random variables with zero mean and
standard deviation s. Since a least squares fit of any trend containing a constant term
automaticall;;\ produces residuals with a zero mean, we might consider standardizing the
residuals as X /8- However, most statistics software will produce standardized residuals
using a more complicated standard error in the denominator that takes into account the
specific regression model being fit.

With the residuals or standardized residuals in hand, the next step is to examine var-
ious residual plots. We first look at the plot of the residuals over time. If the data are
possibly seasonal, we should use plotting symbols as we did in Exhibit 1.9 on page 7, so
that residuals associated with the same season can be identified easily.

We will use the monthly average temperature series which we fitted with seasonal
means as our first example to illustrate some of the ideas of residual analysis. Exhibit
1.7 on page 6 shows the time series plot of that series. Exhibit 3.8 shows a time series
plot for the standardized residuals of the monthly temperature data fitted by seasonal
means. If the stochastic component is white noise and the trend is adequately modeled,
we would expect such a plot to suggest a rectangular scatter with no discernible trends
whatsoever. There are no striking departures from randomness apparent in this display.
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Exhibit 3.9 repeats the time series plot but now with seasonal plotting symbols. Again
there are no apparent patterns relating to different months of the year.

Exhibit 3.8 Residuals versus Time for Temperature Seasonal Means
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Standardized Residuals

Time

> plot (y=rstudent (model3) ,x=as.vector (time (tempdub) ),
xlab="'Time',ylab="Standardized Residuals®,type="0")

Exhibit 3.9 Residuals versus Time with Seasonal Plotting Symbols
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Standardized Residuals

Time

> plot (y=rstudent (model3) ,x=as.vector (time (tempdub) ) ,h xlab="'Time',

> ylab='Standardized Residuals', type='1l")

> points (y=rstudent (model3) , x=as.vector (time (tempdub)),
pch=as.vector (season (tempdub) ) )
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Next we look at the standardized residuals versus the corresponding trend estimate,
or fitted value, as in Exhibit 3.10. Once more we are looking for patterns. Are small
residuals associated with small fitted trend values and large residuals with large fitted
trend values? Is there less variation for residuals associated with certain sized fitted
trend values or more variation with other fitted trend values? There is somewhat more
variation for the March residuals and less for November, but Exhibit 3.10 certainly does
not indicate any dramatic patterns that would cause us to doubt the seasonal means
model.

Exhibit 3.10 Standardized Residuals versus Fitted Values for the
Temperature Seasonal Means Model
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Fitted Trend Values

> plot (y=rstudent (model3) ,x=as.vector (fitted (model3)),
xlab='Fitted Trend Values',

> ylab='Standardized Residuals', type='n"')

> points (y=rstudent (model3) ,x=as.vector (fitted (model3)),
pch=as.vector (season (tempdub) ) )

Gross nonnormality can be assessed by plotting a histogram of the residuals or stan-
dardized residuals. Exhibit 3.11 displays a frequency histogram of the standardized
residuals from the seasonal means model for the temperature series. The plot is some-
what symmetric and tails off at both the high and low ends as a normal distribution does.
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Exhibit 3.11 Histogram of Standardized Residuals from Seasonal

Means Model
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Standardized Residuals

> hist (rstudent (model3) ,xlab='Standardized Residuals')

Normality can be checked more carefully by plotting the so-called normal scores or
quantile-quantile (QQ) plot. Such a plot displays the quantiles of the data versus the the-
oretical quantiles of a normal distribution. With normally distributed data, the QQ plot
looks approximately like a straight line. Exhibit 3.12 shows the QQ normal scores plot
for the standardized residuals from the seasonal means model for the temperature series.
The straight-line pattern here supports the assumption of a normally distributed stochas-
tic component in this model.

Exhibit 3.12 Q-Q Plot: Standardized Residuals of Seasonal Means Model
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> win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm (rstudent (model3))
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An excellent test of normality is known as the Shapiro-Wilk test. It essentially cal-
culates the correlation between the residuals and the corresponding normal quantiles.
The lower this correlation, the more evidence we have against normality. Applying that
test to these residuals gives a test statistic of W = 0.9929 with a p-value of 0.6954. We
cannot reject the null hypothesis that the stochastic component of this model is normally
distributed.

Independence in the stochastic component can be tested in several ways. The runs
test examines the residuals in sequence to look for patterns—patterns that would give
evidence against independence. Runs above or below their median are counted. A small
number of runs would indicate that neighboring residuals are positively dependent and
tend to “hang together” over time. On the other hand, too many runs would indicate that
the residuals oscillate back and forth across their median. Then neighboring residuals
are negatively dependent. So either too few or too many runs lead us to reject indepen-
dence. Performing a runs test’ on these residuals produces the following values:
observed runs = 65, expected runs = 72.875, which leads to a p-value of 0.216 and we
cannot reject independence of the stochastic component in this seasonal means model.

The Sample Autocorrelation Function

Another very important diagnostic tool for examining dependence is the sample auto-
correlation function. Consider any sequence of data Yy, Y5,..., ¥,,—whether residuals,
standardized residuals, original data, or some transformation of data. Tentatively assum-
ing stationarity, we would like to estimate the autocorrelation function py, for a variety of
lags k =1, 2,.... The obvious way to do this is to compute the sample correlation
between the pairs k units apart in time. That is, among (Y, Y| 1 1), (Y2, Y5 4 1),
(Y3, Y34 )s.... and (Y, _4, Y,)). However, we modify this slightly, taking into account
that we are assuming stationarity, which implies a common mean and variance for the
series. With this in mind, we define the sample autocorrelation function, r;, at lag k as

S (Y, -YV)(Y,_;-Y)
= r=k+1 - — fork=1,2,.. (3.6.2)
> (¥,-Y)?

t=1

Notice that we used the “grand mean,” Y, in all places and have also divided by the
“grand sum of squares” rather than the product of the two separate standard deviations
used in the ordinary correlation coefficient. We also note that the denominator is a sum
of n squared terms while the numerator contains only n — k cross products. For a variety
of reasons, this has become the standard definition for the sample autocorrelation func-
tion. A plot of r; versus lag k is often called a correlogram.

i Royston, P. (1982) “An Extension of Shapiro and Wilk’s W Test for Normality to Large
Samples.” Applied Statistics, 31, 115-124.
R code: runs (rstudent (model3))
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In our present context, we are interested in discovering possible dependence in the
stochastic component; therefore the sample autocorrelation function for the standard-
ized residuals is of interest. Exhibit 3.13 displays the sample autocorrelation for the
standardized residuals from the seasonal means model of the temperature series. All val-
ues are within the horizontal dashed lines, which are placed at zero plus and minus two
approximate standard errors of the sample autocorrelations, namely +2/,/n. The values
of r; are, of course, estimates of p;. As such, they have their own sampling distributions,
standard errors, and other properties. For now we shall use r;, as a descriptive tool and
defer discussion of those topics until Chapters 6 and 8. According to Exhibit 3.13, for k
=1, 2,..., 21, none of the hypotheses p; = 0 can be rejected at the usual significance lev-
els, and it is reasonable to infer that the stochastic component of the series is white
noise.

Exhibit 3.13 Sample Autocorrelation of Residuals of Seasonal Means

Model
o J N U
= -
0
o 4
S
[T
g T ‘ T ‘ ‘ | ‘ T ‘ |
0
o
S
|
0
S oo o s s i D DD DD oo o ————-o------
[ [ [ [ [ [ [ [ [ [
2 4 6 8 10 12 14 16 18 20

Lag

> win.graph(width=4.875,height=3,pointsize=8)
> acf (rstudent (model3))

As a second example consider the standardized residuals from fitting a straight line
to the random walk time series. Recall Exhibit 3.2 on page 31, which shows the data and
fitted line. A time series plot of the standardized residuals is shown in Exhibit 3.14.
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Exhibit 3.14 Residuals from Straight Line Fit of the Random Walk

Standardized Residuals

Time

> plot (y=rstudent (modell) ,x=as.vector (time (rwalk)),
ylab='Standardized Residuals', xlab='Time', type='0")

In this plot, the residuals “hang together” too much for white noise—the plot is too
smooth. Furthermore, there seems to be more variation in the last third of the series than
in the first two-thirds. Exhibit 3.15 shows a similar effect with larger residuals associ-
ated with larger fitted values.

Exhibit 3.15 Residuals versus Fitted Values from Straight Line Fit
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Fitted Trend Line Values

> win.graph(width=4.875, height=3,pointsize=8)
> plot (y=rstudent (modell) ,x=fitted (modell),
ylab="'Standardized Residuals',xlab='Fitted Trend Line Values',

type='p')
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The sample autocorrelation function of the standardized residuals, shown in Exhibit
3.16, confirms the smoothness of the time series plot that we observed in Exhibit 3.14.
The lag 1 and lag 2 autocorrelations exceed two standard errors above zero and the lag 5
and lag 6 autocorrelations more than two standard errors below zero. This is not what
we expect from a white noise process.

Exhibit 3.16 Sample Autocorrelation of Residuals from Straight Line
Model
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Lag

> acf (rstudent (modell))

Finally, we return to the annual rainfall in Los Angeles shown in Exhibit 1.1 on
page 2. We found no evidence of dependence in that series, but we now look for evi-
dence against normality. Exhibit 3.17 displays the normal quantile-quantile plot for that
series. We see considerable curvature in the plot. A line passing through the first and
third normal quartiles helps point out the departure from a straight line in the plot.
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Exhibit 3.17 Quantile-Quantile Plot of Los Angeles Annual Rainfall Series
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> win.graph(width=2.5,height=2.5,pointsize=8)
> gqgnorm(larain); ggline(larain)

3.7 Summary

This chapter is concerned with describing, modeling, and estimating deterministic
trends in time series. The simplest deterministic “trend” is a constant-mean function.
Methods of estimating a constant mean were given but, more importantly, assessment of
the accuracy of the estimates under various conditions was considered. Regression
methods were then pursued to estimate trends that are linear or quadratic in time. Meth-
ods for modeling cyclical or seasonal trends came next, and the reliability and efficiency
of all of these regression methods were investigated. The final section began our study
of residual analysis to investigate the quality of the fitted model. This section also intro-
duced the important sample autocorrelation function, which we will revisit throughout
the remainder of the book.

EXERCISES

3.1  Verify Equation (3.3.2) on page 30, for the least squares estimates of B and of 3;
when the model Y, = B + 17 + X, is considered.

3.2 Suppose Y, =pn+e,—e¢, 4. Find Var( Y) . Note any unusual results. In particular,
compare your answer to what would have been obtained if ¥, = p + e,. (Hint: You
may avoid Equation (3.2.3) on page 28 by first doing some algebraic simplifica-

tion on Z?z 1(et— e,_1))
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3.3

34

3.5

3.6

3.7

Suppose Y; = p + ¢, + ¢,_1. Find Var( )_/). Compare your answer to what would
have been obtained if ¥, = p + ¢,. Describe the effect that the autocorrelation in
{Y,} has on Var(Y).

The data file hours contains monthly values of the average hours worked per

week in the U.S. manufacturing sector for July 1982 through June 1987.

(a) Display and interpret the time series plot for these data.

(b) Now construct a time series plot that uses separate plotting symbols for the
various months. Does your interpretation change from that in part (a)?

The data file wages contains monthly values of the average hourly wages (in dol-

lars) for workers in the U.S. apparel and textile products industry for July 1981

through June 1987.

(a) Display and interpret the time series plot for these data.

(b) Use least squares to fit a linear time trend to this time series. Interpret the
regression output. Save the standardized residuals from the fit for further anal-
ysis.

(¢) Construct and interpret the time series plot of the standardized residuals from
part (b).

(d) Use least squares to fit a quadratic time trend to the wages time series. Inter-
pret the regression output. Save the standardized residuals from the fit for fur-
ther analysis.

(e) Construct and interpret the time series plot of the standardized residuals from
part (d).

The data file beersales contains monthly U.S. beer sales (in millions of barrels)

for the period January 1975 through December 1990.

(a) Display and interpret the plot the time series plot for these data.

(b) Now construct a time series plot that uses separate plotting symbols for the
various months. Does your interpretation change from that in part (a)?

(¢) Use least squares to fit a seasonal-means trend to this time series. Interpret the
regression output. Save the standardized residuals from the fit for further anal-
ysis.

(d) Construct and interpret the time series plot of the standardized residuals from
part (c). Be sure to use proper plotting symbols to check on seasonality in the
standardized residuals.

(e) Use least squares to fit a seasonal-means plus quadratic time trend to the beer
sales time series. Interpret the regression output. Save the standardized residu-
als from the fit for further analysis.

(f) Construct and interpret the time series plot of the standardized residuals from
part (e). Again use proper plotting symbols to check for any remaining sea-
sonality in the residuals.

The data file winnebago contains monthly unit sales of recreational vehicles from

Winnebago, Inc., from November 1966 through February 1972.

(a) Display and interpret the time series plot for these data.

(b) Use least squares to fit a line to these data. Interpret the regression output. Plot
the standardized residuals from the fit as a time series. Interpret the plot.

(c) Now take natural logarithms of the monthly sales figures and display and
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interpret the time series plot of the transformed values.

(d) Use least squares to fit a line to the logged data. Display and interpret the time
series plot of the standardized residuals from this fit.

(e) Now use least squares to fit a seasonal-means plus linear time trend to the
logged sales time series and save the standardized residuals for further analy-
sis. Check the statistical significance of each of the regression coefficients in
the model.

(f) Display the time series plot of the standardized residuals obtained in part (e).
Interpret the plot.

The data file retail lists total U.K. (United Kingdom) retail sales (in billions of

pounds) from January 1986 through March 2007. The data are not “seasonally

adjusted,” and year 2000 = 100 is the base year.

(a) Display and interpret the time series plot for these data. Be sure to use plotting
symbols that permit you to look for seasonality.

(b) Use least squares to fit a seasonal-means plus linear time trend to this time
series. Interpret the regression output and save the standardized residuals from
the fit for further analysis.

(¢) Construct and interpret the time series plot of the standardized residuals from
part (b). Be sure to use proper plotting symbols to check on seasonality.

The data file prescrip gives monthly U.S. prescription costs for the months

August 1986 to March 1992. These data are from the State of New Jersey’s Pre-

scription Drug Program and are the cost per prescription claim.

(a) Display and interpret the time series plot for these data. Use plotting symbols
that permit you to look for seasonality.

(b) Calculate and plot the sequence of month-to-month percentage changes in the
prescription costs. Again, use plotting symbols that permit you to look for sea-
sonality.

(c) Use least squares to fit a cosine trend with fundamental frequency 1/12 to the
percentage change series. Interpret the regression output. Save the standard-
ized residuals.

(d) Plot the sequence of standardized residuals to investigate the adequacy of the
cosine trend model. Interpret the plot.

(Continuation of Exercise 3.4) Consider the hours time series again.

(a) Use least squares to fit a quadratic trend to these data. Interpret the regression
output and save the standardized residuals for further analysis.

(b) Display a sequence plot of the standardized residuals and interpret. Use
monthly plotting symbols so that possible seasonality may be readily identi-
fied.

(¢) Perform the Runs test of the standardized residuals and interpret the results.

(d) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(e) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.
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3.12

3.13

3.14

3.15

(Continuation of Exercise 3.5) Return to the wages series.

(a) Consider the residuals from a least squares fit of a quadratic time trend.

(b) Perform a runs test on the standardized residuals and interpret the results.

(¢) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(d) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.

(Continuation of Exercise 3.6) Consider the time series in the data file beersales.

(a) Obtain the residuals from the least squares fit of the seasonal-means plus qua-
dratic time trend model.

(b) Perform a runs test on the standardized residuals and interpret the results.

(¢) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(d) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.

(Continuation of Exercise 3.7) Return to the winnebago time series.

(a) Calculate the least squares residuals from a seasonal-means plus linear time
trend model on the logarithms of the sales time series.

(b) Perform a runs test on the standardized residuals and interpret the results.

(¢) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(d) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.

(Continuation of Exercise 3.8) The data file retail contains U.K. monthly retail

sales figures.

(a) Obtain the least squares residuals from a seasonal-means plus linear time
trend model.

(b) Perform a runs test on the standardized residuals and interpret the results.

(¢) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(d) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.

(Continuation of Exercise 3.9) Consider again the prescrip time series.

(a) Save the standardized residuals from a least squares fit of a cosine trend with
fundamental frequency 1/12 to the percentage change time series.

(b) Perform a runs test on the standardized residuals and interpret the results.

(¢) Calculate and interpret the sample autocorrelations for the standardized resid-
uals.

(d) Investigate the normality of the standardized residuals (error terms). Consider
histograms and normal probability plots. Interpret the plots.
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3.16 Suppose that a stationary time series, {Y,}, has an autocorrelation function of the

form p; = ¢k for k > 0, where ¢ is a constant in the range (—1,+1).
N
(a) Show that Var(Y) = Yo[l +¢ 2¢(1-¢ )]
1-¢ n(- ¢)2

(Hint: Use Equation (3.2.3) on page 28, the finite geometric sum

< _ 1= <|>" Lopak—1 = d| < 4k
, and the related sum kd = — of 1)
S-S & a2

(b) If n is large, argue that Var(Y) = —[Hﬂ
(c) Plot (1 +¢)/(1—¢) for ¢ over the range —1 to +1. Interpret the plot in terms
of the precision in estimating the process mean.

3.17 Verify Equation (3.2.6) on page 29. (Hint: You will need the fact that

z¢k= Tl“q) for —1 < <+1.)

k=0

3.18 Verify Equation (3.2.7) on page 30. (Hint: You will need the two sums

i =n(n+1) and itzzwéﬂt}_).)

r=1



CHAPTER 4

MODELS FOR STATIONARY TIME SERIES

This chapter discusses the basic concepts of a broad class of parametric time series
models—the autoregressive moving average (ARMA) models. These models have
assumed great importance in modeling real-world processes.

4.1 General Linear Processes

We will always let {Y;} denote the observed time series. From here on we will also let
{e,} represent an unobserved white noise series, that is, a sequence of identically distrib-
uted, zero-mean, independent random variables. For much of our work, the assumption
of independence could be replaced by the weaker assumption that the {e;} are uncorre-
lated random variables, but we will not pursue that slight generality.

A general linear process, {Y,}, is one that can be represented as a weighted linear
combination of present and past white noise terms as

Y, = e +wve,_1+vye, o+ - 4.1.1)

If the right-hand side of this expression is truly an infinite series, then certain conditions
must be placed on the y-weights for the right-hand side to be meaningful mathemati-
cally. For our purposes, it suffices to assume that

0
3 yZ<o 4.1.2)
i=1

We should also note that since {e,} is unobservable, there is no loss in the generality of
Equation (4.1.2) if we assume that the coefficient on ¢, is 1; effectively, y, = 1.
An important nontrivial example to which we will return often is the case where the
y’s form an exponentially decaying sequence
= ¢/
V; o
where ¢ is a number strictly between —1 and +1. Then

— 2
Y, = e[+d)et_1 +¢ € ot

For this example,
E(Y)) = E(et+(|)et_1+d)2et_2+~--) =0

55
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so that {Y,} has a constant mean of zero. Also,

Var(Y,) = Var(e,+¢e, |+ %, ,+ )

Var(e,) + ¢2Var(et7 D+ ¢4Var(et72) + ...

G2(1+¢2+¢*+-)

2
O

e (by summing a geometric series)

Furthermore,

Cov(Y,Y, ;) = Cov(e,+de, |+ ¢2et_2 +e e, the, o+ ¢zet_3 + )
COV((I)e;_p e,_ 1) + Cov(¢zet_2, (I)et_z) + .-
¢63+ (1)303 + (I)5c562 + o

oo (1+¢7+¢%+ )

2
c
) ;2 (again summing a geometric series)
Thus
¢G€2 03
comte i = L——¢2 / 1-¢? = ¢
¢kc2
In a similar manner, we can find Cov(Yt, Y,_ k) = ¢82
1—
and thus
Corr(Y, ¥, _y) = ¢f 4.13)

It is important to note that the process defined in this way is stationary—the autoco-
variance structure depends only on time lag and not on absolute time. For a general lin-
ear process, ¥, = e, +y e, | +Wy,e, 5+ .-, calculations similar to those done above
yield the following results:

M

E(Y) =0 e = Cov(Y, Y, ) = o

1

VWi k>0 “4.1.4)
0

with yy=1. A process with a nonzero mean pu may be obtained by adding p to the
right-hand side of Equation (4.1.1). Since the mean does not affect the covariance prop-
erties of a process, we assume a zero mean until we begin fitting models to data.
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4.2 Moving Average Processes

In the case where only a finite number of the y-weights are nonzero, we have what is
called a moving average process. In this case, we change notation somewhat and write

Y, = e[—elet_l—ezel_z—~~—9qet_q “4.2.1)

We call such a series a moving average of order g and abbreviate the name to MA(g).
The terminology moving average arises from the fact that Y; is obtained by applying the
weights 1, -0, =0,,..., =6, to the variables e, ¢; _1, ¢; _5,..., ¢, _, and then moving the
weights and applying them to ¢, , |, €, ¢, _y,..., €, _, 4 | to obtain ¥, and so on. Mov-
ing average models were first considered by Slutsky (1927) and Wold (1938).

The First-Order Moving Average Process

We consider in detail the simple but nevertheless important moving average process of
order 1, that is, the MA(1) series. Rather than specialize the formulas in Equation
(4.1.4), it is instructive to rederive the results. The model is ¥, = e, - Ge,_ | - Since
only one O is involved, we drop the redundant subscript 1. Clearly E(Y,)= 0

andVar(Y,) = o2(1+62). Now
Cov(Y,Y, ;) = Cov(e,—0e,_|,e,_|—0e¢,_,)

Cov(-0e,_1,e,_1) = —903

and
Cov(Y, Y, ,) = Cov(e,~0e,_|,e,_,—0e,_3)
=0
since there are no e’s with subscripts in common between Y; and Y, _,. Similarly,
Cov(Y, Y, ;) = 0 whenever k > 2; that is, the process has no correlation beyond lag

1. This fact will be important later when we need to choose suitable models for real
data.

In summary, for an MA(1) model ¥, = e¢,-0e¢,_,
E(Y) =0
Yo = Var(Y) = 03(1 +92)
7, = —0c2 (4.2.2)
py = (-0)/(1+062)
Yy =P =0 fork=2

T The reason for this change will be evident later on. Some statistical software, for example
R, uses plus signs before the thetas. Check with yours to see which convention it uses.
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Some numerical values for p; versus 0 in Equation (4.2.2) help illustrate the possi-
bilities. Note that the p; values for negative 0 can be obtained by simply negating the
value given for the corresponding positive 6-value.

0 p; = -0/(1+0%) 0 py = -0/(1+06%)
0.1 -0.099 0.6 -0.441
0.2 -0.192 0.7 -0.470
0.3 -0.275 0.8 —0.488
0.4 —0.345 0.9 -0.497
0.5 —-0.400 1.0 —-0.500

A calculus argument shows that the largest value that p; can attain is p; = ¥2 when
0 = —1 and the smallest value is p; = —%2, which occurs when 6 = +1 (see Exercise 4.3).
Exhibit 4.1 displays a graph of the lag 1 autocorrelation values for 6 ranging from —1 to
+1.

Exhibit 4.1 Lag 1 Autocorrelation of an MA(1) Process for Different 6

0.4

0.2

0.0

-0.2
]

-0.8 -04 0.0 0.4 0.8

0

Exercise 4.4 asks you to show that when any nonzero value of 0 is replaced by 1/0,
the same value for p is obtained. For example, p; is the same for 6 = %2 as for 0 = 1/(}2)
= 2. If we knew that an MA(1) process had p; = 0.4, we still could not tell the precise
value of 6. We will return to this troublesome point when we discuss invertibility in
Section 4.5 on page 79.

Exhibit 4.2 shows a time plot of a simulated MA(1) series with 6 = —-0.9 and nor-
mally distributed white noise. Recall from Exhibit 4.1 that p; = 0.4972 for this model;
thus there is moderately strong positive correlation at lag 1. This correlation is evident
in the plot of the series since consecutive observations tend to be closely related. If an
observation is above the mean level of the series, then the next observation also tends to
be above the mean. The plot is relatively smooth over time, with only occasional large
fluctuations.
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Exhibit 4.2 Time Plot of an MA(1) Process with 6 = -0.9
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Time

> win.graph(width=4.875,height=3,pointsize=8)
> data(mal.2.s); plot(mal.2.s,ylab=expression(Y[t]),6 type='0")

The lag 1 autocorrelation is even more apparent in Exhibit 4.3, which plots Y, ver-
sus Y,_;. Note the moderately strong upward trend in this plot.

Exhibit 4.3 Plot of Y; versus Y, _4 for MA(1) Series in Exhibit 4.2

o - o o
o o
N o o o
0%00000 [¢)
& o °
— o
o 00008% N o
O O oo o® ©
o - Oo@%oo
- 0® o )
> o OGOOQC@8 o
T o R om 0 0%
o o

° ® -8

q i e 09 o
8
o
™
[ °o
o

Yiq

> win.graph(width=3,height=3,pointsize=8)
> plot (y=mal.2.s,x=zlag(mal.2.s),ylab=expression(Y[t]),
xlab=expression (Y [t-1]),type="p"')
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The plot of Y, versus Y, _, in Exhibit 4.4 gives a strong visualization of the zero
autocorrelation at lag 2 for this model.

Exhibit 4.4 Plot of Y; versus Y, _, for MA(1) Series in Exhibit 4.2
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> plot (y=mal.2.s,x=zlag(mal.2.s,2),ylab=expression(Y[t]),
xlab=expression (Y [t-2]),type="p")

A somewhat different series is shown in Exhibit 4.5. This is a simulated MA(1)
series with © = +0.9. Recall from Exhibit 4.1 that p; = —0.497 for this model; thus there
is moderately strong negative correlation at lag 1. This correlation can be seen in the
plot of the series since consecutive observations tend to be on opposite sides of the zero
mean. If an observation is above the mean level of the series, then the next observation
tends to be below the mean. The plot is quite jagged over time—especially when com-
pared with the plot in Exhibit 4.2.
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Exhibit 4.5 Time Plot of an MA(1) Process with 0 = +0.9
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> win.graph(width=4.875,height=3,pointsize=8)
> data(mal.l.s)
> plot(mal.l.s,ylab=expression(Y[t]), type='0")

The negative lag 1 autocorrelation is even more apparent in the lag plot of Exhibit
4.6.

Exhibit 4.6 Plot of Y, versus Y;_ 4 for MA(1) Series in Exhibit 4.5
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> win.graph(width=3, height=3,pointsize=8)
> plot (y=mal.l.s,x=zlag(mal.l.s),ylab=expression(Y[t]),
xlab=expression (Y [t-1]),type="p")
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The plot of Y, versus Y, _, in Exhibit 4.7 displays the zero autocorrelation at lag 2
for this model.

Exhibit 4.7 Plot of Y, versus Y; , for MA(1) Series in Exhibit 4.5
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> plot (y=mal.l.s,x=zlag(mal.l.s,2),ylab=expression(Y[t]),
xlab=expression(Y[t-2]),type="p")

MA(1) processes have no autocorrelation beyond lag 1, but by increasing the order
of the process, we can obtain higher-order correlations.
The Second-Order Moving Average Process
Consider the moving average process of order 2:
Y, =e,=01e,_1-05¢,_,

Here

Yo

Var(Y,) = Var(e,—0,e,_;-05e, ,) = (1+9%+6%)63

vy = Cov(Y, Y, ) = Cov(e,—0 e, | —0ye, 5,¢, | —0je, ,—05e, 3)

Cov(-0¢e,_1,e,_1)+Cov(-b,e, ,,-b5e, ,)
= [0, +(=0,)(-0,)]?
=(-0,+ 9162)63

and
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vy = Cov(Y, Y, ) = Covle,—01e, 1 -0, 5,6, ,=01¢,_3-05¢,_4)

Cov(-0,5e,_5,€,_5)
= 0,07

Thus, for an MA(2) process,

-0,+0,0,
P = 102102

1+07+0;5
- -0, 4.2.3)
> 1+02+62

p =0 fork=3,4,.
For the specific case ¥, = e¢,~¢,_| +0.6¢,_,, we have

b, = —LrC06) _ -L6 _ e

1+(1)24(-0.6)2 236

and

0.6
= == = 0254
P2 = 336
A time plot of a simulation of this MA(2) process is shown in Exhibit 4.8. The
series tends to move back and forth across the mean in one time unit. This reflects the

fairly strong negative autocorrelation at lag 1.

Exhibit 4.8 Time Plot of an MA(2) Process with 64 =1 and 0, = -0.6
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> win.graph(width=4.875, height=3,pointsize=8)
> data(ma2.s); plot(ma2.s,ylab=expression(Y[t]),type='0")
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The plot in Exhibit 4.9 reflects that negative autocorrelation quite dramatically.

Exhibit 4.9 Plot of Y, versus Y, _ 4 for MA(2) Series in Exhibit 4.8
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> win.graph(width=3,height=3,pointsize=8)
> plot (y=ma2.s,x=zlag(ma2.s),ylab=expression(Y[t]),
xlab=expression (Y [t-1]),type="p")

The weak positive autocorrelation at lag 2 is displayed in Exhibit 4.10.

Exhibit 4.10 Plot of Y, versus Y;_, for MA(2) Series in Exhibit 4.8
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> plot (y=ma2.s,x=zlag(ma2.s,2),ylab=expression(Y[t]),
xlab=expression (Y [t-2]),type="p")
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Finally, the lack of autocorrelation at lag 3 is apparent from the scatterplot in
Exhibit 4.11.

Exhibit 4.11 Plot of Y; versus Y, _ 3 for MA(2) Series in Exhibit 4.8
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> plot (y=ma2.s,x=zlag(ma2.s,3),ylab=expression(Y[t]),
xlab=expression (Y[t-3]),type='p"')

The General MA(q) Process

For the general MA(g) process Y, = e¢,—0e, _; —0,e, ,— ---—qutfq , similar calcu-
lations show that
Yo = (1+612+9%+--.+6§)062 (4.2.4)
and
—9k+619k+1+626k+2+--.+9q_k6q fork=1.2... ¢
P, = 1+07+03+...+02 T 4.25)

0 for k>gq

where the numerator of p, is just —6,. The autocorrelation function “cuts off” after lag
q; that is, it is zero. Its shape can be almost anything for the earlier lags. Another type of
process, the autoregressive process, provides models for alternative autocorrelation pat-
terns.
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4.3 Autoregressive Processes

Autoregressive processes are as their name suggests—regressions on themselves. Spe-
cifically, a pth-order autoregressive process {Y,} satisfies the equation

Y, = ¢1Y171+¢2Yt—2+”.+¢th717+€1 4.3.1)

The current value of the series Y, is a linear combination of the p most recent past values
of itself plus an “innovation” term e, that incorporates everything new in the series at
time ¢ that is not explained by the past values. Thus, for every ¢, we assume that e, is
independent of Y;_ 1, Y;_2, Y;_3,.... Yule (1926) carried out the original work on
autoregressive processes. '

The First-Order Autoregressive Process

Again, it is instructive to consider the first-order model, abbreviated AR(1), in detail.
Assume the series is stationary and satisfies

Y, = OY,_, +e 4.32)

t

where we have dropped the subscript 1 from the coefficient ¢ for simplicity. As usual, in
these initial chapters, we assume that the process mean has been subtracted out so that
the series mean is zero. The conditions for stationarity will be considered later.

We first take variances of both sides of Equation (4.3.2) and obtain

Yo = ¢2Yo + Gg
Solving for y, yields
o 4323)
Yo = 3.
0 1 _¢2

Notice the immediate implication that ¢2 < 1 or that |¢| < 1. Now take Equation
(4.3.2), multiply both sides by ¥, _; (k=1, 2,...), and take expected values

E(Y,_Y,) = 0E(Y,_, Y, )+ E(eY, ;)
or
Ve = OV +ECe,Y, )

Since the series is assumed to be stationary with zero mean, and since ¢, is indepen-
dent of ¥; _;, we obtain

Ee,Y,_,) = E(e)E(Y,_}) = 0

and so

T Recall that we are assuming that Y, has zero mean. We can always introduce a nonzero
mean by replacing Y, by Y; — [ throughout our equations.
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fork=1,2,3,.. (4.3.4)

Ve = Oy

Setting k=1, we get y; = ¢y = (1)63/(1—(])2). With k=2, we obtainy, =
(I)ZGZ/(l —$2). Now it is easy to see that in general

2
= ¢k 435
and thus
by = ;l‘ =0k fork=1,2,3,. (4.3.6)
0

Since |¢| < 1, the magnitude of the autocorrelation function decreases exponentially
as the number of lags, k, increases. If 0 < ¢ <1, all correlations are positive; if
-1 <¢ <0, the lag 1 autocorrelation is negative (p; = ¢) and the signs of successive
autocorrelations alternate from positive to negative, with their magnitudes decreasing
exponentially. Portions of the graphs of several autocorrelation functions are displayed
in Exhibit 4.12.

Exhibit 4.12 Autocorrelation Functions for Several AR(1) Models
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Notice that for ¢ near +1, the exponential decay is quite slow (for example, (0.9)6 =
0.53), but for smaller ¢, the decay is quite rapid (for example, (0.4)% = 0.00410). With ¢
near t1, the strong correlation will extend over many lags and produce a relatively
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smooth series if ¢ is positive and a very jagged series if ¢ is negative.

Exhibit 4.13 displays the time plot of a simulated AR(1) process with ¢ = 0.9.
Notice how infrequently the series crosses its theoretical mean of zero. There is a lot of
inertia in the series—it hangs together, remaining on the same side of the mean for
extended periods. An observer might claim that the series has several trends. We know
that in fact the theoretical mean is zero for all time points. The illusion of trends is due
to the strong autocorrelation of neighboring values of the series.

Exhibit 4.13 Time Plot of an AR(1) Series with ¢ = 0.9
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> win.graph(width=4.875, height=3,pointsize=8)
> data(arl.s); plot(arl.s,ylab=expression(Y[t]), type='0")

The smoothness of the series and the strong autocorrelation at lag 1 are depicted in
the lag plot shown in Exhibit 4.14.
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Exhibit 4.14 Plot of Y, versus Y, _ for AR(1) Series of Exhibit 4.13
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> win.graph(width=3, height=3,pointsize=8)
> plot (y=arl.s,x=zlag(arl.s),ylab=expression(Y[t]),
xlab=expression (Y [t-1]),type="p")

This AR(1) model also has strong positive autocorrelation at lag 2, namely p, =
(0.9)> = 0.81. Exhibit 4.15 shows this quite well.

Exhibit 4.15 Plot of Y, versus Y, _, for AR(1) Series of Exhibit 4.13
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> plot (y=arl.s,x=zlag(arl.s,2),ylab=expression(Y[t]),
xlab=expression (Y [t-2]),type="p")
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Finally, at lag 3, the autocorrelation is still quite high: p; = (0.9)3 = 0.729. Exhibit
4.16 confirms this for this particular series.

Exhibit 4.16 Plot of Y, versus Y, _3 for AR(1) Series of Exhibit 4.13
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> plot (y=arl.s,x=zlag(arl.s,3),ylab=expression(Y[t]),
xlab=expression (Y [t-3]),type="p")

The General Linear Process Version of the AR(1) Model

The recursive definition of the AR(1) process given in Equation (4.3.2) is extremely
useful for interpretating the model. For other purposes, it is convenient to express the
AR(1) model as a general linear process as in Equation (4.1.1). The recursive definition
is valid for all 1. If we use this equation with ¢ replaced by r—1, we get ¥, | =
¢Y,_,+e,_ ;. Substituting this into the original expression gives

Y, ¢(¢Yt72+et71)+et

2
e, +he,  +0°Y, 5

If we repeat this substitution into the past, say k — 1 times, we get

Y[ = e[+¢e[_1+¢2et_2+ ”'+¢k_]et—k+l+¢kyt—k (43.7)

Assuming |¢| <1 and letting k increase without bound, it seems reasonable (this is
almost a rigorous proof) that we should obtain the infinite series representation

Y, = e+ e, +0%, _,+ e, 3+ (4.3.8)
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This is in the form of the general linear process of Equation (4.1.1) with y; = ¢/,
which we already investigated in Section 4.1 on page 55. Note that this representation
reemphasizes the need for the restriction || < 1.

Stationarity of an AR(1) Process

It can be shown that, subject to the restriction that ¢, be independent of ¥, _ |, ¥, _»,
Y, _3,... and that 62 > 0, the solution of the AR(1) defining recursion ¥, = ¢Y,_| +e,
will be stationary if and only if |¢| < 1. The requirement |§| < 1 is usually called the
stationarity condition for the AR(1) process (See Box, Jenkins, and Reinsel, 1994,
p. 54; Nelson, 1973, p. 39; and Wei, 2005, p. 32) even though more than stationarity is
involved. See especially Exercises 4.16, 4.18, and 4.25.

At this point, we should note that the autocorrelation function for the AR(1) process
has been derived in two different ways. The first method used the general linear process
representation leading up to Equation (4.1.3). The second method used the defining
recursion Y, = ¢Y,_, +e, and the development of Equations (4.3.4), (4.3.5), and
(4.3.6). A third derivation is obtained by multiplying both sides of Equation (4.3.7) by
Y, _;, taking expected values of both sides, and using the fact that e,, ¢, _1, ¢,_»,...,
€;_ (k- 1) are independent of Y; _ ;. The second method should be especially noted since
it will generalize nicely to higher-order processes.

The Second-Order Autoregressive Process
Now consider the series satisfying
Y, = ¢,Y,_ +d,Y, ,+e, (4.3.9)

where, as usual, we assume that ¢, is independent of ¥, _{, ¥, _»,, ¥, _5,.... To discuss
stationarity, we introduce the AR characteristic polynomial

o(x) = 1-¢x— (])2x2
and the corresponding AR characteristic equation
1 —¢1x—¢2x2 =0
We recall that a quadratic equation always has two roots (possibly complex).

Stationarity of the AR(2) Process

It may be shown that, subject to the condition that e, is independent of Y, _, Y, _»,
Y, _3,..., a stationary solution to Equation (4.3.9) exists if and only if the roots of the AR
characteristic equation exceed 1 in absolute value (modulus). We sometimes say that the
roots should lie outside the unit circle in the complex plane. This statement will general-
ize to the pth-order case without change.Jr

Tt also applies in the first-order case, where the AR characteristic equation is just 1 — ¢x =0
with root 1/¢, which exceeds 1 in absolute value if and only if [¢| < 1.
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In the second-order case, the roots of the quadratic characteristic equation are easily

found to be
o, A/(I)% +4¢,

-2¢,

For stationarity, we require that these roots exceed 1 in absolute value. In Appendix
B, page 84, we show that this will be true if and only if three conditions are satisfied:

by +0,<1, dr—0, <1, and |¢2|<1 (4.3.11)

As with the AR(1) model, we call these the stationarity conditions for the AR(2)
model. This stationarity region is displayed in Exhibit 4.17.

(4.3.10)

Exhibit 4.17 Stationarity Parameter Region for AR(2) Process
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The Autocorrelation Function for the AR(2) Process

To derive the autocorrelation function for the AR(2) case, we take the defining recursive
relationship of Equation (4.3.9), multiply both sides by Y, _ ;, and take expectations.
Assuming stationarity, zero means, and that e, is independent of Y; _ ;, we get

Vi = O Vo1 F 0V 0 fork=1,2,3, .. (4.3.12)
or, dividing through by vy,
Pr = 01Pp_ |+ PPk fork=1,2,3, .. (4.3.13)

Equations (4.3.12) and/or (4.3.13) are usually called the Yule-Walker equations, espe-
cially the set of two equations obtained for k = 1 and 2. Setting k = 1 and using py =1

and p_j =pj, we get p; = ¢, +¢,p; and so
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P, (4.3.14)

=T s
Using the now known values for p; (and pg), Equation (4.3.13) can be used with k =2 to
obtain

Py = 011+ 0P

~ ¢2(1_¢2)+¢% 4.3.15)
1-¢,
Successive values of p; may be easily calculated numerically from the recursive rela-
tionship of Equation (4.3.13).

Although Equation (4.3.13) is very efficient for calculating autocorrelation values
numerically from given values of ¢; and ¢,, for other purposes it is desirable to have a
more explicit formula for p;. The form of the explicit solution depends critically on the
roots of the characteristic equation 1—¢ x— ¢2x2 = 0. Denoting the reciprocals of
these roots by G| and G, it is shown in Appendix B, page 84, that

¢y = JOf +40, Oy + JOT + 4,

G = ——= and Gy = ————=
2 2

For the case G| # G,, it can be shown that we have

e -GGk - (1-GHGh+1

- for k>0 43.16
Pk (G,-Gy)(1+G,G,) o (310

If the roots are complex (that is, if ¢12 +4¢, <0), then p; may be rewritten as

_ Rksin(@k +®d)

>
Py Sin(®) for k>0 (4.3.17)

where R = A/—T)z and O and @ are defined by cos(®) = ¢1/(2A/—T)2) and tan(®) =
[(1=0)/(1+d,)].

For completeness, we note that if the roots are equal (d)f +4¢, = 0), then we have

k
pe = (1 +1i$§k)(%} for k=0, 1,2,... (4.3.18)
A good discussion of the derivations of these formulas can be found in Fuller (1996,
Section 2.5).

The specific details of these formulas are of little importance to us. We need only
note that the autocorrelation function can assume a wide variety of shapes. In all cases,
the magnitude of p; dies out exponentially fast as the lag k increases. In the case of com-
plex roots, p; displays a damped sine wave behavior with damping factor R, 0 <R < 1,
frequency ©, and phase ®. Illustrations of the possible shapes are given in Exhibit
4.18. (The R function ARMAacf discussed on page 450 is useful for plotting.)
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Exhibit 4.18 Autocorrelation Functions for Several AR(2) Models
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Exhibit 4.19 displays the time plot of a simulated AR(2) series with ¢; = 1.5 and
¢, =—0.75. The periodic behavior of p; shown in Exhibit 4.18 is clearly reflected in the
nearly periodic behavior of the series with the same period of 360/30 = 12 time units. If
® is measured in radians, 27/® is sometimes called the quasi-period of the AR(2) pro-
cess.

Exhibit 4.19 Time Plot of an AR(2) Series with ¢; = 1.5 and ¢, = —0.75

Yi

Time

> win.graph(width=4.875,height=3,pointsize=8)
> data(ar2.s); plot(ar2.s,ylab=expression(Y[t]),type='0")
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The Variance for the AR(2) Model

The process variance vy can be expressed in terms of the model parameters ¢y, ¢,, and
03 as follows: Taking the variance of both sides of Equation (4.3.9) yields

Yo = (07 +03)7) +20,0,7, + 62 (4.3.19)

Setting k = 1 in Equation (4.3.12) gives a second linear equation for y, and vy,
Y1 = ¢;Yo+ &,v,» which can be solved simultaneously with Equation (4.3.19) to
obtain

S (1-9,)02
07 - 1—02-62)—2b.02
(1=0)(1 =67 = 037) = 20,07 (4.3.20)
_(1—432 63
SN (1-9,)%- 93

The y-Coefficients for the AR(2) Model

The y-coefficients in the general linear process representation for an AR(2) series are
more complex than for the AR(1) case. However, we can substitute the general linear
process representation using Equation (4.1.1) for Y,, for Y, _, and for Y, _, into
Y, = o, Y (_1 T 0¥, 5 +e,. If we then equate coefficients of e;, we get the recursive
relationships

Yo =1
Vi—=0,y, =0 (4.3.21)
\Vj_d)l‘ij 1 _¢2‘Vj—2 =0 forj=23,..
These may be solved recursively to obtain yo=1, y; = ¢, y, = (I)% + ¢, , and so on.
These relationships provide excellent numerical solutions for the y-coefficients for

given numerical values of ¢; and ¢,.
One can also show that, for G| # G, an explicit solution is

j+1 j+1
=G1 _Gz

4.3.22
G -G, ( )

Vj

where, as before, G| and G, are the reciprocals of the roots of the AR characteristic
equation. If the roots are complex, Equation (4.3.22) may be rewritten as

_ pilsin[(+1)O]
\yj—R]{ ) } (4.3.23)

a damped sine wave with the same damping factor R and frequency ® as in Equation
(4.3.17) for the autocorrelation function.
For completeness, we note that if the roots are equal, then

v = (1+))6] (4.3.24)
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The General Autoregressive Process

Consider now the pth-order autoregressive model

Y, = 0¥, 0¥, 4 +0,Y,  te (4.3.25)
with AR characteristic polynomial
o) = 1_¢1x_¢2x2_..._¢pxp (4.3.26)
and corresponding AR characteristic equation
l_d)lx_(l)zxz_..._(l)pxp =0 (4327)

As noted earlier, assuming that e, is independent of ¥, _{, Y, _,, ¥, _3,... a station-
ary solution to Equation (4.3.27) exists if and only if the p roots of the AR characteristic
equation each exceed 1 in absolute value (modulus). Other relationships between poly-
nomial roots and coefficients may be used to show that the following two inequalities
are necessary for stationarity. That is, for the roots to be greater than 1 in modulus, it is
necessary, but not sufficient, that both

¢1+¢2+.-.+¢p<1}

4.3.28
and |¢p| <1 ( )

Assuming stationarity and zero means, we may multiply Equation (4.3.25) by Y, _,
take expectations, divide by v, and obtain the important recursive relationship

Pk = O1Pk_ 1 T 0P T 03P 3+ +0,pp for k>1 (4.3.29)
Putting k=1, 2,..., and p into Equation (4.3.29) and using py =1 and p_; = p;, we get
the general Yule-Walker equations

Pp = 0 +0yp  +O3pp+ - + ¢ppp_1
= + ¢, + + .+
P2 ' 1P+ by ¢3Pl ¢ppp72 (4.3.30)

Pp = ¢1pp_1 +¢2pp_2+¢3pp_3+ +¢p

Given numerical values for ¢y, ¢,..., (I)p, these linear equations can be solved to
obtain numerical values for py, ps,..., pp. Then Equation (4.3.29) can be used to obtain
numerical values for p;, at any number of higher lags.

Noting that

E(e,Y,) = E[e(§,Y, |+ 0¥, o+ -+ +e,)] = E(e?) = o2

pYi-p
we may multiply Equation (4.3.25) by Y, take expectations, and find

Yo = 9171+ Povp+ o +¢pyp+0§
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which, using p; = y;/v¢, can be written as

v = o; 4.3.31)
0 1_¢1P1_¢2pz_'"—¢ppp

and express the process variance y in terms of the parameters cg s 915 ¢2,.., ¢, and the
now known values of py, p,..., p,. Of course, explicit solutions for p; are essentially
impossible in this generality, but we can say that p; will be a linear combination of
exponentially decaying terms (corresponding to the real roots of the characteristic equa-
tion) and damped sine wave terms (corresponding to the complex roots of the character-
istic equation).

Assuming stationarity, the process can also be expressed in the general linear pro-
cess form of Equation (4.1.1), but the y-coefficients are complicated functions of the
parameters ¢y, ¢;,..., ¢,. The coefficients can be found numerically; see Appendix C on
page 85.

4.4 The Mixed Autoregressive Moving Average Model

If we assume that the series is partly autoregressive and partly moving average, we
obtain a quite general time series model. In general, if

Yo=Y, 0,7, 5+ +¢th—p+et_elet—l_62et—2

— e, 441

we say that {Y;} is a mixed autoregressive moving average process of orders p and g,
respectively; we abbreviate the name to ARMA(p,q). As usual, we discuss an important
special case first."

The ARMA(1,1) Model
The defining equation can be written

Y, = 0Y,_|+e,—0¢,_, 44.2)

To derive Yule-Walker type equations, we first note that
E(e,Y,) = E[e,(0Y,_|+e,~0¢, )]

2
e

(¢

and

¥ In mixed models, we assume that there are no common factors in the autoregressive and
moving average polynomials. If there were, we could cancel them and the model would
reduce to an ARMA model of lower order. For ARMA(1,1), this means 0 # ¢.



78 Models for Stationary Time Series

E(e,_,Y) = E[e,_1(§Y,_; +¢,-0¢, )]
= ¢G€2—902
= (¢p-0)c?

If we multiply Equation (4.4.2) by Y,_; and take expectations, we have
Yo = ¢y, +[1-0(0-0)]c?
Y1 = 07— 00?2 (4.4.3)
Vi = 0y, fork>2
Solving the first two equations yields

_(1-2¢0+0%)

Yo g2 z 4.4.4)
and solving the simple recursion gives
Py = Q_—_(N)_M¢k-1 for k> 1 (4.4.5)

1-20¢ + 02

Note that this autocorrelation function decays exponentially as the lag k increases.
The damping factor is ¢, but the decay starts from initial value p;, which also depends
on 0. This is in contrast to the AR(1) autocorrelation, which also decays with damping
factor ¢ but always from initial value py = 1. For example, if ¢ =0.8 and 6 = 0.4, then
p1 =0.523, p, =0.418, p3 =0.335, and so on. Several shapes for p; are possible,
depending on the sign of p; and the sign of ¢.

The general linear process form of the model can be obtained in the same manner
that led to Equation (4.3.8). We find

Y, = e, +(6-0) % ¥ e, (4.4.6)
=1

that is,
;= (-0’71 forjz1

We should now mention the obvious stationarity condition |¢| < 1, or equivalently
the root of the AR characteristic equation 1 — ¢x = 0 must exceed unity in absolute
value.

For the general ARMA(p,g) model, we state the following facts without proof:
Subject to the condition that e, is independent of Y; _ |, Y; _,, Y; _3,..., a stationary solu-
tion to Equation (4.4.1) exists if and only if all the roots of the AR characteristic equa-
tion ¢(x) = 0 exceed unity in modulus.

If the stationarity conditions are satisfied, then the model can also be written as a
general linear process with y-coefficients determined from
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Yo =1

vy = -0 +0;

Wy = =0+ 0, + 0,y (4.4.7)
Vj= =000y by W pe T OV

where we take y; = 0 for j <0 and 8; = 0 for j > g.
Again assuming stationarity, the autocorrelation function can easily be shown to
satisfy

Pe = 0P+ 0P+ + P,  fork>g (4.4.8)

Similar equations can be developed for k =1, 2, 3,..., ¢ that involve 6, 0,,..., Oq. An
algorithm suitable for numerical computation of the complete autocorrelation function
is given in Appendix C on page 85. (This algorithm is implemented in the R function
named ARMAacft.)

4.5 |Invertibility

We have seen that for the MA(1) process we get exactly the same autocorrelation func-
tion if O is replaced by 1/6. In the exercises, we find a similar problem with nonunique-
ness for the MA(2) model. This lack of uniqueness of MA models, given their
autocorrelation functions, must be addressed before we try to infer the values of param-
eters from observed time series. It turns out that this nonuniqueness is related to the
seemingly unrelated question stated next.

An autoregressive process can always be reexpressed as a general linear process
through the y-coefficients so that an AR process may also be thought of as an infi-
nite-order moving average process. However, for some purposes, the autoregressive rep-
resentations are also convenient. Can a moving average model be reexpressed as an
autoregression?

To fix ideas, consider an MA(1) model:

Y, = e,~0e,_, 45.1)

First rewriting this as e, = Y; + 0¢,_; and then replacing ¢ by  — 1 and substituting for
e, _1 above, we get

)
Il

Y, +0(Y,_+0e¢,_,)
=Y, +0Y, | +6%, ,

If |0] < 1, we may continue this substitution “infinitely” into the past and obtain the
expression [compare with Equations (4.3.7) and (4.3.8)]

- 2
e, =Y, +0Y, | +0°Y, 5+
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or
Y, = (-0Y,_ | —0%Y, ,-0%Y, s——)+e, (45.2)

If |0] < 1, we see that the MA(1) model can be inverted into an infinite-order autoregres-
sive model. We say that the MA(1) model is invertible if and only if |0] < 1.

For a general MA(g) or ARMA(p,q) model, we define the MA characteristic
polynomial as

0(x) = 1-0,x—0,x2—0;x3 - =0, (4.5.3)
and the corresponding MA characteristic equation
1-0,x 0,02 = 0327 — .. =0, x4 = 0 (4.5.4)

It can be shown that the MA(q) model is invertible; that is, there are coefficients us
such that

Y,=m Y, | +nY, ,+mY, 3+ +e, 4.5.5)

if and only if the roots of the MA characteristic equation exceed 1 in modulus. (Com-
pare this with stationarity of an AR model.)

It may also be shown that there is only one set of parameter values that yield an
invertible MA process with a given autocorrelation function. For example, Y, =
e, +2e,_1and Y, = e, + Y2¢, _ both have the same autocorrelation function, but only the
second one with root —2 is invertible. From here on, we will restrict our attention to the
physically sensible class of invertible models.

For a general ARMA(p,q) model, we require both stationarity and invertibility.

4.6 Summary

This chapter introduces the simple but very useful autoregressive, moving average
(ARMA) time series models. The basic statistical properties of these models were
derived in particular for the important special cases of moving averages of orders 1 and
2 and autoregressive processes of orders 1 and 2. Stationarity and invertibility issues
have been pursued for these cases. Properties of mixed ARMA models have also been
investigated. You should be well-versed in the autocorrelation properties of these mod-
els and the various representations of the models.
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EXERCISES

4.1

4.2

4.3

44

4.5

4.6

4.7

4.8

4.9

Use first principles to find the autocorrelation function for the stationary process
defined by

Y, =5 +et—%et_1 +zltet—2
Sketch the autocorrelation functions for the following MA(2) models with param-
eters as specified:
(a) 0, =0.5and 6, =0.4.
(b)6;=1.2and 6, =-0.7.
(c) 6, =—1 and 6, =-0.6.
Verify that for an MA(1) process
max p; = 0.5 and min p; = -0.5
—0 <0 <o —0 <0 <o
Show that when 0 is replaced by 1/6, the autocorrelation function for an MA(1)
process does not change.
Calculate and sketch the autocorrelation functions for each of the following
AR(1) models. Plot for sufficient lags that the autocorrelation function has nearly
died out.

(a) ¢; =0.6.

(b) ¢; =—0.6.

(¢) ¢ =0.95. (Do out to 20 lags.)
(d) ¢; =0.3.

Suppose that {Y;} is an AR(1) process with =1 < ¢ < +1.

(a) Find the autocovariance function for W, = VY, =Y, — Y,_; in terms of ¢ and
o2,

(b) Ineparticular, show that Var(W,) = 262 /(1+¢).

Describe the important characteristics of the autocorrelation function for the fol-

lowing models: (a) MA(1), (b) MA(2), (c) AR(1), (d) AR(2), and (¢) ARMA(1,1).

Let {Y;} be an AR(2) process of the special form Y, = ¢,Y, _, + ¢;. Use first prin-

ciples to find the range of values of ¢, for which the process is stationary.

Use the recursive formula of Equation (4.3.13) to calculate and then sketch the

autocorrelation functions for the following AR(2) models with parameters as

specified. In each case, specify whether the roots of the characteristic equation are

real or complex. If the roots are complex, find the damping factor, R, and fre-

quency, 0O, for the corresponding autocorrelation function when expressed as in

Equation (4.3.17), on page 73.

(a) ¢; = 0.6 and ¢, = 0.3.

(b) ¢; =—0.4 and ¢, = 0.5.

(¢) ¢y =1.2and ¢, =-0.7.

(d) ¢; =—1 and ¢, =—0.6.

(e) ¢; =0.5 and ¢, =—-0.9.

) ¢; =-0.5 and ¢, = —-0.6.
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4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Models for Stationary Time Series

Sketch the autocorrelation functions for each of the following ARMA models:

(a) ARMA(1,1) with ¢ =0.7 and 6 = 0.4.

(b) ARMA(1,1) with ¢ =0.7 and 6 = -0.4.

For the ARMA(1,2) model Y, =0.8Y,_ +¢;+0.7¢,_ + 0.6¢, _ 5, show that

(a) p = 0.8py_y for k> 2.

(b) p, =0.8p; + 0.6 03 M-

Consider two MA(2) processes, one with 0 = 0, = 1/6 and another with 6; = -1

and 6, = 6.

(a) Show that these processes have the same autocorrelation function.

(b) How do the roots of the corresponding characteristic polynomials compare?

Let {Y,} be a stationary process with p; = 0 for k > 1. Show that we must have

|p{| < Y. (Hint: Consider Var(Y, , |+ Y, +---+ Y;) and then Var(Y, . - Y, +

Y, _1— -~ Y}). Use the fact that both of these must be nonnegative for all n.)

Suppose that {¥,} is a zero mean, stationary process with |p;| < 0.5 and p; = 0 for

k> 1. Show that {Y,} must be representable as an MA(1) process. That is, show

that there is a white noise sequence {¢,} such that Y, = ¢, — 0e;_ |, where p; is cor-

rect and e, is uncorrelated with Y, _ for k > 0. (Hint: Choose 6 such that [6] < 1

and p; =-0/(1 + 92); then let e, = zw_ OGJYFJ. . If we assume that {Y,} is a nor-

mal process, ¢, will also be normal, and zero correlation is equivalent to indepen-

dence.)

Consider the AR(1) model ¥, = ¢Y,_ | + e,. Show that if [p| = 1 the process cannot

be stationary. (Hint: Take variances of both sides.)

Consider the “nonstationary” AR(1) model Y, =3Y,_; +e,.

(a) Show that ¥, = —Z‘f: | (%)je[ +] satisfies the AR(1) equation.

(b) Show that the process defined in part (a) is stationary.

(¢) In what way is this solution unsatisfactory?

Consider a process that satisfies the AR(1) equation Y, =%2Y, _| +e¢,.

(a) Show that Y, = 10(%2) + e, + Y2e, _ | + (Vz)zet, 5 +---is a solution of the AR(1)
equation.

(b) Is the solution given in part (a) stationary?

Consider a process that satisfies the zero-mean, “stationary” AR(1) equation Y, =

¢Y; _1 + e; with =1 < ¢ < +1. Let ¢ be any nonzero constant, and define W;= Y, +

cd.

(a) Show that E(W)) = c¢.

(b) Show that { W,} satisfies the “stationary” AR(1) equation W, = ¢W, _ | + e,.

(c) Is {W,} stationary?

Consider an MA(6) model with 6; = 0.5, 6, = -0.25, 05 = 0.125, 6, = —0.0625,

05 =0.03125, and B4 = —0.015625. Find a much simpler model that has nearly the

same y-weights.

Consider an MA(7) model with 6, = 1, 6, = 0.5, 65 = 0.25, 6, = —0.125,

05 = 0.0625, 6 = —0.03125, and 67 = 0.015625. Find a much simpler model that

has nearly the same y-weights.
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4.21

4.22

4.23

4.24

4.25

Consider the model Y, =¢,_; — e, _, + 0.5¢, _3.

(a) Find the autocovariance function for this process.

(b) Show that this is a certain ARMA(p,q) process in disguise. That is, identify
values for p and ¢ and for the 6’s and ¢’s such that the ARMA(p,q) process
has the same statistical properties as {Y,}.

Show that the statement “The roots of 1—¢1x—¢2x2— —(I)pxp =0 are
greater than 1 in absolute value” is equivalent to the statement “The roots of
xP =Pl =P =2 — - ¢, = 0 are less than 1 in absolute value.” (Hint: If

G is a root of one equation, is 1/G a root of the other?)

Suppose that {Y;} is an AR(1) process with p; = ¢. Define the sequence {b,} as

by=Y, = 0Y; ;.

(a) Show that Cov(b;,b, _;) =0 for all ¢ and k.

(b) Show that Cov(b,, Y, ;) =0 for all  and k > 0.

Let {e;} be a zero-mean, unit-variance white noise process. Consider a process

that begins at time # = 0 and is defined recursively as follows. Let Y, = c{e( and

Yi=cYy+e. Thenlet Y, =¢;Y;_ | + ¢, _o + e, fort>1 as in an AR(2) pro-

cess.

(a) Show that the process mean is zero.

(b) For particular values of ¢; and ¢, within the stationarity region for an AR(2)
model, show how to choose ¢ and ¢, so that both Var(Y)) = Var(Y;) and the
lag 1 autocorrelation between Y| and Y, match that of a stationary AR(2) pro-
cess with parameters ¢ and ¢,.

(c) Once the process {Y;} is generated, show how to transform it to a new process
that has any desired mean and variance. (This exercise suggests a convenient
method for simulating stationary AR(2) processes.)

Consider an “AR(1)” process satisfying ¥, = ¢Y, _ | + ¢,, where ¢ can be any num-

ber and {e,} is a white noise process such that ¢, is independent of the past {Y, _,

Y;_»,...}. Let Y, be a random variable with mean p, and variance c% .

(a) Show that for r > 0 we can write

2 3 1—1 t
Yi=ei+de,_1+d7¢,_r+07¢_3++ ¢ e + 7Y,

(b) Show that for t > 0 we have E(Y,) = ¢'L,.
(¢) Show that for >0

L0 0L 6262 for g 1
e 0
+0} for ¢ = 1
(d) Suppose now that p = 0. Argue that, if {Y,} is stationary, we must have ¢ # 1.

(e) Continuing to suppose that py = 0, show that, if {Y;} is stationary, then
Var(Y,) = 62/(1-¢?)and so we must have [¢| <1.
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Appendix B: The Stationarity Region for an AR(2) Process

In the second-order case, the roots of the quadratic characteristic polynomial are easily

found to be
¢, A/¢% +4¢,
T (4.B.1)
2

For stationarity we require that these roots exceed 1 in absolute value. We now
show that this will be true if and only if three conditions are satisfied:

b +dy<1, by — by <1, and oy <1 (4.B.2)

Proof: Let the reciprocals of the roots be denoted G| and G,. Then

26, 2¢, {—4)1 + 07+ 4¢z}
- A/¢2+4¢2 — 01— JOF +40,1- 0, + /07 + 40,

2050y + 07 +40)) - 07 + 44,

OF = (07 +49,) 2

G _ b+ o 40,
L= hit et

2

We now divide the proof into two cases corresponding to real and complex roots.
The roots will be real if and only if (|)12 +4¢,20.
L. Real Roots:|G | < 1fori=1and 2 if and only if

— 0T +4dy O+ 0T +49,
3 < 3 <1

G, =

Similarly,

or

2<h; - JOT+HAD, <+ ,JOT +4,<2.

Consider just the first inequality. Now -2<¢, - /(1)12 +4¢, if and only if
/¢%+4¢2<¢1 +2 if and only if ¢%+4¢2<¢%+4¢1+4 if and only if ¢, < ¢, +1,
or p,—¢, <1.

The inequality ¢, + /d)% +4¢, <2 is treated similarly and leads to ¢, + ¢ < 1.
These equations together with d)% +4¢, >0 define the stationarity region for the

real root case shown in Exhibit 4.17.
II. Complex Roots: Now (1)2 +4¢,<0. Here G| and G, will be complex conju-
gates and |G| = |G,| < lif and only if |G||? < 1. But|G1|2 = [07+ (- 97 -40,)]1/4
= —¢, so that ¢, >—1. This together with the inequality (1)1 +4¢, <0 defines the part
of the stationarity region for complex roots shown in Exhibit 4.17 and establishes Equa-
tion (4.3.11). This completes the proof.
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Appendix C: The Autocorrelation Function for ARMA(p,q)

Let {Y,} be a stationary, invertible ARMA(p,q) process. Recall that we can always write
such a process in general linear process form as

o0
Y, = Z vie, “4.C.1)
j=0

where the y-weights can be obtained recursively from Equations (4.4.7), on page 79.
We then have

0
E(Y, ) = E _Zowjet+k7jet = \llk(Ye2 fork=0 “4.C.2)
j:

Thus the autocovariance must satisfy

)4 q
Ve = E(Y, 1Y) = E Zl¢th+k—j_'zoejet+k—j Y,
J= J=

4.C3)
P ) q

= 2 Ok 2 Ov i
i i<

where 0 = —1 and the last sum is absent if k > ¢g. Setting k=0, 1, ..., p and using y_; =
Yy leads to p + 1 linear equations in yg, vy, ---, ¥p-

Yo = ¢1Y1 +¢2y2+ +(|)pyp—0€2(60+61\vl 4. +eqwq)

= —_c2
Vl—fbﬂo”’z‘/l*' + 0¥y 170 (0 + 0wy -+ 0y, ) 4.C.4)

Yy = OyYy 1+ 0¥, ot 0= 02(0,+0, w40y, )

where 0; =0 if j > g.

For a given set of parameter values (53, ¢’s, and 0’s (and hence y’s), we can solve
the linear equations to obtain g, y1,..., ¥,. The values of y; for k > p can then be evalu-
ated from the recursion in Equations (4.4.8), on page 79. Finally, p, is obtained from p;

=Yi/o-



CHAPTER 5

MODELS FOR NONSTATIONARY TIME
SERIES

Any time series without a constant mean over time is nonstationary. Models of the form
Yi=p+X

where 1, is a nonconstant mean function and X, is a zero-mean, stationary series, were
considered in Chapter 3. As stated there, such models are reasonable only if there are
good reasons for believing that the deterministic trend is appropriate “forever.” That is,
just because a segment of the series looks like it is increasing (or decreasing) approxi-
mately linearly, do we believe that the linearity is intrinsic to the process and will persist
in the future? Frequently in applications, particularly in business and economics, we
cannot legitimately assume a deterministic trend. Recall the random walk displayed in
Exhibit 2.1, on page 14. The time series appears to have a strong upward trend that
might be linear in time. However, also recall that the random walk process has a con-
stant, zero mean and contains no deterministic trend at all.

As an example consider the monthly price of a barrel of crude oil from January
1986 through January 2006. Exhibit 5.1 displays the time series plot. The series displays
considerable variation, especially since 2001, and a stationary model does not seem to
be reasonable. We will discover in Chapters 6, 7, and 8 that no deterministic trend
model works well for this series but one of the nonstationary models that have been
described as containing stochastic trends does seem reasonable. This chapter discusses
such models. Fortunately, as we shall see, many stochastic trends can be modeled with
relatively few parameters.

87
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Exhibit 5.1  Monthly Price of Oil: January 1986—January 2006

Price per Barrel
10 20 30 40 50 60

I I I I
1990 1995 2000 2005

Time

> win.graph(width=4.875,height=3,pointsize=8)
> data(oil.price)
> plot (oil.price, ylab='Price per Barrel',6 type='l")

5.1 Stationarity Through Differencing

Consider again the AR(1) model

Y, = oY, | +e (.1.1)

t

We have seen that assuming e, is a true “innovation” (that is, e, is uncorrelated with
Y;_1,Y;_5,...), we must have |¢| < 1. What can we say about solutions to Equation
(5.1.1) if |¢| = 1? Consider in particular the equation

Y, =3Y,_ | +e, (5.1.2)
Iterating into the past as we have done before yields

Y, = e, +3¢, | +3%, o+ +3"le +3y, (5.1.3)

We see that the influence of distant past values of Y, and ¢, does not die out—indeed,
the weights applied to Y|y and e¢; grow exponentially large. In Exhibit 5.2, we show the
values for a very short simulation of such a series. Here the white noise sequence was
generated as standard normal variables and we used Y, = 0 as an initial condition.

Exhibit 5.2  Simulation of the Explosive “AR(1) Model” Y, = 3Y, | +e

t

t 1 2 3 4 5 6 7 8
e 0.63 -1.25 1.80 1.51 1.56 0.62 0.64 —0.98

Y, 0.63 0.64 3.72 12.67 39.57 119.33 358.63 1074.91
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Exhibit 5.3 shows the time series plot of this explosive AR(1) simulation.

Exhibit 5.3 An Explosive “AR(1)” Series

1000

Yi
200 400 600 800

0
]
G
q
q

Time

> data (explode.s)
> plot (explode.s,ylab=expression(Y[t]),6 type='0")

The explosive behavior of such a model is also reflected in the model’s variance
and covariance functions. These are easily found to be

Var(Y,) = %(9t_ 1)c? (5.1.4)
and
3k
Cov(Y,Y, ) = §(9’*k—1)63 (5.1.5)

respectively. Notice that we have

t—k_
Corr(Y,Y,_ ;) = 3k(99t ’ 1) =1 for large ¢ and moderate k
The same general exponential growth or explosive behavior will occur for any ¢
such that |¢p| > 1. A more reasonable type of nonstationarity obtains when ¢ = 1. If ¢ = 1,

the AR(1) model equation is
Y, =Y, +e, (5.1.6)

This is the relationship satisfied by the random walk process of Chapter 2 (Equation
(2.2.9) on page 12). Alternatively, we can rewrite this as

VY, = e, (5.1.7)
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where VY, = Y, - Y, , is the first difference of ¥,. The random walk then is easily
extended to a more general model whose first difference is some stationary pro-
cess—not just white noise.

Several somewhat different sets of assumptions can lead to models whose first dif-
ference is a stationary process. Suppose

Y, = M, +X, (5.1.8)

where M, is a series that is changing only slowly over time. Here M, could be either
deterministic or stochastic. If we assume that M, is approximately constant over every
two consecutive time points, we might estimate (predict) M, at ¢ by choosing 3 so that

1 2
z (Y[_j_B()7t)
J=0
is minimized. This clearly leads to
A 1
M, = E(Y’+ Y, )
and the “detrended” series at time ¢ is then

N 1 1 1
Y,-M, = Yz_E(Yt+ Y,_ ) = i(Yt_ Y, ) = EVYt
This is a constant multiple of the first difference, VYI.T

A second set of assumptions might be that M, in Equation (5.1.8) is stochastic and
changes slowly over time governed by a random walk model. Suppose, for example,
that

Y, =M +e, with M, =M, |+g, (5.1.9)
where {e,} and {g,;} are independent white noise series. Then
VY, = VM, + Ve,
=g te—e
which would have the autocorrelation function of an MA(1) series with
p, = —{1/[2+(c2/c2)]} (5.1.10)

In either of these situations, we are led to the study of VY, as a stationary process.
Returning to the oil price time series, Exhibit 5.4 displays the time series plot of the

differences of logarithms of that series.* The differenced series looks much more sta-

tionary when compared with the original time series shown in Exhibit 5.1, on page 88.

T A more complete labeling of this difference would be that it is a first difference at lag 1.
#In Section 5.4 on page 98 we will see why logarithms are often a convenient transforma-
tion.
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(We will also see later that there are outliers in this series that need to be considered to
produce an adequate model.)

Exhibit 5.4 The Difference Series of the Logs of the Oil Price Time
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Time

> plot (diff (log(oil.price)),ylab='Change in Log(Price)', type='1l")

We can also make assumptions that lead to stationary second-difference models.
Again we assume that Equation (5.1.8) on page 90, holds, but now assume that A, is lin-
ear in time over three consecutive time points. We can now estimate (predict) M, at the
middle time point ¢ by choosing [30, .and B, ;1o minimize

1
Z (Yt_j_(ﬁ(),t+jl3],[))2
jE

The solution yields
A

1
M, = §(Yt+1+Yt+Yt—1)

and thus the detrended series is

N
Yt_Mz

% _(Yt+1+Yl+Yt—l)
¢ 3

(_%)(Yt+ 1 _2Y1+ thl)
qE

T

a constant multiple of the centered second difference of Y,. Notice that we have differ-
enced twice, but both differences are at lag 1.
Alternatively, we might assume that
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Y, =M, +e, where M, =M, [ +W, and W, =W, ,+g (G.1.1D)

t

with {e;} and {¢;} independent white noise time series. Here the stochastic trend M, is
such that its “rate of change,” VM,, is changing slowly over time. Then

VY, = VM, + Ve, = W, + Ve,
and

2
vy,

2
VW, + Ve,

&t (et_et— 1)_ (eF I ‘"tfz)

=g, te~2e_[te _,
which has the autocorrelation function of an MA(2) process. The important point is that
the second difference of the nonstationary process {Y,} is stationary. This leads us to the

general definition of the important integrated autoregressive moving average time series
models.

5.2 ARIMA Models

A time series {Y,} is said to follow an integrated autoregressive moving average
model if the dth difference W, = vdy ,1s a stationary ARMA process. If {W,} follows an
ARMA(p,q) model, we say that {Y;} is an ARIMA(p,d,q) process. Fortunately, for
practical purposes, we can usually take d = 1 or at most 2.

Consider then an ARIMA(p,1,q) process. With W, =Y, - Y, _, we have

W= 0 W, +0,W, o4+, W, +e,—0e, | -0e, , (5.2.1)
— . —Oqet7

p
q

or, in terms of the observed series,

Yo=Y, 1 =0 (Y, =Y, )+ 0(Y, =Y, _3)+ - +¢p(Yt—p_Yt—p—l)

+et_elet—1_ezet—2_ _eqet—q
which we may rewrite as
YVi=(1+6)Y, 1+ (b= 0¥, o+ (93-9)Y, 3+ (522)
+(¢p_¢p—l)Yt—p_¢th—p—l +et_elet—l_926t—2_ _eqet—q

We call this the difference equation form of the model. Notice that it appears to be an
ARMA(p + 1,9) process. However, the characteristic polynomial satisfies

1-(1 +¢1)x—(¢2—¢1)x2—(¢3—¢2)x3— _(¢p_¢p_1)xp+¢pxp+l
= (1= 43—y e = )1 -)
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which can be easily checked. This factorization clearly shows the root at x = 1, which
implies nonstationarity. The remaining roots, however, are the roots of the characteristic
polynomial of the stationary process VY.

Explicit representations of the observed series in terms of either W, or the white
noise series underlying W, are more difficult than in the stationary case. Since nonsta-
tionary processes are not in statistical equilibrium, we cannot assume that they go infi-
nitely into the past or that they start at + = —co . However, we can and shall assume that
they start at some time point ¢ = —m , say, where —m is earlier than time 7 = 1, at which
point we first observed the series. For convenience, we take Y, = 0 for ¢ < —m. The differ-
ence equation Y, — Y, _ | = W, can be solved by summing both sides from ¢ = —m tot=
t to get the representation

v,= Y W, (5.2.3)

for the ARIMA(p,1,q) process.
The ARIMA(p,2,q) process can be dealt with similarly by summing twice to get the
representations

t

Yz:z iWi

j=-m i m

t+m (5.2.4)
= Y G+DW,

j=0

These representations have limited use but can be used to investigate the covariance
properties of ARIMA models and also to express Y, in terms of the white noise series
{e,}. We defer the calculations until we evaluate specific cases.

If the process contains no autoregressive terms, we call it an integrated moving
average and abbreviate the name to IMA(d, ¢). If no moving average terms are present,
we denote the model as ARI(p,d). We first consider in detail the important IMA(1,1)
model.

The IMA(1,1) Model

The simple IMA(1,1) model satisfactorily represents numerous time series, especially
those arising in economics and business. In difference equation form, the model is

Y, =Y, ,+e—0e, _, (5.2.5)

To write Y, explicitly as a function of present and past noise values, we use Equation
(5.2.3) and the fact that W, = e, — Oe, _ | in this case. After a little rearrangement, we can
write

Y,=e¢,+(1-0)e,_;+(1-0)e,_,+---+(1-0)e_

—0e_, _, (5.2.6)

m

Notice that in contrast to our stationary ARMA models, the weights on the white noise
terms do not die out as we go into the past. Since we are assuming that —m < 1 and 0 < ¢,
we may usefully think of ¥; as mostly an equally weighted accumulation of a large num-
ber of white noise values.
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From Equation (5.2.6), we can easily derive variances and correlations. We have
Var(Y,) = [1+0%+(1-0)%(1+m)]c? (5.2.7)
and

1-0+02+(1-0)2(t+m—k)
[Var(Y,)Var(Y,_,)]'/?

Jm (5.2.8)
- r+m

~ 1 for large m and moderate k

Corr(Yt, Yt—k)

We see that as  increases, Var(Y,) increases and could be quite large. Also, the correla-
tion between Y;and Y, _; will be strongly positive for many lags k=1, 2, ... .

The IMA(2,2) Model

The assumptions of Equation (5.1.11) led to an IMA(2,2) model. In difference equation
form, we have
VZYI =e—01¢e,_1-65e,_,
or
Y, =2Y, |-Y,_,+e,~0e,_;-05e, , 5.2.9)

The representation of Equation (5.2.4) may be used to express Y, in terms of e;, ¢, _ {,....
After some tedious algebra, we find that

t+m
Y, = e, + ,lejel—j_[(t+m+ D6, +(t+m)0y]e_,
j:

—(t+m+1)05e_

(5.2.10)

m—2

where y; =1+6,+ (1 -0;—06,)jforj=1,2,3,.., 7+ m. Once more we see that the
y-weights do not die out but form a linear function of j.

Again, variances and correlations for Y, can be obtained from the representation
given in Equation (5.2.10), but the calculations are tedious. We shall simply note that
the variance of Y, increases rapidly with 7 and again Corr(Y,, Y,_;) is nearly 1 for all
moderate k.

The results of a simulation of an IMA(2,2) process are displayed in Exhibit 5.5.
Notice the smooth change in the process values (and the unimportance of the zero-mean
function). The increasing variance and the strong, positive neighboring correlations
dominate the appearance of the time series plot.
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Exhibit 5.5 Simulation of an IMA(2,2) Series with 6; =1 and 6, =-0.6

o _|
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N
a2 4
I T
= o 4
o o
T T T T T T T
0 10 20 30 40 50 60
Time

> data(ima22.s)
> plot (ima22.s,ylab="'IMA(2,2) Simulation',6 type='o")

Exhibit 5.6 shows the time series plot of the first difference of the simulated series.
This series is also nonstationary, as it is governed by an IMA(1,2) model.

Exhibit 5.6  First Difference of the Simulated IMA(2,2) Series

First Difference
0
|

-4
|

0 10 20 30 40 50 60

Time

> plot (diff (ima22.g),ylab='First Difference', type='0")

Finally, the second differences of the simulated IMA(2,2) series values are plotted
in Exhibit 5.7. These values arise from a stationary MA(2) model with 6; = 1 and 6, =
—0.6. From Equation (4.2.3) on page 63, the theoretical autocorrelations for this model
are p; = —0.678 and p, = 0.254. These correlation values seem to be reflected in the
appearance of the time series plot.
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Exhibit 5.7 Second Difference of the Simulated IMA(2,2) Series
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Time
> plot (diff (ima22.s,difference=2),ylab='Differenced
Twice',type='o")
The ARI(1,1) Model
The ARI(1,1) process will satisfy
Yt_Yt—l = d)(Yt_l—Yt_2)+et (5.2.11)
or
Yz = (1+(|))Yt71—(|)Yt72+et (5.2.12)
where [¢| < 1.F

To find the y-weights in this case, we shall use a technique that will generalize to
arbitrary ARIMA models. It can be shown that the y-weights can be obtained by equat-

ing like powers of x in the identity:
(1= 0 = hp? = o = 9PaP) (1 =)L+ y b ypx? 4 ygad + o) a3
= (1 —91x—92x2—63x3— e — quq)

In our case, this relationship reduces to
(1= ¢x)(1=x)(1 + yx+ yox? +ygxd +.00) = 1

or

[1=(1+)x+¢x2](1 + yyx+ ypx? +ygxd+00) = 1

Equating like powers of x on both sides, we obtain

T Notice that this looks like a special AR(2) model. However, one of the roots of the corre-
sponding AR(2) characteristic polynomial is 1, and this is not allowed in stationary AR(2)
models.
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-(1+¢)+y, =0
O—(I+d)y;+y, =0
and, in general,
Ve = (+0)y, | —dy,_, for k>2 (5.2.14)

with y, =1 and y; = 1 + ¢. This recursion with starting values allows us to compute as
many \y-weights as necessary. It can also be shown that in this case an explicit solution
to the recursion is given as

11— ¢k +1

\Vk = W for k>1 (5215)

(It is easy, for example, to show that this expression satisfies Equation (5.2.14).

5.3 Constant Terms in ARIMA Models

For an ARIMA(p,d,q) model, VdY, = W, is a stationary ARMA(p, q) process. Our stan-
dard assumption is that stationary models have a zero mean; that is, we are actually
working with deviations from the constant mean. A nonzero constant mean, [, in a sta-
tionary ARMA model {W,} can be accommodated in either of two ways. We can
assume that

W= = 0 (W,_ =) + (W, =)+ + 0, (W, - 1)

+et_elet—l_62€t72_ _eqet—q

Alternatively, we can introduce a constant term 6y, into the model as follows:

W,y =0g+0, W, +0,W, o+ +0,W,_,

+et_elet—l_ezet—z_ _eqet—q

Taking expected values on both sides of the latter expression, we find that

Bo= 0+ (b + 0y + o+ G0

so that
o= % (5.3.16)
=6, —0- -0,
or, conversely, that
0 = n(l—¢;—y—-—b,) (5.3.17)

Since the alternative representations are equivalent, we shall use whichever parameter-
ization is convenient.
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What will be the effect of a nonzero mean for W, on the undifferenced series Y,?
Consider the IMA(1,1) case with a constant term. We have

Y, = Yt_l+60+et—9et_l

or
W, = 60""'3_6"371

Either by substituting into Equation (5.2.3) on page 93 or by iterating into the past, we
find that
Y,=e,+(1-0)e,_+(1-0)e, ,+--+(1-0)e_, —0e_,
(5.3.18)
+(t+m+1)0,

Comparing this with Equation (5.2.6), we see that we have an added linear deterministic
time trend (t + m + 1)0 with slope 6.
An equivalent representation of the process would then be

Y, = Y;""B()"‘BN

where Y, is an IMA(1,1) series with E(VY,) =0and E(VY,) = ;.

For a general ARIMA(p,d,q) model where E(V4 Y,) #0, it can be argued that Y, =
Y/ +u,, where p, is a deterministic polynomial of degree d and Y, is ARIMA(p,d,q)
with EY, = 0. With d =2 and 6 # 0, a quadratic trend would be implied.

5.4 Other Transformations

We have seen how differencing can be a useful transformation for achieving stationarity.
However, the logarithm transformation is also a useful method in certain circumstances.
We frequently encounter series where increased dispersion seems to be associated with
higher levels of the series—the higher the level of the series, the more variation there is
around that level and conversely.

Specifically, suppose that Y, > 0 for all # and that

E(Y)) =, and [Var(Y,) = po 54.1)
Then
Eflog(Y,)] = log(n,) and Var(log(Y)) = c? 54.2)

These results follow from taking expected values and variances of both sides of the
(Taylor) expansion

My

log(Y,) = log(u,) +

t
In words, if the standard deviation of the series is proportional to the level of the series,
then transforming to logarithms will produce a series with approximately constant vari-
ance over time. Also, if the level of the series is changing roughly exponentially, the
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log-transformed series will exhibit a linear time trend. Thus, we might then want to take
first differences. An alternative set of assumptions leading to differences of logged data
follows.

Percentage Changes and Logarithms

Suppose Y; tends to have relatively stable percentage changes from one time period to
the next. Specifically, assume that

Y, = (1+X)Y,_,
where 100X, is the percentage change (possibly negative) from Y,_; to Y. Then

e
OgY

t—1
log(1+X,)

log(Yt) —log(Y,_ »)

If X, is restricted to, say, |X;| < 0.2 (that is, the percentage changes are at most +20%),
then, to a good approximation, log(1+X,) = X,. Consequently,

V[log(Y)]~X, (5.4.3)

will be relatively stable and perhaps well-modeled by a stationary process. Notice that
we take logs first and then compute first differences—the order does matter. In financial
literature, the differences of the (natural) logarithms are usually called returns.

As an example, consider the time series shown in Exhibit 5.8. This series gives the
total monthly electricity generated in the United States in millions of kilowatt-hours.
The higher values display considerably more variation than the lower values.

Exhibit 5.8 U.S. Electricity Generated by Month

Electricity
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> data (electricity); plot(electricity)
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Exhibit 5.9 displays the time series plot of the logarithms of the electricity values.
Notice how the amount of variation around the upward trend is now much more uniform
across high and low values of the series.

Exhibit 5.9 Time Series Plot of Logarithms of Electricity Values
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> plot (log(electricity),ylab='Log(electricity) ')

The differences of the logarithms of the electricity values are displayed in Exhibit
5.10. On the basis of this plot, we might well consider a stationary model as appropriate.

Exhibit 5.10 Difference of Logarithms for Electricity Time Series
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Power Transformations

A flexible family of transformations, the power transformations, was introduced by
Box and Cox (1964). For a given value of the parameter A, the transformation is defined
by

X1 for A =0
g(x) = A 5.4.4)

logx forA =0

The term x* is the important part of the first expression, but subtracting 1 and dividing
by A makes g(x) change smoothly as A approaches zero. In fact, a calculus argumentT
shows that as A — 0, (x)‘ — 1)/A —> log(x). Notice that A = %2 produces a square root
transformation useful with Poisson-like data, and A = —1 corresponds to a reciprocal
transformation.

The power transformation applies only to positive data values. If some of the values
are negative or zero, a positive constant may be added to all of the values to make them
all positive before doing the power transformation. The shift is often determined subjec-
tively. For example, for nonnegative catch data in biology, the occurrence of zeros is
often dealt with by adding a constant equal to the smallest positive data value to all of
the data values. An alternative approach consists of using transformations applicable to
any data—positive or not. A drawback of this alternative approach is that interpretations
of such transformations are often less straightforward than the interpretations of the
power transformations. See Yeo and Johnson (2000) and the references contained
therein.

We can consider A as an additional parameter in the model to be estimated from the
observed data. However, precise estimation of A is usually not warranted. Evaluation of
a range of transformations based on a grid of A values, say +1, £1/2, +1/3, £1/4, and O,
will usually suffice and may have some intuitive meaning.

Software allows us to consider a range of lambda values and calculate a log-likeli-
hood value for each lambda value based on a normal likelihood function. A plot of these
values is shown in Exhibit 5.11 for the electricity data. The 95% confidence interval for
A contains the value of A = 0 quite near its center and strongly suggests a logarithmic
transformation (A = 0) for these data.

T Exercise (5.17) asks you to verify this.
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Exhibit 5.11 Log-likelihood versus Lambda
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5.5 Summary

This chapter introduced the concept of differencing to induce stationarity on certain
nonstationary processes. This led to the important integrated autoregressive moving
average models (ARIMA). The properties of these models were then thoroughly
explored. Other transformations, namely percentage changes and logarithms, were then
considered. More generally, power transformations or Box-Cox transformations were
introduced as useful transformations to stationarity and often normality.
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EXERCISES

51

5.2

5.3

54

5.5

5.6

5.7

Identify the following as specific ARIMA models. That is, what are p, d, and ¢
and what are the values of the parameters (the ¢’s and 6’s)?
@Y, =Y,_1-025Y,_,+¢,—-0.1¢,_;.
(b) Yt = 2Yl— 1- Yt—2 + e
(© Y,=05Y,_1-05Y,_,+e;—0.5¢,_1+025¢, _».
For each of the ARIMA models below, give the values for E(VY,) and Var(VY,).
@Y, =3+Y,_;+e—-0.75¢_;.
(b)Y, =10+ 1.25Y,_;-0.25Y, _,+e,—0.1¢,_;.
(¢) Y[= 5+42Y,_ 1 1.7Y, 2+ 0.7Y, _3teé— 0.5€t_ 1t 0.256,_2.
Suppose that {Y,} is generated according to Y, = e, + ce,_ |+ ce, _ o+ ce;_3+--+
ceq for > 0.
(a) Find the mean and covariance functions for {Y;}. Is {Y;} stationary?
(b) Find the mean and covariance functions for {VY,}. Is {VY,} stationary?
(c) Identify {Y,} as a specific ARIMA process.
Suppose that Y, = A + Bt + X,, where {X,} is a random walk. First suppose that A
and B are constants.
(a) Is {Y;} stationary?
(b) Is {VY,} stationary?
Now suppose that A and B are random variables that are independent of the random
walk {X,}.
(c) Is {Y,} stationary?
(d) Is {VY,} stationary?
Using the simulated white noise values in Exhibit 5.2, on page 88, verify the val-
ues shown for the explosive process Y,.
Consider a stationary process {Y,}. Show that if p; < %2, VY, has a larger variance
than does Y.
Consider two models:
A:Y,=09Y,_1+0.09Y;_, +e,
B: Yl‘: thl + e,—O.let, 1-
(a) Identify each as a specific ARIMA model. That is, what are p, d, and g and
what are the values of the parameters, ¢’s and 0’s?
(b) In what ways are the two models different?
(¢c) In what ways are the two models similar? (Compare wy-weights and
n-weights.)
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5.8

5.9
5.10

5.11

5.12

5.13

Models for Nonstationary Time Series

Consider a nonstationary “AR(1)” process defined as a solution to Equation

(5.1.2) on page 88, with || > 1.

(a) Derive an equation similar to Equation (5.1.3) on page 88, for this more gen-

eral case. Use Y, = 0 as an initial condition.

(b) Derive an equation similar to Equation (5.1.4) on page 89, for this more gen-
eral case.

(¢) Derive an equation similar to Equation (5.1.5) on page 89, for this more gen-
eral case.

(d) Is it true that for any [¢| > 1, Corr(Y,.Y,

Verify Equation (5.1.10) on page 90.

Nonstationary ARIMA series can be simulated by first simulating the correspond-

ing stationary ARMA series and then “integrating” it (really partially summing

it). Use statistical software to simulate a variety of IMA(1,1) and IMA(2,2) series
with a variety of parameter values. Note any stochastic “trends” in the simulated
series.

The data file winnebago contains monthly unit sales of recreational vehicles

(RVs) from Winnebago, Inc., from November 1966 through February 1972.

(a) Display and interpret the time series plot for these data.

(b) Now take natural logarithms of the monthly sales figures and display the time
series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the fractional relative changes, (Y, — Y, _{)/Y;_ |, and compare them
with the differences of (natural) logarithms,Vlog(Y,) = log(Y,) — log(Y,_ ).
How do they compare for smaller values and for larger values?

The data file SP contains quarterly Standard & Poor’s Composite Index stock

price values from the first quarter of 1936 through the fourth quarter of 1977.

(a) Display and interpret the time series plot for these data.

(b) Now take natural logarithms of the quarterly values and display and the time
series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the (fractional) relative changes, (¥; — Y;_1)/Y;_, and compare
them to the differences of (natural) logarithms, Vlog(Y,). How do they com-
pare for smaller values and for larger values?

The data file airpass contains monthly U.S. air passenger miles flown from Janu-

ary 1949 through December 1960. This is a classic time series analyzed in Box

and Jenkins (1976).

(a) Display and interpret the time series plot for these data.

(b) Now take natural logarithms of the monthly values and display and the time
series plot of the transformed values. Describe the effect of the logarithms on
the behavior of the series.

(c) Calculate the (fractional) relative changes, (¥; — Y;_)/Y;_, and compare
them to the differences of (natural) logarithms,Vlog(Y,). How do they com-
pare for smaller values and for larger values?

_) = 1 for large r and moderate k?
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5.14

5.15

5.16

517

Consider the annual rainfall data for Los Angeles shown in Exhibit 1.1, on page
2. The quantile-quantile normal plot of these data, shown in Exhibit 3.17, on page
50, convinced us that the data were not normal. The data are in the file larain.

(a) Use software to produce a plot similar to Exhibit 5.11, on page 102, and deter-

mine the “best” value of A for a power transformation of the data.

(b) Display a quantile-quantile plot of the transformed data. Are they more nor-
mal?

(¢) Produce a time series plot of the transformed values.

(d) Use the transformed values to display a plot of Y, versus Y, _ | as in Exhibit
1.2, on page 2. Should we expect the transformation to change the dependence
or lack of dependence in the series?

Quarterly earnings per share for the Johnson & Johnson Company are given in the

data file named JJ. The data cover the years from 1960 through 1980.

(a) Display a time series plot of the data. Interpret the interesting features in the

plot.

(b) Use software to produce a plot similar to Exhibit 5.11, on page 102, and deter-
mine the “best” value of A for a power transformation of these data.

(c) Display a time series plot of the transformed values. Does this plot suggest
that a stationary model might be appropriate?

(d) Display a time series plot of the differences of the transformed values. Does
this plot suggest that a stationary model might be appropriate for the differ-
ences?

The file named gold contains the daily price of gold (in dollars per troy ounce) for

the 252 trading days of year 2005.

(a) Display the time series plot of these data. Interpret the plot.

(b) Display the time series plot of the differences of the logarithms of these data.
Interpret this plot.

(¢) Calculate and display the sample ACF for the differences of the logarithms of
these data and argue that the logarithms appear to follow a random walk
model.

(d) Display the differences of logs in a histogram and interpret.

(e) Display the differences of logs in a quantile-quantile normal plot and inter-
pret.

Use calculus to show that, for any fixed x > 0, as A — 0, (x* = 1)/A — logx.
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Appendix D: The Backshift Operator

Many other books and much of the time series literature use what is called the backshift
operator to express and manipulate ARIMA models. The backshift operator, denoted B,
operates on the time index of a series and shifts time back one time unit to form a new
series.’ In particular,

BY, =Y, ;4

The backshift operator is linear since for any constants a, b, and ¢ and series Y, and X,, it

is easy to see that
B(aY,+bX,+c) = aBY, +bBX, +c¢

Consider now the MA(1) model. In terms of B, we can write

Y, =e,~0e,_| = ¢,-0Be, = (1-0B)e,

= 0(B)e,

where 0(B) is the MA characteristic polynomial “evaluated” at B.
Since BY, is itself a time series, it is meaningful to consider BBY,. But clearly BBY,
=BY,_|=Y,_,, and we can write

2
B Yt -2

I
h<

More generally, we have

BmYl‘ = Yl‘— m
for any positive integer m. For a general MA(g) model, we can then write
Y, =e,=061e, -0, - ”'_eqet—q
e,—6,Be,— 92Bzel - -«-—OqB‘iel

(1-6,B-6,B%- =0, B%)e,
or

Y, = 6(B)e,

where, again, 0(B) is the MA characteristic polynomial evaluated at B.
For autoregressive models AR(p), we first move all of the terms involving Y to the
left-hand side

Yt_¢1Yt—1_¢2Yt—2_"'_¢pyt—p =¢
and then write
Y~ ¢,BY,~,B%Y, - —¢ BIY, = ¢,

or

 Sometimes B is called a Lag operator.



Appendix D: The Backshift Operator 107

(1-¢,B—¢,B%>— - - ¢,BP)Y, = e,
which can be expressed as
(I)(B)Yt = e,

where ¢(B) is the AR characteristic polynomial evaluated at B.
Combining the two, the general ARMA(p,q) model may be written compactly as

®(B)Y, = 0(B)e,
Differencing can also be conveniently expressed in terms of B. We have
VY, =Y,-Y,_, =Y, -BY,
(1-B)Y,

with second differences given by
V2Y, = (1-B)?Y,

Effectively, V=1 - B and V2 = (1 - B)>.
The general ARIMA(p,d,q) model is expressed concisely as

O(B)(1-B)?Y, = 0(B)e,

In the literature, one must carefully distinguish from the context the use of B as a
backshift operator and its use as an ordinary real (or complex) variable. For example,
the stationarity condition is frequently given by stating that the roots of ¢(B) = 0 must be
greater than 1 in absolute value or, equivalently, must lie outside the unit circle in the
complex plane. Here B is to be treated as a dummy variable in an equation rather than as
the backshift operator.



CHAPTER 6

MODEL SPECIFICATION

We have developed a large class of parametric models for both stationary and nonsta-
tionary time series—the ARIMA models. We now begin our study and implementation
of statistical inference for such models. The subjects of the next three chapters, respec-
tively, are:

1. how to choose appropriate values for p, d, and ¢ for a given series;
2. how to estimate the parameters of a specific ARIMA(p,d,q) model;
3. how to check on the appropriateness of the fitted model and improve it if needed.

Our overall strategy will first be to decide on reasonable—but tentative—values
for p, d, and ¢g. Having done so, we shall estimate the ¢’s, 0’s, and &, for that model in
the most efficient way. Finally, we shall look critically at the fitted model thus obtained
to check its adequacy, in much the same way that we did in Section 3.6 on page 42. If
the model appears inadequate in some way, we consider the nature of the inadequacy to
help us select another model. We proceed to estimate that new model and check it for
adequacy.

With a few iterations of this model-building strategy, we hope to arrive at the best
possible model for a given series. The book by George E. P. Box and G. M. Jenkins
(1976) so popularized this technique that many authors call the procedure the “Box-
Jenkins method.” We begin by continuing our investigation of the properties of the sam-
ple autocorrelation function.

6.1 Properties of the Sample Autocorrelation Function

Recall from page 46 the definition of the sample or estimated autocorrelation function.
For the observed series Yy, Y5,..., Y,, we have

n

Z (Yt_?)(Yt—k_)_])
t=k+1
e = fork=1,2, .. 6.1.1)

z (Yt_?)z
t=1

Our goal is to recognize, to the extent possible, patterns in ry that are characteristic
of the known patterns in p; for common ARMA models. For example, we know that
py = 0 for k > g in an MA(g) model. However, as the ry, are only estimates of the p;, we

109
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need to investigate their sampling properties to facilitate the comparison of estimated
correlations with theoretical correlations.

From the definition of ry, a ratio of quadratic functions of possibly dependent vari-
ables, it should be apparent that the sampling properties of r;, will not be obtained easily.
Even the expected value of 7 is difficult to determine—recall that the expected value of
a ratio is not the ratio of the respective expected values. We shall be content to accept a
general large-sample result and consider its implications in special cases. Bartlett (1946)
carried out the original work. We shall take a more general result from Anderson (1971).
A recent discussion of these results may be found in Shumway and Stoffer (2006, p.
519).

We suppose that

o0
Y, = p+ Z vie,_;
j=0
where the e, are independent and identically distributed with zero means and finite, non-
zero, common variances. We assume further that

o0 o0
Z |\|!j| <o and z j\yj2 <o
j=0 ji=0
(These will be satisfied by any stationary ARMA model.)
Then, for any fixed m, the joint distribution of

’\/ﬁ(r] _pl)a ’\/ﬁ(rz—pz), ey ﬁ(rm_pm)

approaches, as n — oo, a joint normal distribution with zero means, variances Cjj» and
covariances cl-j,where
< 2
€ij = 2 PhiPieej ¥ Ph—iPhoaj = 2PiPkPij = 2PjPiPr i+ 20ifP)  (6.1:2)
= —©0

For large n, we would say that ry, is approximately normally distributed with mean p;,
and variance ¢y /n. Furthermore, Corr(ry, r;) = ijm . Notice that the approxi-
mate variance of r is inversely proportional to the sample size, but Corr(ry, r;) is
approximately constant for large n.

Since Equation (6.1.2) is clearly difficult to interpret in its present generality, we
shall consider some important special cases and simplifications. Suppose first that {Y,}
is white noise. Then Equation (6.1.2) reduces considerably, and we obtain

Var(ry) z}l and Corr(ry.r)~0 for k# 6.1.3)

Next suppose that {Y,} is generated by an AR(1) process with p; = cl)k for k> 0.
Then, after considerable algebra and summing several geometric series, Equation
(6.1.2) with i = yields

Var(r~ [% - 2k¢2k} 6.1.4)
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In particular,

Var(ry) = ! _n¢2 (6.1.5)

Notice that the closer ¢ is to £1, the more precise our estimate of p; (= ¢) becomes.
For large lags, the terms in Equation (6.1.4) involving (I)k may be ignored, and we
have

2
Var(r,) %B J_rm for large k (6.1.6)

Notice that here, in contrast to Equation (6.1.5), values of ¢ close to £1 imply large vari-
ances for r;. Thus we should not expect nearly as precise estimates of p; = ¢* ~ 0 for
large k as we do of p; = ¢’< for small .

For the AR(1) model, Equation (6.1.2) can also be simplified (after much algebra)
for general 0 < i <j as

j—i_ it 2 . o
c; = & ‘1”;4))2(“4’ ) 4 (G Dypi =+ DI+ 6.1.7)
In particular, we find
Corr(ry,ry)=2¢ Lot (6.1.8)
1+2¢2- 3¢

Based on Equations (6.1.4) through (6.1.8), Exhibit 6.1 gives approximate standard
deviations and correlations for several lags and a few values of ¢ in AR(1) models.

Exhibit 6.1 Large Sample Results for Selected r, from an AR(1) Model

¢ /Var(r]) /Var(rz) Corr(rl, r2) /Var(rlo)

£0.9 0.44/ Jn 0.807 //n £0.97 2.44/\n
+0.7 0.71//n 1.12/n +0.89 1.70//n
+0.4 0.92//n 1.11/Jn +0.66 1.18/4/n
+0.2 0.98//n 1.04/n +0.38 1.04//n

For the MA(1) case, Equation (6.1.2) simplifies as follows:
¢y = 1-3p7+4pt and ¢, = 1+2p? fork>1 (6.1.9)
Furthermore,
¢y = 2p(1-p?) (6.1.10)

Based on these expressions, Exhibit 6.2 lists large-sample standard deviations and cor-
relations for the sample autocorrelations for several lags and several 0-values. Notice
again that the sample autocorrelations can be highly correlated and that the standard
deviation of ry, is larger for k > 1 than for k= 1.
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Exhibit 6.2 Large-Sample Results for Selected r, from an MA(1) Model

0 [Var(r)) [Var(r,) for k> 1 Corr(ry,ry)

+0.9 0.71//n 1.22/n 70.86
+0.7 0.73/4/n 1.20//n 70.84
+0.5 0.79/4/n 1.15//n 70.74
+0.4 0.89/4/n 1.11//n 70.53

For a general MA(q) process and i = j = k, Equation (6.1.2) reduces to

q
Crk = 1+22 pj2 for k>gq
j=1

so that

q
Var(ry) = ,11 142 p?| fork>g ©.1.11)
i<

For an observed time series, we can replace p’s by r’s, take the square root, and
obtain an estimated standard deviation of ry, that is, the standard error of r; for large
lags. A test of the hypothesis that the series is MA(g) could be carried out by comparing
7 to plus and minus two standard errors. We would reject the null hypothesis if and only
if r; lies outside these bounds. In general, we should not expect the sample autocorrela-
tion to mimic the true autocorrelation in great detail. Thus, we should not be surprised to
see ripples or “trends” in r; that have no counterparts in the p;.

6.2 The Partial and Extended Autocorrelation Functions

Since for MA(g) models the autocorrelation function is zero for lags beyond ¢, the sam-
ple autocorrelation is a good indicator of the order of the process. However, the autocor-
relations of an AR(p) model do not become zero after a certain number of lags—they
die off rather than cut off. So a different function is needed to help determine the order
of autoregressive models. Such a function may be defined as the correlation between Y,
and Y, _; after removing the effect of the intervening variables Y, _1, Y, 5, Y;_3,...,
Y; _ 1+ 1. This coefficient is called the partial autocorrelation at lag k and will be denoted
by ¢4 (The reason for the seemingly redundant double subscript on ¢y, will become
apparent later on in this section.)

There are several ways to make this definition precise. If {Y,} is a normally distrib-
uted time series, we can let

by = Corr(Y, Yt—klyt— Y oY i) (6.2.1)

That is, ¢y is the correlation in the bivariate distribution of Y, and Y, _ ; conditional on
Yiov Yo Yiojin
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An alternative approach, not based on normality, can be developed in the following
way. Consider predicting Y; based on a linear function of the intervening variables Y, _ |,
Y, oy, Yo osay, BrY, 1+ BoY, o+ oo+ Br_ 1Y, _ i 4+ 1, with the B’s chosen to
minimize the mean square error of prediction. If we assume that the B’s have been so
chosen and then think backward in time, it follows from stationarity that the best “pre-
dictor” of Y, _, based on the same Y,_, Y, _,..., ¥, _; 41 will be B Y, _; 1+
BoY, 4 4o+ -+ Br_1Y,_ . The partial autocorrelation function at lag k is then
defined to be the correlation between the prediction errors; that is,

d)kk = COVF(YI—BIYt_l_BQYI_Z_"'_Bk—Ithf

(6.2.2)
Y = BrY, i BYy pwam =B Y

(For normally distributed series, it can be shown that the two definitions coincide.) By
convention, we take ¢ = 1.

As an example, consider ¢,,. It is shown in Appendix F on page 218 that the best
linear prediction of Y, based on Y, _; alone is just p;Y;_ ;. Thus, according to Equation
(6.2.2), we will obtain ¢,, by computing

Cov(Y,=pY,_ .Y, _p=p1Y,_ 1) = Yolpa—PE - P +pT) = vo(Py—pPT)

Since
Var(Yl— plYt_l) = Var(Yl_z—plYl_l)

Yo(l + P%_ 2p12)

Vo(l - P%)

we have that, for any stationary process, the lag 2 partial autocorrelation can be
expressed as

2
P2 = Pj

by = (6.2.3)
1- Pi

Consider now an AR(1) model. Recall that p;, = ¢’< so that
2 2

¢22 1— ¢2
We shall soon see that for the AR(1) case, ¢y, = 0 for all £ > 1. Thus the partial autocor-
relation is nonzero for lag 1, the order of the AR(1) process, but is zero for all lags
greater than 1. We shall show this to be generally the case for AR(p) models. Sometimes
we say that the partial autocorrelation function for an AR(p) process cuts off after the
lag exceeds the order of the process.

Consider a general AR(p) case. It will be shown in Chapter 9 that the best linear
predictor of Y, based on a linear function of the variables Y, _ 1, Y, _»,..., Yp,. Y e
fork>pis ¢1Y;_ 1+ 0¥, _o+ -+ ¢,Y,_,. Also, the best linear predictor of ¥; _; is
some function of ¥; _ 1,Y,_2,...,Yp,...,Y,_k + 1. callithcY, _ 1,Yt_2,...,Yp,...,Y,_k+ D-
So the covariance between the two prediction errors is
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Cov(Yt_(l)lthl_¢2Y172_”'_¢pyt7p’
Yt—k_h(Yt—k+1’ Yt—k+2’ e Yt—l))
Cov(e,, Y, =h(Y,_ji 1Y _jinn ¥ )

0 sincee,is independentof ¥, ., Y, , Y, 112 ¥,

Thus we have established the key fact that, for an AR(p) model,

¢y = 0 for k>p (6.2.4)
For an MA(1) model, Equation (6.2.3) quickly yields
—02
0y = o (6.2.5)
2 1402404

Furthermore, for the MA(1) case, it may be shown that

k 2
b = —% for k> 1 (6.2.6)
Notice that the partial autocorrelation of an MA(1) model never equals zero but essen-
tially decays to zero exponentially fast as the lag increases—rather like the autocorrela-
tion function of the AR(1) process. More generally, it can be shown that the partial
autocorrelation of an MA(g) model behaves very much like the autocorrelation of an
AR(g) model.

A general method for finding the partial autocorrelation function for any stationary
process with autocorrelation function py, is as follows (see Anderson 1971, pp. 187-188,
for example). For a given lag k, it can be shown that the ¢, satisfy the Yule-Walker
equations (which first appeared in Chapter 4 on page 79):

p; = ¢klpj—1 +¢k2pj—2+¢k3pj—3 + - +¢kkpj—k forj=1,2,...,k (62.7)

More explicitly, we can write these k linear equations as

bt Pidot Padis t o Pl O = Py

Py + Orat  Pyys + o F P2y = P2 62.8)

Pr_10pF Pro2®pnt Pr s + + Orr = P

Here we are treating py, ps,..., Py as given and wish to solve for ¢y, dsa...., Py (dis-
carding all but ).

These equations yield ¢y, for any stationary process. However, if the process is in
fact AR(p), then since for k = p Equations (6.2.8) are just the Yule-Walker equations
(page 79), which the AR(p) model is known to satisfy, we must have ¢,,, = ¢,,. In addi-
tion, as we have already seen by an alternative derivation, ¢ = 0 for k > p. Thus the par-
tial autocorrelation effectively displays the correct order p of an autoregressive process
as the highest lag k before ¢, becomes zero.
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The Sample Partial Autocorrelation Function

For an observed time series, we need to be able to estimate the partial autocorrelation
function at a variety of lags. Given the relationships in Equations (6.2.8), an obvious
method is to estimate the p’s with sample autocorrelations, the corresponding ’s, and
then solve the resulting linear equations for k = 1, 2, 3,... to get estimates of ¢;;. We call
the estimated function the sample partial autocorrelation function (sample PACF)
and denote it by $ Kk

Levinson (1947) and Durbin (1960) gave an efficient method for obtaining the solu-
tions to Equations (6.2.8) for either theoretical or sample partial autocorrelations. They
showed independently that Equations (6.2.8) can be solved recursively as follows:

k-1
pk__zld)kfljpkfj
j:
_ (6.2.9)
Orr P
I= 2 dko1jP)

where
¢k,j = ¢k71,j_¢kk¢k71,k—j forj =1,2,...,k-1

For example, using ¢ = p; to get started, we have

b, = Pr—bp Py pz_P%
2= =
1-6y1p 1-p?

(as before) with ¢,; = ¢, —d,,4;, , which is needed for the next step.
Then

P3 =0y Py — 920Py
L=0y1p) = 922p

b33 =

We may thus calculate numerically as many values for ¢, as desired. As stated,
these recursive equations give us the theoretical partial autocorrelations, but by replac-
ing p’s with r’s, we obtain the estimated or sample partial autocorrelations.

To assess the possible magnitude of the sample partial autocorrelations, Quenoulle
(1949) has shown that, under the hypothesis that an AR(p) model is correct, the sample
partial autocorrelations at lags greater than p are approximately normally distributed
with zero means and variances 1/n. Thus, for k > p, iZ/ﬁ can be used as critical limits
on $ «x to test the null hypothesis that an AR(p) model is correct.

Mixed Models and the Extended Autocorrelation Function

Exhibit 6.3 summarizes the behavior of the autocorrelation and partial autocorrelation
functions that is useful in specifying models.
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Exhibit 6.3 General Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p,q), p>0, and >0
ACF Tails off Cuts off after lag g Tails off
PACF Cuts off after lag p Tails off Tails off

The Extended Autocorrelation Function

The sample ACF and PACF provide effective tools for identifying pure AR(p) or MA(g)
models. However, for a mixed ARMA model, its theoretical ACF and PACF have infi-
nitely many nonzero values, making it difficult to identify mixed models from the sam-
ple ACF and PACF. Many graphical tools have been proposed to make it easier to
identify the ARMA orders, for example, the corner method (Becuin et al., 1980), the
extended autocorrelation (EACF) method (Tsay and Tiao, 1984), and the smallest
canonical correlation (SCAN) method (Tsay and Tiao, 1985), among others. We shall
outline the EACF method, which seems to have good sampling properties for moder-
ately large sample sizes according to a comparative simulation study done by W. S.
Chan (1999).

The EACF method uses the fact that if the AR part of a mixed ARMA model is
known, “filtering out” the autoregression from the observed time series results in a pure
MA process that enjoys the cutoff property in its ACF. The AR coefficients may be esti-
mated by a finite sequence of regressions. We illustrate the procedure for the case where
the true model is an ARMA(1,1) model:

Y, = ¢Y,_, +et—9(et_1

In this case, a simple linear regression of ¥, on Y, _; results in an inconsistent esti-
mator of ¢, even with infinitely many data. Indeed, the theoretical regression coefficient
equals p; = (¢ — 0)(1 — ¢0)/(1 — 2¢6 + 92), not ¢. But the residuals from this regression
do contain information about the error process {e,}. A second multiple regression is per-
formed that consists of regressing Y, on Y, _ | and on the lag 1 of the residuals from the
first regression. The coefficient of Y, _; in the second regression, denoted by , turns
out to be a consistent estimator of ¢. Define W, = ¥, - (34 ;_ 1> Which is then approxi-
mately an MA(1) process. For an ARMA(1,2) model, a third regression that regresses Y,
on its lag 1, the lag 1 of the residuals from the second regression, and the lag 2 of the
residuals from the first regression leads to the coefficient of ¥, _ ; being a consistent esti-
mator of ¢. Similarly, the AR coefficients of an ARMA(p,q) model can be consistently
estimated via a sequence of g regressions.

As the AR and MA orders are unknown, an iterative procedure is required. Let

Wi =Y =017, ==Y, (6.2.10)

be the autoregressive residuals defined with the AR coefficients estimated iteratively
assuming the AR order is k and the MA order is j. The sample autocorrelations of W; ; ;
are referred to as the extended sample autocorrelations. For k=p and j 2 ¢, {W, ; ;} is
approximately an MA(g) model, so that its theoretical autocorrelations of lag ¢ + 1 or
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higher are equal to zero. For k > p, an overfitting problem occurs, and this increases the
MA order for the W process by the minimum of k — p and j — ¢. Tsay and Tiao (1984)
suggested summarizing the information in the sample EACF by a table with the element
in the kth row and jth column equal to the symbol X if the lag j + 1 sample correlation of
Wi k,j 1s significantly different from O (that is, if its magnitude is greater than
1.96/Jn —j—k since the sample autocorrelation is asymptotically N(0,1/(n — k — j)) if
the W’s are approximately an MA(j) process) and 0 otherwise. In such a table, an
MA(p,q) process will have a theoretical pattern of a triangle of zeroes, with the upper
left-hand vertex corresponding to the ARMA orders. Exhibit 6.4 displays the schematic
pattern for an ARMA(1,1) model. The upper left-hand vertex of the triangle of zeros is
marked with the symbol 0" and is located in the p = 1 row and g = 1 column—an indica-
tion of an ARMA(1,1) model.

Exhibit 6.4 Theoretical Extended ACF (EACF) for an ARMA(1,1) Model

AR/MA| o 1 2 3 4 5 6 7 8 9 10 11 12 13
0 X X X X X X X X X X X X X X
1 XN\ _0* 0 0 O 0 0O O 0 0O O 0 0O O
2 X X 0 0O O 0 0O O 0 0O O 0 0O O
3 X X X 0O O 0 0O O 0 0O O 0 0 o0
4 X X X X 0 0 0 0 0 0 0 0 0 0
5 X X X X X 0 0 0 0 0 0 0 0 0
6 X X X X X X 0 0 0 0 0 0 0 0
7 X X X X X X X 0 0 0 0 0 0 0

Of course, the sample EACF will never be this clear-cut. Displays like Exhibit 6.4
will contain 8x14 = 112 different estimated correlations, and some will be statistically
significantly different from zero by chance (see Exhibit 6.17 on page 124, for an exam-
ple). We will illustrate the use of the EACF in the next two sections and throughout the
remainder of the book.

6.3 Specification of Some Simulated Time Series

To illustrate the theory of Sections 6.1 and 6.2, we shall consider the sample autocorre-
lation and sample partial correlation of some simulated time series.

Exhibit 6.5 displays a graph of the sample autocorrelation out to lag 20 for the sim-
ulated time series that we first saw in Exhibit 4.5 on page 61. This series, of length 120,
was generated from an MA(1) model with © = 0.9. From Exhibit 4.1 on page 58, the the-
oretical autocorrelation at lag 1 is —0.4972. The estimated or sample value shown at lag
1 on the graph is —0.474. Using Exhibit 6.2 on page 112, the approximate standard error
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of this estimate is 0.71/A/;z =0.71/4120 = 0.065, so the estimate is well within two stan-
dard errors of the true value.

Exhibit 6.5 Sample Autocorrelation of an MA(1) Process with 6 = 0.9

° ] ‘ | |
T
e | ‘ | | ‘ |
Q_
P
|
LQ_
< T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20
Lag

> data(mal.l.s)
> win.graph(width=4.875,height=3,pointsize=8)
> acf(mal.l.s,xaxp=c(0,20,10))

The dashed horizontal lines in Exhibit 6.5, plotted at iZ/J;z =+0.1826, are
intended to give critical values for testing whether or not the autocorrelation coefficients
are significantly different from zero. These limits are based on the approximate large
sample standard error that applies to a white noise process, namely 1/4/n. Notice that
the sample ACF values exceed these rough critical values at lags 1, 5, and 14. Of course,
the true autocorrelations at lags 5 and 14 are both zero.

Exhibit 6.6 displays the same sample ACF but with critical bounds based on plus
and minus two of the more complex standard errors implied by Equation (6.1.11) on
page 112. In using Equation (6.1.11), we replace p’s by r’s, let g equal 1, 2, 3,... succes-
sively, and take the square root to obtain these standard errors.
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Exhibit 6.6 Alternative Bounds for the Sample ACF for the MA(1)
Process
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> acf(mal.l.s,ci.type="ma',xaxp=c(0,20,10))

Now the sample ACF value at lag 14 is insignificant and the one at lag 5 is just
barely significant. The lag 1 autocorrelation is still highly significant, and the informa-
tion given in these two plots taken together leads us to consider an MA(1) model for this
series. Remember that the model is tentative at this point and we would certainly want to
consider other “nearby” alternative models when we carry out model diagnostics.

As a second example, Exhibit 6.7 shows the sample ACF for the series shown in
Exhibit 4.2 on page 59, generated by an MA(1) model with 0 =—0.9. The critical values
based on the very approximate standard errors point to an MA(1) model for this series
also.

Exhibit 6.7 Sample Autocorrelation for an MA(1) Process with 6 = -0.9
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2 4 6 8 10 12 14 16 18 20
Lag

> data(mal.2.s); acf(mal.2.s,xaxp=c(0,20,10))
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For our third example, we use the data shown in Exhibit 4.8 on page 63, which
were simulated from an MA(2) model with 6; = 1 and 6, = —0.6. The sample ACF dis-
plays significance at lags 1, 2, 5, 6, 7, and 14 when we use the simple standard error

Model Specification

bounds.
Exhibit 6.8 Sample ACF for an MA(2) Process with 6, =1 and 6, = -0.6
|
S t--d oo e oo __
o “ 1 ‘ I | | —l 1 I 1
°© | ‘ | | ‘ |
R
Q ©
< |
©
S
T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20
Lag
> data(ma2.s); acf(ma2.s,xaxp=c(0,20,10))

Exhibit 6.9 displays the sample ACF with the more sophisticated standard error
bounds. Now the lag 2 ACF is no longer significant, and it appears that an MA(1) may
be applicable. We will have to wait until we get further along in the model-building pro-
cess to see that the MA(2) model—the correct one—is the most appropriate model for

these data.
Exhibit 6.9 Alternative Bounds for the Sample ACF for the MA(2)
Process
O S
Nd ok --
o ‘ 1 <‘ ‘ I | . | | 1 | 1
S | j | | ]
TR - _ _
O o [T~~~ "===-4-c-cco---______1
D S
©
S
I I I I I I I I I I
2 4 6 8 10 12 14 16 18 20
Lag

> acf(ma2.s,ci.type='ma’',

xaxp=c(0,20,10))
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How do these techniques work for autoregressive models? Exhibit 6.10 gives the

sample ACF for the simulated AR(1) process we saw in Exhibit 4.13 on page 68. The
positive sample ACF values at lags 1, 2, and 3 reflect the strength of the lagged relation-
ships that we saw earlier in Exhibits 4.14, 4.15, and 4.16. However, notice that the sam-
ple ACF decreases more linearly than exponentially as theory suggests. Also contrary to
theory, the sample ACF goes negative at lag 10 and remains so for many lags.

Exhibit 6.10 Sample ACF for an AR(1) Process with ¢ =0.9

ACF

0.6

0.2

-0.2

Lag

> data(arl.s); acf(arl.s,xaxp=c(0,20,10))

The sample partial autocorrelation (PACF) shown in Exhibit 6.11, gives a much

clearer picture about the nature of the generating model. Based on this graph, we would
certainly entertain an AR(1) model for this time series.

Exhibit 6.11 Sample Partial ACF for an AR(1) Process with ¢ = 0.9

Partial ACF

0.6

0.2

-0.2




122 Model Specification

> pacf (arl.s,xaxp=c(0,20,10))

Exhibit 6.12 displays the sample ACF for our AR(2) time series. The time series
plot for this series was shown in Exhibit 4.19 on page 74. The sample ACF does look
somewhat like the damped wave that Equation (4.3.17) on page 73, and Exhibit 4.18
suggest. However, the sample ACF does not damp down nearly as quickly as theory
predicts.

Exhibit 6.12 Sample ACF for an AR(2) Process with ¢; = 1.5 and ¢, = -0.75

0.6
|

ACF

0.2

II |

1
Py

1
Fo

1

1

1

1

1

1

1

1

1

1

1

1
—1

1
i

1
1

1

1

1

1

1

1

1

1
o

1
1

1
1

1

1
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> acf (ar2.s,xaxp=c(0,20,10))

The sample PACF in Exhibit 6.13 gives a strong indication that we should consider
an AR(2) model for these data. The seemingly significant sample PACF at lag 9 would
need to be investigated further during model diagnostics.

Exhibit 6.13 Sample PACF for an AR(2) Process with ¢, = 1.5 and
¢, =-0.75
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> pacf (ar2.s,xaxp=c(0,20,10))

As a final example, we simulated 100 values of a mixed ARMA(1,1) model with ¢
= 0.6 and 6 = —0.3. The time series plot is shown in Exhibit 6.14 and the sample ACF
and PACFs are shown in Exhibit 6.15 and Exhibit 6.16, respectively. These seem to
indicate that an AR(1) model should be specified.

Exhibit 6.14 Simulated ARMA(1,1) Series with ¢ = 0.6 and 6 = -0.3.

Time

> data (armall.s)
> plot (armall.s, type='o',ylab=expression(Y[t]))

Exhibit 6.15 Sample ACF for Simulated ARMA(1,1) Series
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> acf (armall.s,xaxp=c(0,20,10))
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Exhibit 6.16 Sample PACF for Simulated ARMA(1,1) Series
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> pacf (armall.s,xaxp=c(0,20,10))

However, the triangular region of zeros shown in the sample EACF in Exhibit 6.17
indicates quite clearly that a mixed model with ¢ = 1 and with p = 1 or 2 would be more
appropriate. We will illustrate further uses of the EACF when we specify some real
series in Section 6.6.

Exhibit 6.17 Sample EACF for Simulated ARMA(1,1) Series

AR/MA| 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 X X X X o] o] o] o] o] o] o] o] o] o]
1 X o] o] o) o] o] o] o) o] o] o] o] o) o]
2 X o) o) o) o o] o) o) o o] o] o) o) o
3 X X o) o o) o] o) o o] o] o] o) o o
4 X o] X o] o] o] o] o] o] o] o] o] o] o]
5 X o] o] o) o] o] o] o) o] o] o] o] o) o]
6 X o] o] o) X o] o] o) o] o] o] o) o} o]
7 X o] o] o) X o] o] o) o] o] o] o] o) o]

> eacf (armall.s)
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6.4 Nonstationarity

As indicated in Chapter 5, many series exhibit nonstationarity that can be explained by
integrated ARMA models. The nonstationarity will frequently be apparent in the time
series plot of the series. A review of Exhibits 5.1, 5.5, and 5.8 is recommended here.

The sample ACF computed for nonstationary series will also usually indicate the
nonstationarity. The definition of the sample autocorrelation function implicitly
assumes stationarity; for example, we use lagged products of deviations from the overall
mean, and the denominator assumes a constant variance over time. Thus it is not at all
clear what the sample ACF is estimating for a nonstationary process. Nevertheless, for
nonstationary series, the sample ACF typically fails to die out rapidly as the lags
increase. This is due to the tendency for nonstationary series to drift slowly, either up or
down, with apparent “trends.” The values of r; need not be large even for low lags, but
often they are.

Consider the oil price time series shown in Exhibit 5.1 on page 88. The sample
ACF for the logarithms of these data is displayed in Exhibit 6.18. All values shown are
“significantly far from zero,” and the only pattern is perhaps a linear decrease with
increasing lag. The sample PACF (not shown) is also indeterminate.

Exhibit 6.18 Sample ACF for the Oil Price Time Series
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ACF
0.4
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> data(oil.price)
> acf (as.vector(oil.price) ,xaxp=c(0,24,12))

The sample ACF computed on the first differences of the logs of the oil price series
is shown in Exhibit 6.19. Now the pattern emerges much more clearly—after differenc-
ing, a moving average model of order 1 seems appropriate. The model for the original
oil price series would then be a nonstationary IMA(1,1) model. (The “significant” ACF
at lags 15, 16, and 20 are ignored for now.)
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Exhibit 6.19 Sample ACF for the Difference of the Log Oil Price Series
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> acf (diff (as.vector (log(oil.price))) ,xaxp=c(0,24,12))

If the first difference of a series and its sample ACF do not appear to support a sta-
tionary ARMA model, then we take another difference and again compute the sample
ACF and PACF to look for characteristics of a stationary ARMA process. Usually one
or at most two differences, perhaps combined with a logarithm or other transformation,
will accomplish this reduction to stationarity. Additional properties of the sample ACF
computed on nonstationary data are given in Wichern (1973), Roy (1977), and Hasza
(1980). See also Box, Jenkins, and Reinsel (1994, p. 218).

Overdifferencing

From Exercise 2.6 on page 20, we know that the difference of any stationary time series
is also stationary. However, overdifferencing introduces unnecessary correlations into a
series and will complicate the modeling process.

For example, suppose our observed series, {Y;}, is in fact a random walk so that one
difference would lead to a very simple white noise model

However, if we difference once more (that is, overdifference) we have

2 —
VY, = e—e
which is an MA(1) model but with 0 = 1. If we take two differences in this situation we
unnecessarily have to estimate the unknown value of 0. Specifying an IMA(2,1) model
would not be appropriate here. The random walk model, which can be thought of as
IMA(1,1) with © = 0, is the correct model.” Overdifferencing also creates a noninvert-

T The random walk model can also be thought of as an ARI(1,1) with ¢ = 0 or as a nonsta-
tionary AR(1) with ¢ = 1.
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ible model—see Section 4.5 on page 79.7 Noninvertible models also create serious
problems when we attempt to estimate their parameters—see Chapter 7.

To illustrate overdifferencing, consider the random walk shown in Exhibit 2.1 on
page 14. Taking one difference should lead to white noise—a very simple model. If we
mistakenly take two differences (that is, overdifference) and compute the sample ACF,
we obtain the graph shown in Exhibit 6.20. Based on this plot, we would likely specify
at least an IMA(2,1) model for the original series and then estimate the unnecessary MA
parameter. We also have a significant sample ACF value at lag 7 to think about and deal
with.

Exhibit 6.20 Sample ACF of Overdifferenced Random Walk
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> data (rwalk)
> acf (diff (rwalk,difference=2),ci.type='ma', xaxp=c(0,18,9))

In contrast, Exhibit 6.21 displays the sample ACF of the first difference of the ran-
dom walk series. Viewing this graph, we would likely want to consider the correct
model—the first difference looks very much like white noise.

T In backshift notation, if the correct model is o(B)(1 - B)Yt = G(B)et, overdifferencing
leads to ¢(B)(1 —B)2Yt = 0(B)(1 —B)et = 6‘(B)et, say, where 0'(B) = (1 -B)06(B)
and the “forbidden” root in 6'(B) at B = 1 is obvious.
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Exhibit 6.21 Sample ACF of Correctly Differenced Random Walk
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> acf (diff (rwalk),ci.type='ma',xaxp=c(0,18,9))

To avoid overdifferencing, we recommend looking carefully at each difference in
succession and keeping the principle of parsimony always in mind—rmodels should be
simple, but not too simple.

The Dickey-Fuller Unit-Root Test

While the approximate linear decay of the sample ACF is often taken as a symptom that
the underlying time series is nonstationary and requires differencing, it is also useful to
quantify the evidence of nonstationarity in the data-generating mechanism. This can be
done via hypothesis testing. Consider the model

Yz =Y, |+X, fort=1,2, ...
where {X;} is a stationary process. The process {Y,} is nonstationary if the coefficient o
=1, but it is stationary if |a| < 1. Suppose that {X,} is an AR(k) process: X,= ¢, X,_ | +

-« + ¢y X; _; + ¢, Under the null hypothesis that o = 1, X, =Y, - Y;_ ;. Letting a = o —
1, we have

Yt_Yt—l

(a-1Y, | +X,

aYt_1+(|>1Xt_1+ ~-+¢kXt_k+et (6.4.1)
=a¥, +0, (Y, =Y, )+t (Y, =Y, e

where a = 0 under the hypothesis that Y, is difference nonstationary. On the other hand,
if {Y,} is stationary so that —1 < a < 1, then it can be verified that Y, still satisfies an
equation similar to the equation above but with different coefficients; for example, a =
(I-¢1——¢p —a) <0. Indeed, {Y;} is then an AR(k + 1) process whose AR char-
acteristic equation is given by ®(x)(1 — ox) =0, where ®(x) =1 - pjx —--— (I)kxk. So, the
null hypothesis corresponds to the case where the AR characteristic polynomial has a
unit root and the alternative hypothesis states that it has no unit roots. Consequently, the
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test for differencing amounts to testing for a unit root in the AR characteristic polyno-
mial of {Y,}.

By the analysis above, the null hypothesis that o = 1 (equivalently a = 0) can be
tested by regressing the first difference of the observed time series on lag 1 of the
observed series and on the past k lags of the first difference of the observed series. We
then test whether the coefficient @ = 0—the null hypothesis being that the process is dif-
ference nonstationary. That is, the process is nonstationary but becomes stationary after
first differencing. The alternative hypothesis is that @ < 0 and hence {Y,} is stationary.
The augmented Dickey-Fuller (ADF) test statistic is the #-statistic of the estimated coef-
ficient of a from the method of least squares regression. However, the ADF test statistic
is not approximately z-distributed under the null hypothesis; instead, it has a certain non-
standard large-sample distribution under the null hypothesis of a unit root. Fortunately,
percentage points of this limit (null) distribution have been tabulated; see Fuller (1996).

In practice, even after first differencing, the process may not be a finite-order AR
process, but it may be closely approximated by some AR process with the AR order
increasing with the sample size. Said and Dickey (1984) (see also Chang and Park,
2002) showed that with the AR order increasing with the sample size, the ADF test has
the same large-sample null distribution as the case where the first difference of the time
series is a finite-order AR process. Often, the approximating AR order can be first esti-
mated based on some information criteria (for example, AIC or BIC) before carrying
out the ADF test. See Section 6.5 on page 130 for more information on the AIC and BIC
criteria.

In some cases, the process may be trend nonstationary in the sense that it has a
deterministic trend (for example, some linear trend) but otherwise is stationary. A
unit-root test may be conducted with the aim of discerning difference stationarity from
trend stationarity. This can be done by carrying out the ADF test with the detrended
data. Equivalently, this can be implemented by regressing the first difference on the
covariates defining the trend, the lag 1 of the original data, and the past lags of the first
difference of the original data. The #-statistic based on the coefficient estimate of the lag
1 of the original data furnishes the ADF test statistic, which has another nonstandard
large-sample null distribution. See Phillips and Xiao (1998) for a survey of unit root
testing.

We now illustrate the ADF test with the simulated random walk shown in Exhibit
2.1 on page 14. First, we consider testing the null hypothesis of unit root versus the
alternative hypothesis that the time series is stationary with unknown mean. Hence, the
regression defined by Equation (6.4.1) is augmented with an intercept to allow for the
possibly nonzero mean under the alternative hypothesis. (For the alternative hypothesis
that the process is a stationary process of zero mean, the ADF test statistic can be
obtained by running the unaugmented regression defined by Equation (6.4.1).) To carry
out the test, it remains to determine k. According to the AIC with the first difference of
the data, k is found to be &, in which case the ADF test statistic becomes —0.601, with
the p-value being greater than 0.1 #0On the other hand, setting k = O (the true order) leads

TR code: ar(diff(rwalk))
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to the ADF statistic —1.738, with p-value still greater than 0.1 ¥ Thus, there is strong evi-
dence supporting the unit-root hypothesis. Second, recall that the simulated random
walk appears to have a linear trend. Hence, linear trend plus stationary error forms
another reasonable alternative to the null hypothesis of unit root (difference nonstation-
arity). For this test, we include both an intercept term and the covariate time in the
regression defined by Equation (6.4.1). With k = 8, the ADF test statistic equals —2.289
with p-value greater than 0.1; that is, we do not reject the null hypothesis of unit root.
On the other hand, setting k = 0, the true order that is unknown in practice, the ADF test
statistic becomes —3.49 with p-value equal to 0.0501 ¥ Hence, there is weak evidence
that the process is linear-trend nonstationary; that is, the process equals linear time trend
plus stationary error, contrary to the truth that the process is a random walk, being dif-
ference nonstationary! This example shows that with a small sample size, it may be hard
to differentiate between trend nonstationarity and difference nonstationarity.

6.5 Other Specification Methods

A number of other approaches to model specification have been proposed since Box and
Jenkins’ seminal work. One of the most studied is Akaike’s (1973) Information Crite-
rion (AIC). This criterion says to select the model that minimizes

AIC = - 2log(maximum likelihood) + 2k (6.5.1)

where k = p + g + 1 if the model contains an intercept or constant term and & = p + g oth-
erwise. Maximum likelihood estimation is discussed in Chapter 7. The addition of the
term 2(p + g +1) or 2(p + g) serves as a “penalty function” to help ensure selection of
parsimonious models and to avoid choosing models with too many parameters.

The AIC is an estimator of the average Kullback-Leibler divergence of the esti-
mated model from the true model. Let p(yy.y,....,y,,) be the true pdf of Yy, Y», ..., Y,
and gg(y1,y7,---.y,) be the corresponding pdf under the model with parameter 6. The
Kullback-Leibler divergence of gq from p is defined by the formula

p(y]DyZn ~'-9yn)

D(p, . OO... B 3, Yy oo ¥)0
(p qe) J‘—oo J.—oo J.—oop(y1 y2 yn) g|:619(y13y2»~~~ayn)

}dyldyz...dyn
The AIC estimates E[D(p, ¢ é)] , where 0 is the maximum likelihood estimator of the
vector parameter 0. However, the AIC is a biased estimator, and the bias can be appre-
ciable for large parameter per data ratios. Hurvich and Tsai (1989) showed that the bias
can be approximately eliminated by adding another nonstochastic penalty term to the
AIC, resulting in the corrected AIC, denoted by AIC¢ and defined by the formula

iR code: 1ibrary (uroot) ; ADF.test (rwalk,selectlags=1list
(mode=c(1,2,3,4,5,6,7,8),Pmax=8) ,itsd=c(1,0,0))

T ADF.test (rwalk, selectlags=1list (mode=c(1,2,3,4,5,6,7,8),Pmax=8),
itsd=c(1,1,0))

¥ ADF.test (rwalk, selectlags=1ist (Pmax=0),1itsd=c(1,1,0))
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2(k+1)(k+2)

AIC, = AIC + /Z :
n_ —

(6.5.2)
Here n is the (effective) sample size and again k is the total number of parameters as
above excluding the noise variance. Simulation results by Hurvich and Tsai (1989) sug-
gest that for cases with k/n greater than 10%, the AIC¢ outperforms many other model
selection criteria, including both the AIC and BIC.

Another approach to determining the ARMA orders is to select a model that mini-
mizes the Schwarz Bayesian Information Criterion (BIC) defined as

BIC = —2log(maximum likelihood) + klog(n) (6.5.3)

If the true process follows an ARMA(p,q) model, then it is known that the orders speci-
fied by minimizing the BIC are consistent; that is, they approach the true orders as the
sample size increases. However, if the true process is not a finite-order ARMA process,
then minimizing AIC among an increasingly large class of ARMA models enjoys the
appealing property that it will lead to an optimal ARMA model that is closest to the true
process among the class of models under study.?

Regardless of whether we use the AIC or BIC, the methods require carrying out
maximum likelihood estimation. However, maximum likelihood estimation for an
ARMA model is prone to numerical problems due to multimodality of the likelihood
function and the problem of overfitting when the AR and MA orders exceed the true
orders. Hannan and Rissanen (1982) proposed an interesting and practical solution to
this problem. Their procedure consists of first fitting a high-order AR process with the
order determined by minimizing the AIC. The second step uses the residuals from the
first step as proxies for the unobservable error terms. Thus, an ARMA(k, j) model can be
approximately estimated by regressing the time series on its own lags 1 to k together
with the lags 1 to j of the residuals from the high order autoregression; the BIC of this
autoregressive model is an estimate of the BIC obtained with maximum likelihood esti-
mation. Hannan and Rissanen (1982) demonstrated that minimizing the approximate
BIC still leads to consistent estimation of the ARMA orders.

Order determination is related to the problem of finding the subset of nonzero coef-
ficients of an ARMA model with sufficiently high ARMA orders. A subset ARMA(p,q)
model is an ARMA(p,q) model with a subset of its coefficients known to be zero. For
example, the model

Y,=0.8Y,_1p+e,+0.7¢,_15 (6.5.4)

is a subset ARMA(12,12) model useful for modeling some monthly seasonal time
series. For ARMA models of very high orders, such as the preceding ARMA(12,12)
model, finding a subset ARMA model that adequately approximates the underlying pro-
cess is more important from a practical standpoint than simply determining the ARMA
orders. The method of Hannan and Rissanen (1982) for estimating the ARMA orders
can be extended to solving the problem of finding an optimal subset ARMA model.

T Closeness is measured in terms of the Kullback-Leibler divergence—a measure of dispar-
ity between models. See Shibata (1976) and the discussion in Stenseth et al. (2004).
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Indeed, several model selection criteria (including AIC and BIC) of the subset
ARMA(p,q) models (27 * 9of them!) can be approximately, exhaustively, and quickly
computed by the method of regression by leaps and bounds (Furnival and Wilson, 1974)
applied to the subset regression of Y, on its own lags and on lags of the residuals from a
high-order autoregression of {Y,}.

It is prudent to examine a few best subset ARMA models (in terms of, for example,
BIC) in order to arrive at some helpful tentative models for further study. The pattern of
which lags of the observed time series and which of the error process enter into the var-
ious best subset models can be summarized succinctly in a display like that shown in
Exhibit 6.22. This table is based on a simulation of the ARMA(12,12) model shown in
Equation (6.5.4). Each row in the exhibit corresponds to a subset ARMA model where
the cells of the variables selected for the model are shaded. The models are sorted
according to their BIC, with better models (lower BIC) placed in higher rows and with
darker shades. The top row tells us that the subset ARMA(14,14) model with the small-
est BIC contains only lags 8 and 12 of the observed time series and lag 12 of the error
process. The next best model contains lag 12 of the time series and lag 8 of the errors,
while the third best model contains lags 4, 8, and 12 of the time series and lag 12 of the
errors. In our simulated time series, the second best model is the true subset model.
However, the BIC values for these three models are all very similar, and all three (plus
the fourth best model) are worthy of further study. However, lag 12 of the time series
and that of the errors are the two variables most frequently found in the various subset
models summarized in the exhibit, suggesting that perhaps they are the more important
variables, as we know they are!

Exhibit 6.22 Best Subset ARMA Selection Based on BIC
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> set.seed(92397)

> test=arima.sim(model=1list (ar=c(rep(0,11),.8),
ma=c (rep(0,11),0.7)),n=120)

> res=armasubsets (y=test,nar=14,nma=14,y.name="'test’',
ar.method='ols"')

> plot (res)

6.6 Specification of Some Actual Time Series

Consider now specification of models for some of the actual time series that we saw in
earlier chapters.

The Los Angeles Annual Rainfall Series

Annual total rainfall amounts for Los Angeles were shown in Exhibit 1.1 on page 2. In
Chapter 3, we noted in Exhibit 3.17 on page 50, that rainfall amounts were not normally
distributed. As is shown in Exhibit 6.23, taking logarithms improves the normality dra-
matically.

Exhibit 6.23 QQ Normal Plot of the Logarithms of LA Annual Rainfall

o
T o

Sample Quantiles
15 20 25 3.0 35
1

Theoretical Quantiles

> data(larain); win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm(log(larain)); ggline(log(larain))
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Exhibit 6.24 displays the sample autocorrelations for the logarithms of the annual
rainfall series.

Exhibit 6.24 Sample ACF of the Logarithms of LA Annual Rainfall

g_
s gl 1. | . .
< © | | | ‘ [ ‘ ‘ I
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2 4 6 8 10 12 14 16 18 20
Lag

> win.graph(width=4.875,height=3,pointsize=8)
> acf (log(larain),h xaxp=c(0,20,10))

The log transformation has improved the normality, but there is no discernable
dependence in this time series. We could model the logarithm of annual rainfall amount
as independent, normal random variables with mean 2.58 and standard deviation 0.478.
Both these values are in units of log(inches).

The Chemical Process Color Property Series

The industrial chemical process color property displayed in Exhibit 1.3 on page 3,
shows more promise of interesting time series modeling—especially in light of the
dependence of successive batches shown in Exhibit 1.4 on page 4. The sample ACF
plotted in Exhibit 6.25 might at first glance suggest an MA(1) model, as only the lag 1
autocorrelation is significantly different from zero.
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Exhibit 6.25 Sample ACF for the Color Property Series

ACF
0.0 02 04
|

0.4
I

Lag

> data(color); acf(color,ci.type='ma')

However, the damped sine wave appearance of the plot encourages us to look fur-
ther at the sample partial autocorrelation. Exhibit 6.26 displays that plot, and now we
see clearly that an AR(1) model is worthy of first consideration. As always, our speci-
fied models are tentative and subject to modification during the model diagnostics stage
of model building.

Exhibit 6.26 Sample Partial ACF for the Color Property Series
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> pacf (color)
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The Annual Abundance of Canadian Hare Series

The time series of annual abundance of hare of the Hudson Bay in Canada was dis-
played in Exhibit 1.5 on page 5, and the year-to-year dependence was demonstrated in
Exhibit 1.6. It has been suggested in the literature that a transformation might be used to
produce a good model for these data. Exhibit 6.27 displays the log-likelihood as a func-
tion of the power parameter, A. The maximum occurs at A = 0.4, but a square root trans-
formation with A = 0.5 is well within the confidence interval for A. We will take the
square root of the abundance values for all further analyses.

Exhibit 6.27 Box-Cox Power Transformation Results for Hare Abundance

Log-likelihood

> win.graph(width=3,height=3,pointsize=8)
> data (hare); BoxCox.ar (hare)

Exhibit 6.28 shows the sample ACF for this transformed series. The fairly strong
lag 1 autocorrelation dominates but, again, there is a strong indication of damped oscil-
latory behavior.
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Exhibit 6.28 Sample ACF for Square Root of Hare Abundance
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> acf (hare”.5)

The sample partial autocorrelation for the transformed series is shown in Exhibit
6.29. It gives strong evidence to support an AR(2) or possibly an AR(3) model for these
data.

Exhibit 6.29 Sample Partial ACF for Square Root of Hare Abundance

0.4

Partial ACF

> pacf (hare”.5)
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The Oil Price Series

In Chapter 5, we began to look at the monthly oil price time series and argued graphi-
cally that the difference of the logarithms could be considered stationary—see Exhibit
5.1 on page 88. Software implementation of the Augmented Dickey-Fuller unit-root test
applied to the logs of the original prices leads to a test statistic of —1.1119 and a p-value
of 0.9189. With stationarity as the alternative hypothesis, this provides strong evidence
of nonstationarity and the appropriateness of taking a difference of the logs. For this
test, the software chose a value of k = 6 in Equation (6.4.1) on page 128 based on
large-sample theory.

Exhibit 6.30 shows the summary EACF table for the differences of the logarithms
of the oil price data. This table suggests an ARMA model with p =0and g = 1.

Exhibit 6.30 Extended ACF for Difference of Logarithms of QOil Price

Series
AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 X o o o o O o o o O o o o o
1 X X o o o O o O o O X o0 o0 o
2 0O X o o o o o O o o o o o0 o
3 0O X o o o o o O o o o o o0 o
4 0O X X o o o o O o o o o o0 o
5 0O X O X o o o o o o o o o0 o
6 0O X O X o o o o o o o o o0 o
7 X X O X o o o o o O o o o o

> eacf (diff (log(oil.price)))
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The results of the best subsets ARMA approach are displayed in Exhibit 6.31.

Exhibit 6.31 Best Subset ARMA Model for Difference of Log(Oil)
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> res=armasubsets (y=diff (log(oil.price)) , nar=7,nma=7,
y.name='test', ar.method='ols')
> plot (res)

Here the suggestion is that ¥, = Vlog(Oil,) should be modeled in terms of ¥, _ | and
Y; _ 4 and that no lags are needed in the error terms. The second best model omits the lag

4 term so that an ARIMA(1,1,0) model on the logarithms should also be investigated
further.
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Exhibit 6.32 suggests that we specify an MA(1) model for the difference of the log
oil prices, and Exhibit 6.33 says to consider an AR(2) model (ignoring some significant
spikes at lags 15, 16, and 20). We will want to look at all of these models further when
we estimate parameters and perform diagnostic tests in Chapters 7 and 8. (We will see
later that to obtain a suitable model for the oil price series, the outliers in the series will
need to be dealt with. (Can you spot the outliers in Exhibit 5.4 on page 91?)

Exhibit 6.32 Sample ACF of Difference of Logged Oil Prices

N
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ACF
. 0.1
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> acf (as.vector (diff (log(oil.price))) , xaxp=c(0,22,11))

Exhibit 6.33 Sample PACF of Difference of Logged Oil Prices

0.2

0.1

Partial ACF

Lag

> pacf (as.vector (diff (log(oil.price))) ,xaxp=c(0,22,11))
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6.7 Summary

In this chapter, we considered the problem of specifying reasonable but simple models
for observed times series. In particular, we investigated tools for choosing the orders (p,
d, and q) for ARIMA(p,d,q) models. Three tools, the sample autocorrelation function,
the sample partial autocorrelation function, and the sample extended autocorrelation
function, were introduced and studied to help with this difficult task. The Dickey-Fuller
unit-root test was also introduced to help distinguish between stationary and nonstation-
ary series. These ideas were all illustrated with both simulated and actual time series.

EXERCISES

6.1  Verify Equation (6.1.3) on page 110 for the white noise process.

6.2 Verify Equation (6.1.4) on page 110 for the AR(1) process.

6.3  Verify the line in Exhibit 6.1 on page 111, for the values ¢ = £0.9.
6.4 Add new entries to Exhibit 6.1 on page 111, for the following values:

(a) ¢ = +0.99.
(b) ¢ =10.5.
(c) ¢ =0.1.
6.5 Verify Equation (6.1.9) on page 111 and Equation (6.1.10) for the MA(1) pro-
cess.

6.6  Verify the line in Exhibit 6.2 on page 112, for the values 6 = £0.9.
6.7 Add new entries to Exhibit 6.2 on page 112, for the following values:

(a) 6 =20.99.
(b) 6 ==£0.8.
(c) 6==20.2.

6.8  Verify Equation (6.1.11) on page 112, for the general MA(g) process.

6.9 Use Equation (6.2.3) on page 113, to verify the value for the lag 2 partial autocor-
relation function for the MA(1) process given in Equation (6.2.5) on page 114.

6.10 Show that the general expression for the partial autocorrelation function of an
MA(1) process given in Equation (6.2.6) on page 114, satisfies the Yule-Walker
recursion given in Equation (6.2.7).

6.11 Use Equation (6.2.8) on page 114, to find the (theoretical) partial autocorrelation
function for an AR(2) model in terms of ¢; and ¢, and lag k=1,2,3, ... .

6.12 From a time series of 100 observations, we calculate r; = -0.49, r, = 0.31, r3 =
—-0.21, ry, = 0.11, and |ry| < 0.09 for k > 4. On this basis alone, what ARIMA
model would we tentatively specify for the series?

6.13 A stationary time series of length 121 produced sample partial autocorrelation of
;= 0.8, §5y= 0.6, = 0.08, and §,, = 0.00. Based on this information
alone, what model would we tentatively specify for the series?

6.14 For a series of length 169, we find that r{ = 0.41, r, = 0.32, r3 = 0.26, r4 = 0.21,
and r5 = 0.16. What ARIMA model fits this pattern of autocorrelations?
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6.15 The sample ACF for a series and its first difference are given in the following
table. Here n = 100.

lag 1 2 3 4 5 6
ACF for Y, 0.97 0.97 0.93 0.85 0.80 0.71
ACF for VY,  —0.42 0.18 —-0.02 0.07 -0.10 —-0.09

Based on this information alone, which ARIMA model(s) would we consider for
the series?

6.16 For a series of length 64, the sample partial autocorrelations are given as:

Lag 1 2 3 4 5
PACF 0.47 —0.34 0.20 0.02 —0.06

Which models should we consider in this case?

6.17 Consider an AR(1) series of length 100 with ¢ = 0.7.

(a) Would you be surprised if r; =0.6?
(b) Would ry =—0.15 be unusual?

6.18 Suppose the {X,} is a stationary AR(1) process with parameter ¢ but that we can
only observe Y, = X, + N, where {N,} is the white noise measurement error inde-
pendent of {X,}.

(a) Find the autocorrelation function for the observed process in terms of ¢, 0)2(,
and 63 .
(b) Which ARIMA model might we specify for {Y¥,}?

6.19 The time plots of two series are shown below.

(a) For each of the series, describe r| using the terms strongly positive, moder-
ately positive, near zero, moderately negative, or strongly negative. Do you
need to know the scale of measurement for the series to answer this?

(b) Repeat part (a) for r,.
T T T T T \/ 1
5 7 9 11

1 3 5 7 9 11 1 3

Series A
Series B

Time Time
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6.20

6.21

6.22

6.23

Simulate an AR(1) time series with n = 48 and with ¢ = 0.7.

(a) Calculate the theoretical autocorrelations at lag 1 and lag 5 for this model.

(b) Calculate the sample autocorrelations at lag 1 and lag 5 and compare the val-
ues with their theoretical values. Use Equations (6.1.5) and (6.1.6) page 111,
to quantify the comparisons.

(¢) Repeat part (b) with a new simulation. Describe how the precision of the esti-
mate varies with different samples selected under identical conditions.

(d) If software permits, repeat the simulation of the series and calculation of r;
and r5 many times and form the sampling distributions of r| and r5. Describe
how the precision of the estimate varies with different samples selected under
identical conditions. How well does the large-sample variance given in Equa-
tion (6.1.5) on page 111, approximate the variance in your sampling distribu-
tion?

Simulate an MA(1) time series with n = 60 and with 6 = 0.5.

(a) Calculate the theoretical autocorrelation at lag 1 for this model.

(b) Calculate the sample autocorrelation at lag 1, and compare the value with its
theoretical value. Use Exhibit 6.2 on page 112, to quantify the comparisons.

(¢) Repeat part (b) with a new simulation. Describe how the precision of the esti-
mate varies with different samples selected under identical conditions.

(d) If software permits, repeat the simulation of the series and calculation of r;
many times and form the sampling distribution of r;. Describe how the preci-
sion of the estimate varies with different samples selected under identical con-
ditions. How well does the large-sample variance given in Exhibit 6.2 on page
112, approximate the variance in your sampling distribution?

Simulate an AR(1) time series with n = 48, with

(a) $ = 0.9, and calculate the theoretical autocorrelations at lag 1 and lag 5;

(b) ¢ = 0.6, and calculate the theoretical autocorrelations at lag 1 and lag 5;

(¢) $ =0.3, and calculate the theoretical autocorrelations at lag 1 and lag 5.

(d) For each of the series in parts (a), (b), and (c), calculate the sample autocorre-
lations at lag 1 and lag 5 and compare the values with their theoretical values.
Use Equations (6.1.5) and 6.1.6, page 111, to quantify the comparisons. In
general, describe how the precision of the estimate varies with the value of ¢.

Simulate an AR(1) time series with ¢ = 0.6, with

(a) n =24, and estimate p; = ¢ = 0.6 with r;

(b) n =60, and estimate p; = ¢ = 0.6 with r;

(¢) n =120, and estimate p; = ¢ = 0.6 with ry.

(d) For each of the series in parts (a), (b), and (c), compare the estimated values
with the theoretical value. Use Equation (6.1.5) on page 111, to quantify the
comparisons. In general, describe how the precision of the estimate varies
with the sample size.
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6.24

6.25

6.26

6.27

Model Specification

Simulate an MA(1) time series with 6 = 0.7, with

(a) n =24, and estimate p; with ry;

(b) n =60, and estimate p; with ry;

(¢) n =120, and estimate p; with r;.

(d) For each of the series in parts (a), (b), and (c), compare the estimated values of
py with the theoretical value. Use Exhibit 6.2 on page 112, to quantify the
comparisons. In general, describe how the precision of the estimate varies
with the sample size.

Simulate an AR(1) time series of length n = 36 with ¢ = 0.7.

(a) Calculate and plot the theoretical autocorrelation function for this model. Plot
sufficient lags until the correlations are negligible.

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(¢) What are the theoretical partial autocorrelations for this model?

(d) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)? Use the
large-sample standard errors reported in Exhibit 6.1 on page 111, to quantify
your answer.

(e) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical ACF from part (c)? Use the
large-sample standard errors reported on page 115 to quantify your answer.

Simulate an MA(1) time series of length n = 48 with 6 = 0.5.

(a) What are the theoretical autocorrelations for this model?

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(¢) Calculate and plot the theoretical partial autocorrelation function for this
model. Plot sufficient lags until the correlations are negligible. (Hint: See
Equation (6.2.6) on page 114.)

(d) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical ACF from part (c)?

Simulate an AR(2) time series of length n = 72 with ¢; = 0.7 and ¢, = -0.4.

(a) Calculate and plot the theoretical autocorrelation function for this model. Plot
sufficient lags until the correlations are negligible.

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(¢) What are the theoretical partial autocorrelations for this model?

(d) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(e) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical ACF from part (c)?
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6.28

6.29

6.30

Simulate an MA(2) time series of length n = 36 with 6; = 0.7 and 6, = -0.4.

(a) What are the theoretical autocorrelations for this model?

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(¢) Calculate and plot the theoretical partial autocorrelation function for this
model. Plot sufficient lags until the correlations are negligible. (Hint: See
Equation (6.2.6) on page 114.)

(d) Calculate and plot the sample PACF for your simulated series. How well do
the values and patterns match the theoretical ACF from part (c)?

Simulate a mixed ARMA(1,1) model of length n = 60 with ¢ = 0.4 and 6 = 0.6.

(a) Calculate and plot the theoretical autocorrelation function for this model. Plot
sufficient lags until the correlations are negligible.

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(¢) Calculate and interpret the sample EACF for this series. Does the EACF help
you specify the correct orders for the model?

(d) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues and sample size.

(e) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 36.

(f) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 120.

Simulate a mixed ARMA(1,1) model of length n = 100 with ¢ = 0.8 and 6 = 0.4.

(a) Calculate and plot the theoretical autocorrelation function for this model. Plot
sufficient lags until the correlations are negligible.

(b) Calculate and plot the sample ACF for your simulated series. How well do the
values and patterns match the theoretical ACF from part (a)?

(c¢) Calculate and interpret the sample EACF for this series. Does the EACF help
you specify the correct orders for the model?

(d) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues and sample size.

(e) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 48.

(f) Repeat parts (b) and (c) with a new simulation using the same parameter val-
ues but sample size n = 200.
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6.31

6.32

6.33

6.34

Model Specification

Simulate a nonstationary time series with n = 60 according to the model

ARIMA(0,1,1) with 6 = 0.8.

(a) Perform the (augmented) Dickey-Fuller test on the series with £ = 0 in Equa-
tion (6.4.1) on page 128. (With k = 0, this is the Dickey-Fuller test and is not
augmented.) Comment on the results.

(b) Perform the augmented Dickey-Fuller test on the series with k chosen by the
software—that is, the “best” value for k. Comment on the results.

(¢) Repeat parts (a) and (b) but use the differences of the simulated series. Com-
ment on the results. (Here, of course, you should reject the unit root hypothe-
sis.)

Simulate a stationary time series of length n = 36 according to an AR(1) model

with ¢ = 0.95. This model is stationary, but just barely so. With such a series and a

short history, it will be difficult if not impossible to distinguish between stationary

and nonstationary with a unit root.

(a) Plot the series and calculate the sample ACF and PACF and describe what you
see.

(b) Perform the (augmented) Dickey-Fuller test on the series with £ = 0 in Equa-
tion (6.4.1) on page 128. (With k = 0 this is the Dickey-Fuller test and is not
augmented.) Comment on the results.

(¢) Perform the augmented Dickey-Fuller test on the series with k chosen by the
software—that is, the “best” value for k. Comment on the results.

(d) Repeat parts (a), (b), and (c) but with a new simulation with n = 100.

The data file named deere1 contains 82 consecutive values for the amount of

deviation (in 0.000025 inch units) from a specified target value that an industrial

machining process at Deere & Co. produced under certain specified operating
conditions.

(a) Display the time series plot of this series and comment on any unusual points.

(b) Calculate the sample ACF for this series and comment on the results.

(¢) Now replace the unusual value by a much more typical value and recalculate
the sample ACF. Comment on the change from what you saw in part (b).

(d) Calculate the sample PACF based on the revised series that you used in part
(c). What model would you specify for the revised series? (Later we will
investigate other ways to handle outliers in time series modeling.)

The data file named deere2 contains 102 consecutive values for the amount of

deviation (in 0.0000025 inch units) from a specified target value that another

industrial machining process produced at Deere & Co.

(a) Display the time series plot of this series and comment on its appearance.
Would a stationary model seem to be appropriate?

(b) Display the sample ACF and PACF for this series and select tentative orders
for an ARMA model for the series.
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6.35

6.36

6.37

6.38

6.39

The data file named deere3 contains 57 consecutive measurements recorded from

a complex machine tool at Deere & Co. The values given are deviations from a

target value in units of ten millionths of an inch. The process employs a control

mechanism that resets some of the parameters of the machine tool depending on
the magnitude of deviation from target of the last item produced.

(a) Display the time series plot of this series and comment on its appearance.
Would a stationary model be appropriate here?

(b) Display the sample ACF and PACF for this series and select tentative orders
for an ARMA model for the series.

The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a

desired ending point was recorded in inches. This was repeated 324 times to form

the time series.

(a) Display the time series plot of the data. Based on this information, do these
data appear to come from a stationary or nonstationary process?

(b) Calculate and plot the sample ACF and PACF for these data. Based on this
additional information, do these data appear to come from a stationary or non-
stationary process?

(¢) Calculate and interpret the sample EACF.

(d) Use the best subsets ARMA approach to specify a model for these data. Com-
pare these results with what you discovered in parts (a), (b), and (c).

Calculate and interpret the sample EACF for the logarithms of the Los Angeles

rainfall series. The data are in the file named larain. Do the results confirm that the

logs are white noise?

Calculate and interpret the sample EACF for the color property time series. The

data are in the color file. Does the sample EACF suggest the same model that was

specified by looking at the sample PACF?

The data file named days contains accounting data from the Winegard Co. of Bur-

lington, Iowa. The data are the number of days until Winegard receives payment

for 130 consecutive orders from a particular distributor of Winegard products.

(The name of the distributor must remain anonymous for confidentiality reasons.)

(a) Plot the time series, and comment on the display. Are there any unusual val-
ues?

(b) Calculate the sample ACF and PACEF for this series.

(¢) Now replace each of the unusual values with a value of 35 days—much more
typical values—and repeat the calculation of the sample ACF and PACF.
What ARMA model would you specify for this series after removing the out-
liers? (Later we will investigate other ways to handle outliers in time series
modeling.)



CHAPTER 7

PARAMETER ESTIMATION

This chapter deals with the problem of estimating the parameters of an ARIMA model
based on the observed time series Y, Y5,..., ¥,,. We assume that a model has already
been specified; that is, we have specified values for p, d, and ¢ using the methods of
Chapter 6. With regard to nonstationarity, since the dth difference of the observed series
is assumed to be a stationary ARMA(p, q) process, we need only concern ourselves with
the problem of estimating the parameters in such stationary models. In practice, then we
treat the dth difference of the original time series as the time series from which we esti-
mate the parameters of the complete model. For simplicity, we shall let Yy, Y»,..., ¥},
denote our observed stationary process even though it may be an appropriate difference
of the original series. We first discuss the method-of-moments estimators, then the least
squares estimators, and finally full maximum likelihood estimators.

7.1 The Method of Moments

The method of moments is frequently one of the easiest, if not the most efficient, meth-
ods for obtaining parameter estimates. The method consists of equating sample
moments to corresponding theoretical moments and solving the resulting equations to
obtain estimates of any unknown parameters. The simplest example of the method is to
estimate a stationary process mean by a sample mean. The properties of this estimator
were studied extensively in Chapter 3.

Autoregressive Models

Consider first the AR(1) case. For this process, we have the simple relationship p; = ¢.
In the method of moments, p; is equated to ry, the lag 1 sample autocorrelation. Thus

we can estimate ¢ by
N

b =r (7.1.1)

Now consider the AR(2) case. The relationships between the parameters ¢; and ¢,
and various moments are given by the Yule-Walker equations (4.3.13) on page 72:

P1 = 01+pidy and py = p1d; + 9,
The method of moments replaces p; by r; and p, by r, to obtain

ry = (1)1+r1c1)2 and ry = r1(1)1+(1>2

149
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which are then solved to obtain

ri(l-=r,) ry—12
$1= 1 22 and $2= 2 1
1_r1 1—1"12

(7.1.2)

The general AR(p) case proceeds similarly. Replace p; by r; throughout the
Yule-Walker equations on page 79 (or page 114) to obtain

oy + ri, + 193 e, g, =1y

rio, + Oy + ridy +odr S0 =7

1 2 _

1 173 p-2%tp 2 (7.1.3)
rp—1¢1+ rp_2¢2+ rp_3¢3 + .+ d)p =7,

These linear equations are then solved for $1, $2, . $p. The Durbin-Levinson recur-

sion of Equation (6.2.9) on page 115 provides a convenient method of solution but is
subject to substantial round-off errors if the solution is close to the boundary of the sta-
tionarity region. The estimates obtained in this way are also called Yule-Walker esti-
mates.

Moving Average Models

Surprisingly, the method of moments is not nearly as convenient when applied to mov-
ing average models. Consider the simple MA(1) case. From Equations (4.2.2) on
page 57, we know that
6

1+062

P =

Equating p; to r, we are led to solve a quadratic equation in 0. If ||| < 0.5, then the two
real roots are given by

As can be easily checked, the product of the two solutions is always equal to 1; there-
fore, only one of the solutions satisfies the invertibility condition |0] < 1.
After further algebraic manipulation, we see that the invertible solution can be writ-

ten as
—1+ [1-4r2
6= N "1 (7.1.4)

2r1

If ry = 0.5, unique, real solutions exist, namely F1, but neither is invertible. If |r{| > 0.5
(which is certainly possible even though |p;| < 0.5), no real solutions exist, and so the
method of moments fails to yield an estimator of 0. Of course, if |r| > 0.5, the specifica-
tion of an MA(1) model would be in considerable doubt.
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For higher-order MA models, the method of moments quickly gets complicated.
We can use Equations (4.2.5) on page 65 and replace p; by r; fork =1, 2,..., g, to
obtain g equations in g unknowns 81, 0,,..., 6,. The resulting equations are highly non-
linear in the 0’s, however, and their solution would of necessity be numerical. In addi-
tion, there will be multiple solutions, of which only one is invertible. We shall not
pursue this further since we shall see in Section 7.4 that, for MA models, the method of
moments generally produces poor estimates.

Mixed Models
We consider only the ARMA(1,1) case. Recall Equation (4.4.5) on page 78,

— (1 —9¢)(¢—9)¢k—1 for k>1

Pk = 09+ 02

Noting that p, /p; = ¢, we can first estimate ¢ as

,
b =2 (7.1.5)
r
Having done so, we can then use
N N
r = LZ00)©-0) (7.1.6)
1-20¢+62

AN
to solve for 6. Note again that a quadratic equation must be solved and only the invert-
ible solution, if any, retained.

Estimates of the Noise Variance

The final parameter to be estimated is the noise variance, 662 . In all cases, we can first
estimate the process variance, y, = Var(Y,), by the sample variance

2= Zn:(yt—?ﬁ 7.1.7)

n—lt=1

and use known relationships from Chapter 4 among v, Gez , and the 0’s and ¢’s to esti-

mate G2.

For the AR(p) models, Equation (4.3.31) on page 77 yields
(/}82 - (1_$lrl_$2r2_..._$prp)sz (7.1.8)
In particular, for an AR(1) process,
33 =(1- }’12)s2
. AN
since ¢ = ry.

For the MA(q) case, we have, using Equation (4.2.4) on page 65,

2
S
(7.1.9)
1+@f+6%+--~+@2

&2 —
o, =
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For the ARMA(1,1) process, Equation (4.4.4) on page 78 yields

1-§2

A2 _ — 2

82 = — s 7.1.10
¢ 1-2$0+ 62 ( )

Numerical Examples

The table in Exhibit 7.1 displays method-of-moments estimates for the parameters from
several simulated time series. Generally speaking, the estimates for all the autoregres-
sive models are fairly good but the estimates for the moving average models are not
acceptable. It can be shown that theory confirms this observation—method-of-moments
estimators are very inefficient for models containing moving average terms.

Exhibit 7.1 Method-of-Moments Parameter Estimates for Simulated

Series
Method-of-Moments

True Parameters Estimates
Model 0 o d, 0 o, by n
MA(1) -0.9 —-0.554 120
MA(1) 0.9 0.719 120
MA(I)  -0.9 NA' 60
MA(1) 0.5 -0.314 60
AR(1) 0.9 0.831 60
AR(1) 0.4 0.470 60
AR(2) 1.5 -=0.75 1472 -0.767 120

T No method-of-moments estimate exists since r1 = 0.544 for this simulation.

data(mal.2.s); data(mal.l.s); data(mal.3.s); data(mal.4.s)
estimate.mal.mom(mal.2.s); estimate.mal.mom(mal.l.s)
estimate.mal.mom(mal.3.s); estimate.mal.mom(mal.4.s)

arima(mal.4.s,order=c(0,0,1),method="CSS', include.mean=F)
data(arl.s); data(arl.2.s)
ar(arl.s,order.max=1,AIC=F,method="'yw')
ar(arl.2.s,order.max=1,AIC=F,method="yw')

data (ar2.s)

ar (ar2.s,order.max=2,AIC=F, method="yw'")

V V.V V V V V V V

Consider now some actual time series. We start with the Canadian hare abundance
series. Since we found in Exhibit 6.27 on page 136 that a square root transformation was
appropriate here, we base all modeling on the square root of the original abundance
numbers. We illustrate the estimation of an AR(2) model with the hare data, even
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though we shall show later that an AR(3) model provides a better fit to the data. The first
two sample autocorrelations displayed in Exhibit 6.28 on page 137 are r; = 0.736 and r,
= 0.304. Using Equations (7.1.2), the method-of-moments estimates of ¢; and ¢, are

A ri(I=ry))  0736(1-0304
b=t ( ; ) = 1.1178 (7.1.11)
— 3 1 -(0.736)
and
Fo—r2 2
§, =271 0.304—(0.736)2 _ 519 (7.1.12)

1-r? 1 -(0.736)2

The sample mean and variance of this series (after taking the square root) are found to
be 5.82 and 5.88, respectively. Then, using Equation (7.1.8), we estimate the noise vari-
ance as

62 = (1- $1”1 —$2r2)s2
[1-(1.1178)(0.736) — (-0.519)(0.304)](5.88) (7.1.13)
1.97

The estimated model (in original terms) is then

JY,—582 = 1L1178(,fY, | -5.82)-0519(,fY,_,-5.82)+e, (7.1.14)

or

JY, = 2335+ L1178 Y, | 0519y, ,+e, (7.1.15)

with estimated noise variance of 1.97.

Consider now the oil price series. Exhibit 6.32 on page 140 suggested that we spec-
ify an MA(1) model for the first differences of the logarithms of the series. The lag 1
sample autocorrelation in that exhibit is 0.212, so the method-of-moments estimate of 6

18
_ 1 _ 2
é - 1+ 41 4(0.212) = _0.222 (7.1.16)

2(0.212)

The mean of the differences of the logs is 0.004 and the variance is 0.0072. The esti-
mated model is

Viog(Y,) = 0.004 +e,+0.222¢, , (7.1.17)

or
log(Y,) = log(Y,_,)+0.004 + e, +0.222¢, (7.1.18)

with estimated noise variance of

2
62— 8= - 00072 _ 0686 (7.1.19)

T 14+02 14(-0222)2
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Using Equation (3.2.3) on page 28 with estimated parameters yields a standard error of
the sample mean of 0.0060. Thus, the observed sample mean of 0.004 is not signifi-
cantly different from zero and we would remove the constant term from the model, giv-
ing a final model of

log(Y,) = log(Y,_|)+e,+0222¢, (7.1.20)

7.2 Least Squares Estimation

Because the method of moments is unsatisfactory for many models, we must consider
other methods of estimation. We begin with least squares. For autoregressive models,
the ideas are quite straightforward. At this point, we introduce a possibly nonzero mean,
L, into our stationary models and treat it as another parameter to be estimated by least
squares.

Autoregressive Models

Consider the first-order case where
Y,—u=06Y,_;—-p+e, (7.2.1)

We can view this as a regression model with predictor variable Y, _ | and response vari-
able Y,. Least squares estimation then proceeds by minimizing the sum of squares of the
differences

(Y[_u)_d)(yt_] —H-)

Since only Y|, Y5,..., Y, are observed, we can only sum from =2 to = n. Let
n
S0 = 3 [(Y, ) -o(Y,_; -w]? (722)
t=2

This is usually called the conditional sum-of-squares function. (The reason for the
term conditional will become apparent later on.) According to the principle of least
squares, we estimate ¢ and p by the respective values that minimize S.(¢, ) given the
observed values of Y, Y»,..., ¥,

Consider the equation dS_./0u = 0. We have

6S
22(1’ W=, -wl=1+9) =

or, simplifying and solving for p,

o m ZY t;Yt_l (1.2.3)



7.2 Least Squares Estimation 155

Now, for large n,

1 & 1z
Y ~ Y ~Y
n—llgl2 4 n—ltgl2 -1

Thus, regardless of the value of ¢, Equation (7.2.3) reduces to

Y (7.2.4)

1 — —
fix == (Y= ¢Y)
-9
We sometimes say, except for end effects, u =Y.
Consider now the minimization of S (¢, Y ) with respect to ¢. We have
25,0, Y) _ _ _
—a = LAK D0, DI, =)
t=

Setting this equal to zero and solving for ¢ yields

iz(yt-F)(ytl—?)
=

n

S (Y, - TP

t=2

Except for one term missing in the denominator, namely (Y, - Y )2, this is the same as
r1. The lone missing term is negligible for stationary processes, and thus the least
squares and method-of-moments estimators are nearly identical, especially for large
samples.

For the general AR(p) process, the methods used to obtain Equations (7.2.3) and
(7.2.4) can easily be extended to yield the same result, namely

h=7 (7.2.5)

To generalize the estimation of the ¢’s, we consider the second-order model. In accor-
dance with Equation (7.2.5), we replace p by Y in the conditional sum-of-squares func-
tion, so

S0, 7) = S IY,=1)=0,(Y, | -D=6s(¥, ,-DI  (726)
t=3
Setting 0S./0¢, = 0, we have
-2 i [(Y,-Y)=¢,(Y, -Y)=dy(Y, ,-V)(Y, ;-Y) =0 (7.2.7)
t=3

which we can rewrite as
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ti(Y,— VY, -7 = ,-ig(y"l_ 2|6,
(7.2.8)

+ i (Y, -1, ,-Y)|d,
t=3

The sum of the lagged products i (Y, - Y)(Y 1 Y) is very nearly the numerator of
ri—we are missing one produlc:t,3 (Y, - 1_/)(Y1 —Y). A similar situation exists for

i (Y, - Y)(Y,_,-Y), but here we are missing (¥, — Y)(¥, - 7Y).If we divide
t;(jtil sides of Equation (7.2.8) by té}(Y t )_/)2, then, except for end effects, which are

negligible under the stationarity assumption, we obtain

rp= 0 rid, (1.2.9)
Approximating in a similar way with the equation 6S./0¢, = 0leads to
ry =10, +0, (7.2.10)

But Equations (7.2.9) and (7.2.10) are just the sample Yule-Walker equations for an
AR(2) model.

Entirely analogous results follow for the general stationary AR(p) case: To an
excellent approximation, the conditional least squares estimates of the ¢’s are obtained
by solving the sample Yule-Walker equations (7.1.3).7

Moving Average Models
Consider now the least-squares estimation of 6 in the MA(1) model:

Y, = e,—0e,_, (7.2.11)

At first glance, it is not apparent how a least squares or regression method can be
applied to such models. However, recall from Equation (4.4.2) on page 77 that invert-
ible MA(1) models can be expressed as

— 2 3
Y, = -0Y,_ -0, ,-0%Y, ;- - +e,

an autoregressive model but of infinite order. Thus least squares can be meaningfully
carried out by choosing a value of 6 that minimizes

T We note that Lai and Wei (1983) established that the conditional least squares estimators
are consistent even for nonstationary autoregressive models where the Yule-Walker equa-
tions do not apply.
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5.0) = D (e)?> = D [Y,+0Y, [ +0%Y, ,+0%Y, j+...1? (7.2.12)

where, implicitly, e, = ¢,(8) is a function of the observed series and the unknown param-
eter 0.

It is clear from Equation (7.2.12) that the least squares problem is nonlinear in the
parameters. We will not be able to minimize S.(0) by taking a derivative with respect to
0, setting it to zero, and solving. Thus, even for the simple MA(1) model, we must resort
to techniques of numerical optimization. Other problems exist in this case: We have not
shown explicit limits on the summation in Equation (7.2.12) nor have we said how to
deal with the infinite series under the summation sign.

To address these issues, consider evaluating S.(0) for a single given value of 6. The
only Y’s we have available are our observed series, Yy, Y>,..., ¥,. Rewrite Equation
(7.2.11) as

e, = Y, +0e, (7.2.13)

Using this equation, ey, e,,..., €, can be calculated recursively if we have the initial
value ¢j. A common approximation is to set ¢y = 0—its expected value. Then, condi-
tional on ey = 0, we can obtain

e = Y1
e, = Y2+Oe1
ey =

Y, +6e, (7.2.14)

e, =Y, +0e,
and thus calculate §.(0) = Z(et)z, conditional on ¢; = 0, for that single given value of
0.

For the simple case of one parameter, we could carry out a grid search over the
invertible range (—1,+1) for 0 to find the minimum sum of squares. For more general
MA(g) models, a numerical optimization algorithm, such as Gauss-Newton or Nelder-
Mead, will be needed.

For higher-order moving average models, the ideas are analogous and no new diffi-
culties arise. We compute e, = ¢,(61, 6,,..., 6,) recursively from

e, =Y+ Glet_l +0,e

e+ 0,0, (7.2.15)

-2 + q
with eg=e_y = ---=e_,=0. The sum of squares is minimized jointly in 6y, 6,,..., 6

using a multivariate numerical method.

q

Mixed Models
Consider the ARMA(1,1) case
Y, = ¢Y, | +e,—0c¢, , (7.2.16)

t t
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As in the pure MA case, we consider ¢, = ¢/(¢,0) and wish to minimize S (¢, 0) = Ze[z.
We can rewrite Equation (7.2.16) as

e, = Y,—0Y, | +0e, , (7.2.17)

To obtain e}, we now have an additional “startup” problem, namely Y. One approach is
to set Yy =0orto Y if our model contains a nonzero mean. However, a better approach
is to begin the recursion at ¢ = 2, thus avoiding Y|, altogether, and simply minimize

)
S.(0.0) = ¥ ¢
t=2

For the general ARMA(p,q) model, we compute

e =Y =0 Y, =Y, ,-mb)Y,
(7.2.18)
+01e,_ +0e, -0,
withe,=¢, | = -=¢,,1_,=0and then minimize S.(¢1,$7,...,9,,61,65,....0,)

numerically to obtain the conditional least squares estimates of all the parameters.

For parameter sets 0, 05,..., Gq corresponding to invertible models, the start-up val-
ues €,, €, _ |-, €, 4 1 — ¢ Will have very little influence on the final estimates of the
parameters for large samples.

7.3 Maximum Likelihood and Unconditional Least Squares

For series of moderate length and also for stochastic seasonal models to be discussed in
Chapter 10, the start-up values ¢, =¢, | = --=¢,,|_, =0 will have a more pro-
nounced effect on the final estimates for the parameters. Thus we are led to consider the
more difficult problem of maximum likelihood estimation.

The advantage of the method of maximum likelihood is that all of the information
in the data is used rather than just the first and second moments, as is the case with least
squares. Another advantage is that many large-sample results are known under very
general conditions. One disadvantage is that we must for the first time work specifically

with the joint probability density function of the process.

Maximum Likelihood Estimation

For any set of observations, Yy, Y»,..., Y, time series or not, the likelihood function L is
defined to be the joint probability density of obtaining the data actually observed. How-
ever, it is considered as a function of the unknown parameters in the model with the
observed data held fixed. For ARIMA models, L will be a function of the ¢’s, 0’s, p, and
cg given the observations Y|, Y5,..., Y¥,,. The maximum likelihood estimators are then
defined as those values of the parameters for which the data actually observed are most
likely, that is, the values that maximize the likelihood function.

We begin by looking in detail at the AR(1) model. The most common assumption is
that the white noise terms are independent, normally distributed random variables with
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zero means and common standard deviation o, . The probability density function (pdf)
of each ¢, is then

e2
(2n682)‘1/zexp(——t2j for —0<e, <o

20,

and, by independence, the joint pdf for ey, es,..., e, is
1 n

e? 7.3.1
by t;, ( )

(27503)‘(” =D/ 2exp| -

S

Now consider
Yy—p =606, -p)+e,
Yi—p=606Y,-pn)+e
SR 3 (7.3.2)
Y,-pn=0Y,_-p+e,

If we condition on Y; =y, Equation (7.3.2) defines a linear transformation between e,,
es,...,e,and Y5, Y3,..., Y, (with Jacobian equal to 1). Thus the joint pdf of Y5, ¥3,..., ¥,
given Y| = y; can be obtained by using Equation (7.3.2) to substitute for the ¢’s in terms
of the Y’s in Equation (7.3.1). Thus we get

Js V3o oo Yuyy) = (2nG2)-(1=1)/2
1< |33
A I Z [ =) =y, — )]
26e t=2

Now consider the (marginal) distribution of Y. It follows from the linear process repre-
sentation of the AR(1) process (Equation (4.3.8) on page 70) that Y| will have a normal
distribution with mean p and variance 62/ (1 — ¢2) . Multiplying the conditional pdf in
Equation (7.3.3) by the marginal pdf of Y, gives us the joint pdf of Y/, ¥»,..., ¥, that we
require. Interpreted as a function of the parameters ¢, p, and o2, the likelihood function
for an AR(1) model is given by

L(d, 1, 02) = (2m62) ™/ 2(1 - ¢2)1/23xp[_L5(¢, u)} (7.3.4)
263
where
S = 3 1Y~ )= 6(¥,_ W12+ (1= 2)(Y, - ) (73.5)
t=2

The function S(¢, ) is called the unconditional sum-of-squares function.
As a general rule, the logarithm of the likelihood function is more convenient to
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work with than the likelihood itself. For the AR(1) case, the log-likelihood function,
denoted ¢(¢, u, 62), is given by

1

T3S0w (36

1
(4, 1, 02) = ~Flog(2m) - Slog(a2) + 3log(1 - 62) -

For given values of ¢ and L, ¢(¢, L, Gg) can be maximized analytically with respect
to csg in terms of the yet-to-be-determined estimators of ¢ and p. We obtain
N A
a2 = S, 1) (7.3.7)

n

e

As in many other similar contexts, we usually divide by n — 2 rather than n (since we are
estimating fwo parameters, ¢ and p) to obtain an estimator with less bias. For typical
time series sample sizes, there will be very little difference.

Consider now the estimation of ¢ and p. A comparison of the unconditional
sum-of-squares function S(¢,u) with the earlier conditional sum-of-squares function
S.(,n) of Equation (7.2.2) on page 154, reveals one simple difference:

S, p) = S.(0, p) +(1-92) (Y, —p)? (7.3.8)

Since S.(¢, 1) involves a sum of n — 1 components, whereas (1 — 4)2)(Y1 —n)? does not
involve n, we shall have S(¢, u) =S .(¢, n). Thus the values of ¢ and p that minimize
S(d,n) or S.(¢, 1) should be very similar, at least for larger sample sizes. The effect of
the rightmost term in Equation (7.3.8) will be more substantial when the minimum for ¢
occurs near the stationarity boundary of £1.

Unconditional Least Squares

As a compromise between conditional least squares estimates and full maximum likeli-
hood estimates, we might consider obtaining unconditional least squares estimates; that
is, estimates minimizing S(¢, ). Unfortunately, the term (1 — ¢2)(Y = u)? causes the
equations 0S/0¢ = 0 and 6S/0p = 0to be nonlinear in ¢ and p, and reparameteriza-
tion to a constant term 0, = (1 — ¢) does not improve the situation substantially. Thus
minimization must be carried out numerically. The resulting estimates are called uncon-
ditional least squares estimates.

The derivation of the likelihood function for more general ARMA models is con-
siderably more involved. One derivation may be found in Appendix H: State Space
Models on page 222. We refer the reader to Brockwell and Davis (1991) or Shumway
and Stoffer (2006) for even more details.

7.4 Properties of the Estimates

The large-sample properties of the maximum likelihood and least squares (conditional
or unconditional) estimators are identical and can be obtained by modifying standard
maximum likelihood theory. Details can be found in Shumway and Stoffer (2006, pp.
125-129). We shall look at the results and their implications for simple ARMA models.
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For large n, the estimators are approximately unbiased and normally distributed.
The variances and correlations are as follows:

AR(1): Var(§) ~ L ‘n¢2 (7.4.9)
N N l_¢2
Var(¢,) = Var(0,) = - 2
AR(2): o (7.4.10)
CO”’($1»$2)~—1 _]¢ = =P
2
A 1-02
MA(1): Var(0) = - (7.4.11)
1-03

Var(@l) ~ Var(éz) ~—
MA(2): (7.4.12)

AN AN el
Corr(el,ez)z—l_e
2
A TL=0%rL-667?
varh =[5
ARMA(L,1): Var(é)z[l_nez}[ﬁf (7.4.13)
A A [1_ 4271 _02
Corr(9,0)~ a 1¢—)d§é 6%)

Notice that, in the AR(1) case, the variance of the estimator of ¢ decreases as ¢
approaches 1. Also notice that even though an AR(1) model is a special case of an
AR(2) model, the variance of $1 shown in Equations (7.4.10) shows that our estimation
of ¢, will generally suffer if we erroneously fit an AR(2) model when, in fact, ¢, = 0.
Similar comments could be made about fitting an MA(2) model when an MA(1) would
suffice or fitting an ARMA(1,1) when an AR(1) or an MA(1) is adequate.

For the ARMAC(1,1) case, note the denominator of ¢ — 0 in the variances in Equa-
tions (7.4.13). If ¢ and O are nearly equal, the variability in the estimators of ¢ and 0 can
be extremely large.

Note that in all of the two-parameter models, the estimates can be highly correlated,
even for very large sample sizes.

The table shown in Exhibit 7.2 gives numerical values for the large-sample approx-
imate standard deviations of the estimates of ¢ in an AR(1) model for several values of
¢ and several sample sizes. Since the values in the table are equal to /(1 — $2)/n , they
apply equally well to standard deviations computed according to Equations (7.4.10),
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(7.4.11), and (7.4.12).

Thus, in estimating an AR(1) model with, for example, n = 100 and ¢ = 0.7, we can
be about 95% confident that our estimate of ¢ is in error by no more than £2(0.07) =
+0.14.

Exhibit 7.2  AR(1) Model Large-Sample Standard Deviations of {

n
[0 50 100 200
0.4 0.13 0.09 0.06
0.7 0.10 0.07 0.05
0.9 0.06 0.04 0.03

For stationary autoregressive models, the method of moments yields estimators
equivalent to least squares and maximum likelihood, at least for large samples. For mod-
els containing moving average terms, such is not the case. For an MA(1) model, it can
be shown that the large-sample variance of the method-of-moments estimator of 0 is

equal to
2 4,064 08
Var(@)z1+e +407+06%+0 (7.4.14)
n(l-02%)2

Comparing Equation (7.4.14) with that of Equation (7.4.11), we see that the variance for
the method-of-moments estimator is always larger than the variance of the maximum
likelihood estimator. The table in Exhibit 7.3 displays the ratio of the large-sample stan-
dard deviations for the two methods for several values of 0. For example, if 6 is 0.5, the
method-of-moments estimator has a large-sample standard deviation that is 42% larger
than the standard deviation of the estimator obtained using maximum likelihood. It is
clear from these ratios that the method-of-moments estimator should not be used for the
MA(1) model. This same advice applies to all models that contain moving average
terms.

Exhibit 7.3 Method of Moments (MM) vs. Maximum Likelihood (MLE) in
MA(1) Models

0 SDy/ SDy e
0.25 1.07
0.50 1.42
0.75 2.66

0.90 5.33
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7.5 lllustrations of Parameter Estimation

Consider the simulated MA(1) series with 8 = —0.9. The series was displayed in Exhibit
4.2 on page 59, and we found the method-of-moments estimate of 0 to be a rather poor
—0.554; see Exhibit 7.1 on page 152. In contrast, the maximum likelihood estimate is
—0.915, the unconditional sum-of-squares estimate is —0.923, and the conditional least
squares estimate is —0.879. For this series, the maximum likelihood estimate of —0.915
is closest to the true value used in the simulation. Using Equation (7.4.11) on page 161
and replacing 6 by its estimate, we have a standard error of about

JWT(@)“JI_GZ _ Jl_(o.91)2z0_04

n 120

so none of the maximum likelihood, conditional sum-of-squares, or unconditional
sum-of-squares estimates are significantly far from the true value of —-0.9.

The second MA(1) simulation with 6 = 0.9 produced the method-of-moments esti-
mate of 0.719 shown in Exhibit 7.1. The conditional sum-of-squares estimate is 0.958,
the unconditional sum-of-squares estimate is 0.983, and the maximum likelihood esti-
mate is 1.000. These all haveAa standard error of about 0.04 as above. Here the maxi-
mum likelihood estimate of 6 = 1is a little disconcerting since it corresponds to a
noninvertible model.

The third MA(1) simulation with 8 = —0.9 produced a method-of-moments estimate
of —0.719 (see Exhibit 7.1). The maximum likelihood estimate here is —0.894 with a

standard error of about
_ 2
Jvar(®) ~ /% ~0.06

For these data, the conditional sum-of-squares estimate is —0.979 and the unconditional
sum-of-squares estimate is —0.961. Of course, with a standard error of this magnitude, it
is unwise to report digits in the estimates of 0 beyond the tenths place.

For our simulated autoregressive models, the results are reported in Exhibits 7.4
and 7.5.

Exhibit 7.4 Parameter Estimation for Simulated AR(1) Models

Method-of- Conditional  Unconditional Maximum
Moments SS SS Likelihood
Parameter ¢ Estimate Estimate Estimate Estimate n
0.9 0.831 0.857 0911 0.892 60
0.4 0.470 0.473 0.473 0.465 60
data(arl.s); data(arl.2.s)

ar (arl.s,order.max=1,AIC=F, method="yw'")
ar(arl.s,order.max=1,AIC=F,method="'0ls")
ar (arl.s,order.max=1,AIC=F,method="mle")

vV V. VvV VvV
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> ar(arl.2.s,order.max=1,AIC=F, method="yw'")
> ar(arl.2.s,order.max=1,AIC=F,method="'0ols")
> ar(arl.2.s,order.max=1,AIC=F, method='mle")

From Equation (7.4.9) on page 161, the standard errors for the estimates are

JVar($) = 1_$2=J1‘(%§31)2=0.o7
n

2
Var($) = /%zo.n

respectively. Considering the magnitude of these standard errors, all four methods esti-
mate reasonably well for AR(1) models.

and

Exhibit 7.5 Parameter Estimation for a Simulated AR(2) Model

Method-of- Conditional Unconditional Maximum
Moments SS SS Likelihood
Parameters Estimates Estimates Estimates Estimate n
¢1 =15 1.472 1.5137 1.5183 1.5061 120
4)2 =-0.75 -0.767 —0.8050 —0.8093 -0.7965 120

data (ar2.s)

ar (ar2.s,order.max=2,AIC=F, method="yw'")
ar (ar2.s,order.max=2,AIC=F,method="'0ls")
ar (ar2.s,order.max=2,AIC=F,method="mle")

vV V. V V

From Equation (7.4.10) on page 161, the standard errors for the estimates are

— — 1-¢2 _ 2
JVar@ = [rarey ~ [=2 = [I2OT57 <06

Again, considering the size of the standard errors, all four methods estimate reasonably
well for AR(2) models.

As a final example using simulated data, consider the ARMA(1,1) shown in Exhibit
6.14 on page 123. Here ¢ = 0.6, 6 = —0.3, and n = 100. Estimates using the various
methods are shown in Exhibit 7.6.
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Exhibit 7.6 = Parameter Estimation for a Simulated ARMA(1,1) Model

Method-of- Conditional Unconditional Maximum
Moments SS SS Likelihood
Parameters Estimates Estimates Estimates Estimate n
¢=0.6 0.637 0.5586 0.5691 0.5647 100
0=-0.3 -0.2066 —0.3669 -0.3618 —0.3557 100

> data(armall.s)
> arima (armall.s, order=c(1l,0,1),method='CSS")
> arima(armall.s, order=c(1,0,1),method='ML")

Now let’s look at some real time series. The industrial chemical property time series
was first shown in Exhibit 1.3 on page 3. The sample PACF displayed in Exhibit 6.26
on page 135, strongly suggested an AR(1) model for this series. Exhibit 7.7 shows the
various estimates of the ¢ parameter using four different methods of estimation.

Exhibit 7.7 Parameter Estimation for the Color Property Series

Method-of- Conditional Unconditional Maximum

Moments SS SS Likelihood
Parameter Estimate Estimate Estimate Estimate n
o 0.5282 0.5549 0.5890 0.5703 35

data (color)

ar (color,order.max=1,AIC=F, method="'yw'")
ar (color,order.max=1,AIC=F,method="'0ols")
ar (color,order.max=1,AIC=F,method="mle")

vV V. VvV Vv

Here the standard error of the estimates is about

JvaP@)~ [1=0.51)° (;)557)2 ~0.14

so all of the estimates are comparable.

As a second example, consider again the Canadian hare abundance series. As
before, we base all modeling on the square root of the original abundance numbers.
Based on the partial autocorrelation function shown in Exhibit 6.29 on page 137, we
will estimate an AR(3) model. For this illustration, we use maximum likelihood estima-
tion and show the results obtained from the R software in Exhibit 7.8.
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Exhibit 7.8 Maximum Likelihood Estimates from R Software: Hare

Series
Coefficients: ari ar2 ar3 Intercept’r
1.0519 -0.2292 —-0.3931 5.6923
s.e. 0.1877 0.2942 0.1915 0.3371
sigma®2 estimated as 1.066: log-likelihood = -46.54, AIC = 101.08

T The intercept here is the estimate of the process mean pL—not of 0.

> data (hare)
> arima (sqrt (hare) ,order=c(3,0,0))

Here we see that §, = 1.0519, $, =-0.2292, and ¢ = ~0.3930. We also see that the
estimated noise variance is 6% = 1.066. Noting the standard errors, the estimates of the
lag 1 and lag 3 autoregressive coefficients are significantly different from zero, as is the
intercept term, but the lag 2 autoregressive parameter estimate is not significant.

The estimated model would be written
ﬁ -5.6923 = 1.0519( /Yt_ | —3.6923) - 0.2292(, /Y, _, - 5.6923)
—0.3930( /Y[_ 3—5.6923) +e,

or

A/Yt = 325+ 1.0519,/Y, ,-0.2292 /Y, ,-0.3930,/Y, ;+e,

where Y; is the hare abundance in year ¢ in original terms. Since the lag 2 autoregressive
term is insignificant, we might drop that term (that is, set ¢, = 0) and obtain new esti-
mates of ¢; and ¢3 with this subset model.

As a last example, we return to the oil price series. The sample ACF shown in
Exhibit 6.32 on page 140, suggested an MA(1) model on the differences of the logs of
the prices. Exhibit 7.9 gives the estimates of 6 by the various methods and, as we have
seen earlier, the method-of-moments estimate differs quite a bit from the others. The
others are nearly equal given their standard errors of about 0.07.

Exhibit 7.9 Estimation for the Difference of Logs of the Oil Price Series

Method-of- Conditional  Unconditional Maximum
Moments SS SS Likelihood
Parameter Estimate Estimate Estimate Estimate n
0 -0.2225 -0.2731 -0.2954 -0.2956 241

> data(oil.price)
> arima(log(oil.price) ,order=c(0,1,1),method='CSS")
> arima(log(oil.price) ,order=c(0,1,1) ,method="ML")
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7.6 Bootstrapping ARIMA Models

In Section 7.4, we summarized some approximate normal distribution results for the
estimator ¥, where v is the vector consisting of all the ARMA parameters. These normal
approximations are accurate for large samples, and statistical software generally uses
those results in calculating and reporting standard errors. The standard error of some
complex function of the model parameters, for example the quasi-period of the model, if
it exists, is then usually obtained by the delta method. However, the general theory pro-
vides no practical guidance on how large the sample size should be for the normal
approximation to be reliable. Bootstrap methods (Efron and Tibshirani, 1993; Davison
and Hinkley, 2003) provide an alternative approach to assessing the uncertainty of an
estimator and may be more accurate for small samples. There are several variants of the
bootstrap method for dependent data—see Politis (2003). We shall confine our discus-
sion to the parametric bootstrap that generates the bootstrap time series YT , Y;, Y Z
by simulation from the fitted ARIMA(p,d,q) model. (The bootstrap may be done by fix-
ing the first p + d initial values of Y " to those of the observed data. For stationary mod-
els, an alternative procedure is to simulate stationary realizations from the fitted model,
which can be done approximately by simulating a long time series from the fitted model
and then deleting the transient initial segment of the simulated data—the so-called
burn-in.) If the errors are assumed to be normally distributed, the errors may be drawn
randomly and with replacement from N(0, 62) . For the case of an unknown error distri-
bution, the errors can be drawn randomly and with replacement from the residuals of the
fitted model. For each bootstrap series, let ™ be the estimator computed based on the
bootstrap time series data using the method of full maximum likelihood estimation
assuming stationarity. (Other estimation methods may be used.) The bootstrap is repli-
cated, say, B times. (For example, B = 1000.) From the B bootstrap parameter estimates,
we can form an empirical distribution and use it to calibrate the uncertainty in ¥. Sup-
pose we are interested in estimating some function of vy, say h(y)—for example, the
AR(1) coefficient. Using the percentile method, a 95% bootstrap confidence interval for
h(y) can be obtained as the interval from the 2.5 percentile to the 97.5 percentile of the
bootstrap distribution of A(§™).

We illustrate the bootstrap method with the hare data. The bootstrap 95% confi-
dence intervals reported in the first row of the table in Exhibit 7.10 are based on the
bootstrap obtained by conditioning on the initial three observations and assuming nor-
mal errors. Those in the second row are obtained using the same method except that the
errors are drawn from the residuals. The third and fourth rows report the confidence
intervals based on the stationary bootstrap with a normal error distribution for the third
row and the empirical residual distribution for the fourth row. The fifth row in the table
shows the theoretical 95% confidence intervals based on the large-sample distribution
results for the estimators. In particular, the bootstrap time series for the first bootstrap
method is generated recursively using the equation

PR % A % A * A ;
Yt_¢le—1_¢2Yz—2_¢3Yz—3 = 90+ef (7.6.1)
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for t=4,5,..., 31, where the ¢; are chosen independently from N(0, 63), Y1 =Y,
Y2 =Y, Y3 = Y, ; and the parameters are set to be the estlmates from the AR(3)
model fltted to the (square root transformed) hare data with 60 = [i(1 - (1)1 ¢2 ¢3)
All results are based on about 1000 bootstrap replications, but full maximum likelihood
estimation fails for 6.3%, 6.3%, 3.8%, and 4.8% of 1000 cases for the four bootstrap
methods I, II, III, and IV, respectively.

Exhibit 7.10 Bootstrap and Theoretical Confidence Intervals for the AR(3)
Model Fitted to the Hare Data

Method arl ar2 ar3 intercept noise var.

| (0.593,1.269)  (-0.655,0.237)  (-0.666, -0.018) (5.115, 6.394) (0.551, 1.546)
11 (0.612,1.296)  (-0.702,0.243)  (-0.669, —0.026) (5.004, 6.324) (0.510, 1.510)
111 (0.699, 1.369)  (-0.746,0.195)  (-0.666, —-0.021) (5.056, 6.379) (0.499, 1.515)
v (0.674,1.389)  (-0.769,0.194)  (-0.665, -0.002) (4.995, 6.312) (0.477, 1.530)

Theoretical (0.684,1.42) (-0.8058,0.3474) (-0.7684,-0.01776) (5.032, 6.353) (0.536, 1.597)

> See the Chapter 7 R scripts file for the extensive code
required to generate these results.

All four methods yield similar bootstrap confidence intervals, although the condi-
tional bootstrap approach generally yields slightly narrower confidence intervals. This is
expected, as the conditional bootstrap time series bear more resemblance to each other
because all are subject to identical initial conditions. The bootstrap confidence intervals
are generally slightly wider than their theoretical counterparts that are derived from the
large-sample results. Overall, we can draw the inference that the ¢, coefficient estimate
is insignificant, whereas both the ¢ and ¢ coefficient estimates are significant at the
5% significance level.

The bootstrap method has the advantage of allowing easy construction of confi-
dence intervals for a model characteristic that is a nonlinear function of the model
parameters. For example, the characteristic AR polynomial of the fitted AR(3) model
for the hare data admits a pair of complex roots. Indeed, the roots are 0.84 + 0.647: and
—2.26, where i = /—1. The two complex roots can be written in polar form: 1.06exp(+
0.657i). As in the discussion of the quasi-period for the AR(2) model on page 74, the
quasi-period of the fitted AR(3) model can be defined as 27/0.657 = 9.57. Thus, the fit-
ted model suggests that the hare abundance underwent cyclical fluctuation with a period
of about 9.57 years. The interesting question of constructing a 95% confidence interval
for the quasi-period could be studied using the delta method. However, this will be quite
complex, as the quasi-period is a complicated function of the parameters. But the boot-
strap provides a simple solution: For each set of bootstrap parameter estimates, we can
compute the quasi-period and hence obtain the bootstrap distribution of the
quasi-period. Confidence intervals for the quasi-period can then be constructed using
the percentile method, and the shape of the distribution can be explored via the histo-
gram of the bootstrap quasi-period estimates. (Note that the quasi-period will be unde-
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fined whenever the roots of the AR characteristic equation are all real numbers.) Among
the 1000 stationary bootstrap time series obtained by simulating from the fitted model
with the errors drawn randomly from the residuals with replacement, 952 series lead to
successful full maximum likelihood estimation. All but one of the 952 series have
well-defined quasi-periods, and the histogram of these is shown in Exhibit 7.11. The
histogram shows that the sampling distribution of the quasi-period estimate is slightly
skewed to the right.% The Q-Q normal plot (Exhibit 7.12) suggests that the quasi-period
estimator has, furthermore, a thick-tailed distribution. Thus, the delta method and the
corresponding normal distribution approximation may be inappropriate for approximat-
ing the sampling distribution of the quasi-period estimator. Finally, using the percentile
method, a 95% confidence interval of the quasi-period is found to be (7.84,11.34).

Exhibit 7.11 Histogram of Bootstrap Quasi-period Estimates

05
|

Density
0.3

1

|

0.1

5

I I I I I ]
6 8 10 12 14

0.0

Quasi—period

> win.graph(width=3.9,height=3.8,pointsize=8)

> hist (period.replace,prob=T,xlab="Quasi-period', axes=F,
xlim=c(5,16))

> axis(2); axis(1,c(4,6,8,10,12,14,16),c(4,6,8,10,12,14,NR))

T However, see the discussion below Equation (13.5.9) on page 338 where it is argued that,
from the perspective of frequency domain, there is a small parametric region correspond-
ing to complex roots and yet the associated quasi-period may not be physically meaning-
ful. This illustrates the subtlety of the concept of quasi-period.
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Exhibit 7.12 Q-Q Normal Plot of Bootstrap Quasi-period Estimates

Sample Quantiles
10

[e]
I I I I I I I

-3 2 -1 0 1 2 3

Theoretical Quantiles

> win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm(period.replace); ggline (period.replace)

7.7 Summary

This chapter delved into the estimation of the parameters of ARIMA models. We con-
sidered estimation criteria based on the method of moments, various types of least
squares, and maximizing the likelihood function. The properties of the various estima-
tors were given, and the estimators were illustrated both with simulated and actual time
series data. Bootstrapping with ARIMA models was also discussed and illustrated.

EXERCISES

7.1 From a series of length 100, we have computed r| = 0.8, r, = 0.5, r3 = 0.4, Y =2,
and a sample variance of 5. If we assume that an AR(2) model with a constant
term is appropriate, how can we get (simple) estimates of ¢, ¢5, 0, and 67 ?

7.2 Assuming that the following data arise from a stationary process, calculate
method-of-moments estimates of , yo, and p;: 6, 5, 4, 6, 4.

7.3 If {Y,} satisfies an AR(1) model with ¢ of about 0.7, how long of a series do we
need to estimate ¢ = p; with 95% confidence that our estimation error is no more
than £0.1?

7.4 Consider an MA(1) process for which it is known that the process mean is zero.
Based on a series of length n =3, we observe Y1 =0, Y, =-1, and Y3 = V2.

(a) Show that the conditional least-squares estimate of 6 is V2.
(b) Find an estimate of the noise variance. (Hint: Iterative methods are not needed
in this simple case.)
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7.5

7.6

7.7
7.8

7.9

7.10

7.11

7.12

Given the data Y| = 10, Y, =9, and Y3 = 9.5, we wish to fit an IMA(1,1) model
without a constant term.

(a) Find the conditional least squares estimate of 6. (Hint: Do Exercise 7.4 first.)
(b) Estimate 62 .

Consider two different parameterizations of the AR(1) process with nonzero
mean:

Model L. Y,—p=6¢6Y,_1 — 1) +e,.
Model II. Y, = ¢Y,_| + 0y + e,.

We want to estimate ¢ and p or ¢ and 0 using conditional least squares conditional
on Y. Show that with Model I we are led to solve nonlinear equations to obtain the
estimates, while with Model II we need only solve linear equations.

Verify Equation (7.1.4) on page 150.

Consider an ARMA(1,1) model with ¢ = 0.5 and 6 = 0.45.

(a) For n = 48, evaluate the variances and correlation of the maximum likelihood
estimators of ¢ and 0 using Equations (7.4.13) on page 161. Comment on the
results.

(b) Repeat part (a) but now with n = 120. Comment on the new results.

Simulate an MA(1) series with 6 = 0.8 and n = 48.

(a) Find the method-of-moments estimate of 0.

(b) Find the conditional least squares estimate of © and compare it with part (a).

(¢) Find the maximum likelihood estimate of 6 and compare it with parts (a) and
(b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare your results with your results
from the first simulation.

Simulate an MA(1) series with 6 = —0.6 and n = 36.

(a) Find the method-of-moments estimate of 0.

(b) Find the conditional least squares estimate of © and compare it with part (a).

(¢) Find the maximum likelihood estimate of 6 and compare it with parts (a) and
(b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare your results with your results
from the first simulation.

Simulate an MA(1) series with 6 = —0.6 and n = 48.

(a) Find the maximum likelihood estimate of 0.

(b) If your software permits, repeat part (a) many times with a new simulated
series using the same parameters and same sample size.

(¢) Form the sampling distribution of the maximum likelihood estimates of 6.

(d) Are the estimates (approximately) unbiased?

(e) Calculate the variance of your sampling distribution and compare it with the
large-sample result in Equation (7.4.11) on page 161.

Repeat Exercise 7.11 using a sample size of n = 120.
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7.13

7.14

7.15

7.16

7.17

7.18

Parameter Estimation

Simulate an AR(1) series with ¢ = 0.8 and n = 48.

(a) Find the method-of-moments estimate of ¢.

(b) Find the conditional least squares estimate of ¢ and compare it with part (a).

(¢) Find the maximum likelihood estimate of ¢ and compare it with parts (a) and
(b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare your results with your results
from the first simulation.

Simulate an AR(1) series with ¢ = —0.5 and n = 60.

(a) Find the method-of-moments estimate of ¢.

(b) Find the conditional least squares estimate of ¢ and compare it with part (a).

(¢) Find the maximum likelihood estimate of ¢ and compare it with parts (a) and
(b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare your results with your results
from the first simulation.

Simulate an AR(1) series with ¢ = 0.7 and n = 100.

(a) Find the maximum likelihood estimate of ¢.

(b) If your software permits, repeat part (a) many times with a new simulated
series using the same parameters and same sample size.

(¢) Form the sampling distribution of the maximum likelihood estimates of ¢.

(d) Are the estimates (approximately) unbiased?

(e) Calculate the variance of your sampling distribution and compare it with the
large-sample result in Equation (7.4.9) on page 161.

Simulate an AR(2) series with ¢ = 0.6, ¢, = 0.3, and n = 60.

(a) Find the method-of-moments estimates of ¢; and ¢,.

(b) Find the conditional least squares estimates of ¢; and ¢, and compare them
with part (a).

(c) Find the maximum likelihood estimates of ¢; and ¢, and compare them with
parts (a) and (b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare these results to your results from
the first simulation.

Simulate an ARMA(1,1) series with ¢ =0.7, 0 = 0.4, and n = 72.

(a) Find the method-of-moments estimates of ¢ and 6.

(b) Find the conditional least squares estimates of ¢ and 6 and compare them with
part (a).

(c¢) Find the maximum likelihood estimates of ¢ and 6 and compare them with
parts (a) and (b).

(d) Repeat parts (a), (b), and (c) with a new simulated series using the same
parameters and same sample size. Compare your new results with your results
from the first simulation.

Simulate an AR(1) series with ¢ = 0.6, n = 36 but with error terms from a z-distri-

bution with 3 degrees of freedom.
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7.19

7.20

7.21

7.22

7.23

7.24

7.25

(a) Display the sample PACF of the series. Is an AR(1) model suggested?

(b) Estimate ¢ from the series and comment on the results.

(c) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an MA(1) series with 6 = —0.8, n = 60 but with error terms from a #-dis-

tribution with 4 degrees of freedom.

(a) Display the sample ACF of the series. Is an MA(1) model suggested?

(b) Estimate 0 from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an AR(2) series with ¢; = 1.0, ¢, = —0.6, n = 48 but with error terms

from a t-distribution with 5 degrees of freedom.

(a) Display the sample PACF of the series. Is an AR(2) model suggested?

(b) Estimate ¢ and ¢, from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an ARMAC(1,1) series with ¢ = 0.7, 6 = —0.6, n = 48 but with error terms

from a t-distribution with 6 degrees of freedom.

(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?

(b) Estimate ¢ and 6 from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an AR(1) series with ¢ = 0.6, n = 36 but with error terms from a

chi-square distribution with 6 degrees of freedom.

(a) Display the sample PACF of the series. Is an AR(1) model suggested?

(b) Estimate ¢ from the series and comment on the results.

(c) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an MA(1) series with 6 = —0.8, n = 60 but with error terms from a

chi-square distribution with 7 degrees of freedom.

(a) Display the sample ACF of the series. Is an MA(1) model suggested?

(b) Estimate 0 from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an AR(2) series with ¢; = 1.0, ¢, = —0.6, n = 48 but with error terms

from a chi-square distribution with 8 degrees of freedom.

(a) Display the sample PACF of the series. Is an AR(2) model suggested?

(b) Estimate ¢ and ¢, from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new simulated series under the same condi-
tions.

Simulate an ARMAC(1,1) series with ¢ = 0.7, 6 = —0.6, n = 48 but with error terms

from a chi-square distribution with 9 degrees of freedom.

(a) Display the sample EACF of the series. Is an ARMA(1,1) model suggested?

(b) Estimate ¢ and 6 from the series and comment on the results.

(¢) Repeat parts (a) and (b) with a new series under the same conditions.
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7.26

7.27

7.28

7.29

7.30

7.31

7.32

Parameter Estimation

Consider the AR(1) model specified for the color property time series displayed

in Exhibit 1.3 on page 3. The data are in the file named color.

(a) Find the method-of-moments estimate of ¢.

(b) Find the maximum likelihood estimate of ¢ and compare it with part (a).

Exhibit 6.31 on page 139 suggested specifying either an AR(1) or possibly an

AR(4) model for the difference of the logarithms of the oil price series. The data

are in the file named oil.price.

(a) Estimate both of these models using maximum likelihood and compare it with
the results using the AIC criteria.

(b) Exhibit 6.32 on page 140 suggested specifying an MA(1) model for the differ-
ence of the logs. Estimate this model by maximum likelihood and compare to
your results in part (a).

The data file named deere3 contains 57 consecutive values from a complex

machine tool at Deere & Co. The values given are deviations from a target value

in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced.

(a) Estimate the parameters of an AR(1) model for this series.

(b) Estimate the parameters of an AR(2) model for this series and compare the
results with those in part (a).

The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a

desired ending point was recorded in inches. This was repeated 324 times to form

the time series.

(a) Estimate the parameters of an AR(1) model for these data.

(b) Estimate the parameters of an IMA(1,1) model for these data.

(¢) Compare the results from parts (a) and (b) in terms of AIC.

The data file named days contains accounting data from the Winegard Co. of Bur-

lington, Iowa. The data are the number of days until Winegard receives payment

for 130 consecutive orders from a particular distributor of Winegard products.

(The name of the distributor must remain anonymous for confidentiality reasons.)

The time series contains outliers that are quite obvious in the time series plot.

(a) Replace each of the unusual values with a value of 35 days, a much more typ-
ical value, and then estimate the parameters of an MA(2) model.

(b) Now assume an MA(5) model and estimate the parameters. Compare these
results with those obtained in part (a).

Simulate a time series of length n = 48 from an AR(1) model with ¢ = 0.7. Use

that series as if it were real data. Now compare the theoretical asymptotic distri-

bution of the estimator of ¢ with the distribution of the bootstrap estimator of ¢.

The industrial color property time series was fitted quite well by an AR(1) model.

However, the series is rather short, with n = 35. Compare the theoretical asymp-

totic distribution of the estimator of ¢ with the distribution of the bootstrap esti-

mator of ¢. The data are in the file named color.



CHAPTER 8

MODEL DIAGNOSTICS

We have now discussed methods for specifying models and for efficiently estimating the
parameters in those models. Model diagnostics, or model criticism, is concerned with
testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate mod-
ifications. We shall present two complementary approaches: analysis of residuals from
the fitted model and analysis of overparameterized models; that is, models that are more
general than the proposed model but that contain the proposed model as a special case.

8.1 Residual Analysis

We already used the basic ideas of residual analysis in Section 3.6 on page 42 when we
checked the adequacy of fitted deterministic trend models. With autoregressive models,
residuals are defined in direct analogy to that earlier work. Consider in particular an
AR(2) model with a constant term:

Y, = 0¥, +0,Y, ,+0,+e, 8.1.1)

Having estimated ¢, ¢, and 6, the residuals are defined as
N N AN
é‘l =Y,-0,Y,_-0,Y,_,-0, (8.1.2)
For general ARMA models containing moving average terms, we use the inverted,
infinite autoregressive form of the model to define residuals. For simplicity, we assume
that 0 is zero. From the inverted form of the model, Equation (4.5.5) on page 80, we
have

Y = rrlYt_l +rr2Yt_2+n3Yl_3+ e te

t t

so that the residuals are defined as
e, =Y, ~-mY, | -RY, ,-mY, 53— (8.1.3)

Here the ©’s are not estimated directly but rather implicitly as functions of the ¢’s and
0’s. In fact, the residuals are not calculated using this equation but as a by-product of the
estimation of the ¢’s and 0’s. In Chapter 9, we shall argue, that

AN

Y, =nY

A A
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is the best forecast of ¥, based on Y, _{, Y,_», Y; _3,... . Thus Equation (8.1.3) can be
rewritten as
residual = actual — predicted

in direct analogy with regression models. Compare this with Section 3.6 on page 42.

If the model is correctly specified and the parameter estimates are reasonably close
to the true values, then the residuals should have nearly the properties of white noise.
They should behave roughly like independent, identically distributed normal variables
with zero means and common standard deviations. Deviations from these properties can
help us discover a more appropriate model.

Plots of the Residuals

Our first diagnostic check is to inspect a plot of the residuals over time. If the model is
adequate, we expect the plot to suggest a rectangular scatter around a zero horizontal
level with no trends whatsoever.

Exhibit 8.1 shows such a plot for the standardized residuals from the AR(1) model
fitted to the industrial color property series. Standardization allows us to see residuals of
unusual size much more easily. The parameters were estimated using maximum likeli-
hood. This plot supports the model, as no trends are present.

Exhibit 8.1 Standardized Residuals from AR(1) Model of Color

Standardized Residuals
-1
|
o<
o]
N
o

-2

Time

> win.graph(width=4.875,height=3,pointsize=8)

> data (color)

> ml.color=arima (color,order=c(1,0,0)); ml.color

> plot (rstandard(ml.color) ,ylab ='Standardized Residuals',
type='o'); abline (h=0)

As a second example, we consider the Canadian hare abundance series. We esti-
mate a subset AR(3) model with ¢, set to zero, as suggested by the discussion following
Exhibit 7.8 on page 166. The estimated model is
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JY, = 348340919y, |-05313,fY, ;+e, (8.1.4)

and the time series plot of the standardized residuals from this model is shown in
Exhibit 8.2. Here we see possible reduced variation in the middle of the series and
increased variation near the end of the series—not exactly an ideal plot of residuals. "

Exhibit 8.2 Standardized Residuals from AR(3) Model for Sqrt(Hare)
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I I I I I I I
1905 1910 1915 1920 1925 1930 1935
Time

> data (hare)
> ml.hare=arima (sqrt (hare) ,order=c(3,0,0)); ml.hare
> m2.hare=arima (sqrt (hare) ,order=c(3,0,0),fixed=c(NA,0,NA,NA))
> m2.hare
> # Note that the intercept term given in R is actually the mean

in the centered form of the ARMA model; that is, 1if

y (t)=sgrt (hare) -intercept, then the model is

y(t)=0.919*%y (t-1)-0.5313*y (t-3)+e(t)
> # So the 'true' intercept equals 5.6889*(1-0.919+0.5313)=3.483
> plot (rstandard (m2.hare),ylab="'Standardized Residuals',6 type='o"')
> abline (h=0)

Exhibit 8.3 displays the time series plot of the standardized residuals from the
IMA(1,1) model estimated for the logarithms of the oil price time series. The model was
fitted using maximum likelihood estimation. There are at least two or three residuals
early in the series with magnitudes larger than 3—very unusual in a standard normal
distribution.® Ideally, we should go back to those months and try to learn what outside
factors may have influenced unusually large drops or unusually large increases in the
price of oil.

T The seemingly large negative standardized residuals are not outliers according to the Bon-
ferroni outlier criterion with critical values +3.15.

¥ The Bonferroni critical values with n = 241 and o = 0.05 are +3.71, so the outliers do
appear to be real. We will model them in Chapter 11.
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Exhibit 8.3 Standardized Residuals from Log Oil Price IMA(1,1) Model

Standardized Residuals
0

Time

data(oil.price)

ml.oil=arima(log(oil.price),order=c(0,1,1))

plot (rstandard(ml.oil) ,ylab='Standardized residuals', type='1")
abline (h=0)

vV V. V V

Normality of the Residuals

As we saw in Chapter 3, quantile-quantile plots are an effective tool for assessing nor-
mality. Here we apply them to residuals.

A quantile-quantile plot of the residuals from the AR(1) model estimated for the
industrial color property series is shown in Exhibit 8.4. The points seem to follow the
straight line fairly closely—especially the extreme values. This graph would not lead us
to reject normality of the error terms in this model. In addition, the Shapiro-Wilk nor-
mality test applied to the residuals produces a test statistic of W = 0.9754, which corre-
sponds to a p-value of 0.6057, and we would not reject normality based on this test.
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Exhibit 8.4 Quantile-Quantile Plot: Residuals from AR(1) Color Model
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Theoretical Quantiles

> win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm(residuals (ml.color)); ggline(residuals(ml.color))

The quantile-quantile plot for the residuals from the AR(3) model for the square
root of the hare abundance time series is displayed in Exhibit 8.5. Here the extreme val-
ues look suspect. However, the sample is small (n = 31) and, as stated earlier, the Bon-
ferroni criteria for outliers do not indicate cause for alarm.

Exhibit 8.5 Quantile-Quantile Plot: Residuals from AR(3) for Hare
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Theoretical Quantiles
> ggnorm(residuals (ml.hare)); ggline(residuals(ml.hare))

Exhibit 8.6 gives the quantile-quantile plot for the residuals from the IMA(1,1)
model that was used to model the logarithms of the oil price series. Here the outliers are
quite prominent, and we will deal with them in Chapter 11.
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Exhibit 8.6 Quantile-Quantile Plot: Residuals from IMA(1,1) Model for
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Theoretical Quantiles
> ggnorm(residuals (ml.oil)); ggline(residuals (ml.oil))

Autocorrelation of the Residuals

To check on the independence of the noise terms in the model, we consider the sample
autocorrelation function of the residuals, denoted 7. From Equation (6.1.3) on
page 110, we know that for true white noise and large n, the sample autocorrelations are
approximately uncorrelated and normally distributed with zero means and variance 1/n.
Unfortunately, even residuals from a correctly specified model with efficiently esti-
mated parameters have somewhat different properties. This was first explored for multi-
ple- regression models in a series of papers by Durbin and Watson (1950, 1951, 1971)
and for autoregressive models in Durbin (1970). The key reference on the distribution of
residual autocorrelations in ARIMA models is Box and Pierce (1970), the results of
which were generalized in McLeod (1978).

Generally speaking, the residuals are approximately normally distributed with zero
means; however, for small lags k and j, the variance of P r can be substantially less than
1/n and the estimates 7 and 7jcan be highly correlated. For larger lags, the approxi-
mate variance 1/n does apply, and further 7, and 7j are approximately uncorrelated.

As an example of these results, consider a correctly specified and efficiently esti-
mated AR(1) model. It can be shown that, for large n,

Ao 02
Var(r,)~* (8.1.5)

n
Var(?k)z1‘(1‘32)4’%72 for k> 1 (8.1.6)
Corr(P,, Py ~—sign(p)—L= 2 ey (8.1.7)

I=(1-¢2)¢% 2
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where
1 if $>0
sign(¢) =4 0 if ¢ =0
-1 if ¢<0
The table in Exhibit 8.7 illustrates these formulas for a variety of values of ¢ and &.

Notice that Var(# 1) = 1/nis areasonable approximation for k > 2 over a wide range of
¢-values.

Exhibit 8.7 Approximations for Residual Autocorrelations in AR(1)

Models
() 0.3 0.5 0.7 0.9 o 0.3 0.5 0.7 0.9
k Standard deviation of 7'}, Correlation 7| with 7'},
times J/n

1 0.30 0.50 0.70 0.90 1.00 1.00 1.00 1.00
2 0.96 0.90 0.87 0.92 —-0.95 —0.83 —-0.59 —-0.21
3 1.00 0.98 0.94 0.94 -0.27 —-0.38 —-0.38 —0.18
4 1.00 0.99 0.97 0.95 —-0.08 -0.19 —-0.26 —0.16
5 1.00 1.00 0.99 0.96 —-0.02 —-0.09 —0.18 —0.14
6 1.00 1.00 0.99 0.97 —0.01 —0.05 —0.12 —0.13
7 1.00 1.00 1.00 0.97 —0.00 —0.02 —0.09 —0.12
8 1.00 1.00 1.00 0.98 —0.00 —0.01 —0.06 —0.10
9 1.00 1.00 1.00 0.99 —0.00 —0.00 —-0.03 —0.08

If we apply these results to t;\le AR(1) model that was estimated for the industrial
color property time series with ¢ = 0.57 and n = 35, we obtain the results shown in
Exhibit 8.8.

Exhibit 8.8  Approximate Standard Deviations of Residual ACF values

Lag k 1 2 3 4 5 >5
[Vaf(f,)  0.09% 0.149 0.163 0.167 0.168 0.169

A graph of the sample ACF of these residuals is shown in Exhibit 8.9. The dashed
horizontal lines plotted are based on the large lag standard error of +2//n. There is no
evidence of autocorrelation in the residuals of this model.
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Exhibit 8.9 Sample ACF of Residuals from AR(1) Model for Color

0.1

ACF

-0.1
]

2 4 6 8 10 12 14
Lag
> win.graph(width=4.875,height=3,pointsize=8)
> acf (residuals (ml.color))
For an AR(2) model, it can be shown that
¢2
Var(Fy) = 72 (8.1.8)
and
03+ 07(1+¢,)2
Var(f,) » 2—1—2_ (8.1.9)

n

If the AR(2) parameters are not too close to the stationarity boundary shown in Exhibit

4.17 on page 72, then
Var(Fy) = 1 for k>3
n

(8.1.10)

If we fit an AR(2) model” by maximum likelihood to the square root of the hare

abundance series, we find that fi\) 1= 1.351 and $2 =—0.776. Thus we have

Var (P~ 207760 _ ¢ 13
35

sz(—0.776)2+(1.351)2(1 +(=0.776))% _ 0.141

35
Vaf (F1)~ 1//35 = 0.169 for k>3

" The AR(2) model is not quite as good as the AR(3) model that we estimated earlier, but it

still fits quite well and serves as a reasonable example here.
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Exhibit 8.10 displays the sample ACF of the residuals from the AR(2) model of the
square root of the hare abundance. The lag 1 autocorrelation here equals —0.261, which
is close to 2 standard errors below zero but not quite. The lag 4 autocorrelation equals
—0.318, but its standard error is 0.169. We conclude that the graph does not show statis-
tically significant evidence of nonzero autocorrelation in the residuals.”

Exhibit 8.10 Sample ACF of Residuals from AR(2) Model for Hare

0.3

ACF
0.1
| |

-0.1
]

Lag

> acf (residuals (arima (sgrt (hare) ,order=c(2,0,0))))

With monthly data, we would pay special attention to possible excessive autocorre-
lation in the residuals at lags 12, 24, and so forth. With quarterly series, lags 4, 8, and so
forth would merit special attention. Chapter 10 contains examples of these ideas.

It can be shown that results analogous to those for AR models hold for MA models.
In particular, replacing ¢ by 6 in Equations (8.1.5), (8.1.6), and( 8.1.7) gives the results
for the MA(1) case. Similarly, results for the MA(2) case can be stated by replacing ¢,
and ¢, by 6, and 0,, respectively, in Equations (8.1.8), (8.1.9), and (8.1.10). Results for
general ARMA models may be found in Box and Pierce (1970) and McLeod (1978).

The Ljung-Box Test

In addition to looking at residual correlations at individual lags, it is useful to have a test
that takes into account their magnitudes as a group. For example, it may be that most of
the residual autocorrelations are moderate, some even close to their critical values, but,
taken together, they seem excessive. Box and Pierce (1970) proposed the statistic

Q = n(F2+72+ .. +12) (8.1.11)

to address this possibility. They showed that if the correct ARMA(p,q) model is esti-
mated, then, for large n, Q has an approximate chi-square distribution with K —p — ¢

T Recall that an AR(3) model fits these data even better and has even less autocorrelation in
its residuals, see Exercise 8.7.
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degrees of freedom. Fitting an erroneous model would tend to inflate Q. Thus, a general
“portmanteau” test would reject the ARMA(p,g) model if the observed value of Q
exceeded an appropriate critical value in a chi-square distribution with K — p — g degrees
of freedom. (Here the maximum lag K is selected somewhat arbitrarily but large enough
that the y-weights are negligible for j > K.)

The chi-square distribution for Q is based on a limit theorem as n — o, but Ljung
and Box (1978) subsequently discovered that even for n = 100, the approximation is not
satisfactory. By modifying the Q statistic slightly, they defined a test statistic whose null
distribution is much closer to chi-square for typical sample sizes. The modified
Box-Pierce, or Ljung-Box, statistic is given by

P2 P2 A2

. +2( S SN K) 8.1.12
Q n(n )n—l n-2 n-K ( )

Notice that since (n + 2)/(n — k) > 1 for every k > 1, we have Q« > Q, which partly
explains why the original statistic Q tended to overlook inadequate models. More details
on the exact distributions of Qx and Q for finite samples can be found in Ljung and Box
(1978), see also Davies, Triggs, and Newbold (1977).

Exhibit 8.11 lists the first six autocorrelations of the residuals from the AR(1) fitted
model for the color property series. Here n = 35.

Exhibit 8.11 Residual Autocorrelation Values from AR(1) Model for Color

Lag k 1 2 3 4 5 6
Residual ACF —0.051 0.032 0.047 0.021 -0.017 -0.019

> acf (residuals(ml.color),plot=F) Sact
> signif (acf (residuals (ml.color) ,plot=F)sSacf[l:6],2)
> # display the first 6 acf values to 2 significant digits

The Ljung-Box test statistic with K = 6 is equal to

(=0.051)%  (0.032)*  (0.047)*
35-1 35-2  35-3

2 2 2
, 00212 (0.017)  (=0.019)
35-4  35-5 35-6

0. = 3535+ 2)(

) ~0.28

This is referred to a chi-square distribution with 6 — 1 =5 degrees of freedom. This leads
to a p-value of 0.998, so we have no evidence to reject the null hypothesis that the error
terms are uncorrelated.

Exhibit 8.12 shows three of our diagnostic tools in one display—a sequence plot of
the standardized residuals, the sample ACF of the residuals, and p-values for the
Ljung-Box test statistic for a whole range of values of K from 5 to 15. The horizontal
dashed line at 5% helps judge the size of the p-values. In this instance, everything looks
very good. The estimated AR(1) model seems to be capturing the dependence structure
of the color property time series quite well.
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Exhibit 8.12 Diagnostic Display for the AR(1) Model of Color Property

Standardized Residuals
0
q
q
q
o
q
fe
o
o
o
o
o)
0|

ACF of Residuals
-0.3 0.1
L1l

0.6
111111

P-values

> win.graph(width=4.875,height=4.5)
> tsdiag(ml.color,gof=15,omit.initial=F)

As in Chapter 3, the runs test may also be used to assess dependence in error terms
via the residuals. Applying the test to the residuals from the AR(3) model for the Cana-
dian hare abundance series, we obtain expected runs of 16.09677 versus observed runs
of 18. The corresponding p-value is 0.602, so we do not have statistically significant
evidence against independence of the error terms in this model.

8.2 Overfitting and Parameter Redundancy

Our second basic diagnostic tool is that of overfitting. After specifying and fitting what
we believe to be an adequate model, we fit a slightly more general model; that is, a
model “close by” that contains the original model as a special case. For example, if an
AR(2) model seems appropriate, we might overfit with an AR(3) model. The original
AR(2) model would be confirmed if:

1. the estimate of the additional parameter, ¢3, is not significantly different from
zero, and

2. the estimates for the parameters in common, ¢; and ¢,, do not change signifi-
cantly from their original estimates.
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As an example, we have specified, fitted, and examined the residuals of an AR(1)
model for the industrial color property time series. Exhibit 8.13 displays the output from
the R software from fitting the AR(1) model, and Exhibit 8.14 shows the results from
fitting an AR(2) model to the same series. First note that, in Exhibit 8.14, the estimate of
¢, is not statistically different from zero. This fact supports the choice of the AR(1)
model. Secondly, we note that the two estimates of ¢, are quite close—especially when
we take into account the magnitude of their standard errors. Finally, note that while the
AR(2) model has a slightly larger log-likelihood value, the AR(1) fit has a smaller AIC
value. The penalty for fitting the more complex AR(2) model is sufficient to choose the
simpler AR(1) model.

Exhibit 8.13 AR(1) Model Results for the Color Property Series

Coefficients:' ari Intercept?
0.5705 74.3293
s.e. 0.1435 1.9151

sigma”2 estimated as 24.83: log-likelihood = -106.07, AIC = 216.15

"ml.color #R code to obtain table
Recall that the intercept here is the estimate of the process mean pL—not 6.

Exhibit 8.14 AR(2) Model Results for the Color Property Series
Coefficients: arl ar2 Intercept
0.5173 0.1005  74.1551
s.e. 0.1717 0.1815 2.1463
sigma”2 estimated as 24.6: log-likelihood = -105.92, AIC = 217.84

> arima (color,order=c(2,0,0))

A different overfit for this series would be to try an ARMA(1,1) model. Exhibit
8.15 displays the results of this fit. Notice that the standard errors of the estimated coef-
ficients for this fit are rather larger than what we see in Exhibits 8.13 and 8.14. Regard-
less, the estimate of ¢ from this fit is not significantly different from the estimate in
Exhibit 8.13. Furthermore, as before, the estimate of the new parameter, 0, is not signif-
icantly different from zero. This adds further support to the AR(1) model.



8.2 Overfitting and Parameter Redundancy 187

Exhibit 8.15 Overfit of an ARMA(1,1) Model for the Color Series
Coefficients: ari maf Intercept
0.6721 -0.1467 74.1730
s.e. 02147 0.2742 2.1357
sigma”2 estimated as 24.63: log-likelihood = -105.94, AIC =219.88

> arima (color,order=c(1,0,1))

As we have noted, any ARMA(p,q) model can be considered as a special case of a
more general ARMA model with the additional parameters equal to zero. However,
when generalizing ARMA models, we must be aware of the problem of parameter
redundancy or lack of identifiability.

To make these points clear, consider an ARMA(1,2) model:

Yy =Y, +e—-0je,_—0e,_, (8.2.1)
Now replace ¢ by ¢ — 1 to obtain
Y 1= 0¥, pte =016, r=-0ye ;5 (8.2.2)

If we multiply both sides of Equation (8.2.2) by any constant c and then subtract it from
Equation (8.2.1), we obtain (after rearranging)

Y,—(d+c)Y,_+¢cY,_ 5 =e,—(0,+c)e,_;—(0,-0,c)e,_,+cOye, 4

This apparently defines an ARMA(2,3) process. But notice that we have the factoriza-
tions

1—(d+c)x+dex? = (1—¢x)(1—cx)
and
1-(0,+ c)x—(ez—cel)x2 + c92x3 = (1 —Glx—ezxz)(l —cXx)

Thus the AR and MA characteristic polynomials in the ARMA(2,3) process have a
common factor of (1 — c¢x). Even though Y, does satisfy the ARMA(2,3) model, clearly
the parameters in that model are not unique—the constant ¢ is completely arbitrary. We
say that we have parameter redundancy in the ARMA(2,3) model. "

The implications for fitting and overfitting models are as follows:

1. Specify the original model carefully. If a simple model seems at all promising,
check it out before trying a more complicated model.

2. When overfitting, do not increase the orders of both the AR and MA parts of the
model simultaneously.

T In backshift notation, if ¢(B)Yt = O(B)et is a correct model, then so is (1 — cB)d)(B)Y[ =
(1-cB)0(B)e : for any constant c. To have unique parameterization in an ARMA model,
we must cancel any common factors in the AR and MA characteristic polynomials.
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3. Extend the model in directions suggested by the analysis of the residuals. For
example, if after fitting an MA(1) model, substantial correlation remains at lag 2
in the residuals, try an MA(2), not an ARMA(1,1).

As an example, consider the color property series once more. We have seen that an
AR(1) model fits quite well. Suppose we try an ARMA(2,1) model. The results of this
fit are shown in Exhibit 8.16. Notice that even though the estimate of ¢Zand the
log-likelihood and AIC values are not too far from their best values, the estimates of ¢,
¢,, and O are way off, and none would be considered different from zero statistically.

Exhibit 8.16 Overfitted ARMA(2,1) Model for the Color Property Series
Coefficients: ari ar2 mai Intercept
0.2189 0.2735 0.3036 74.1653
s.e. 2.0056 1.1376 2.0650 2.1121
sigma”?2 estimated as 24.58: log-likelihood = —105.91, AIC = 219.82

> arima (color,order=c(2,0,1))

8.3 Summary

The ideas of residual analysis begun in Chapter 3 were considerably expanded in this
chapter. We looked at various plots of the residuals, checking the error terms for con-
stant variance, normality, and independence. The properties of the sample autocorrela-
tion of the residuals play a significant role in these diagnostics. The Ljung-Box statistic
portmanteau test was discussed as a summary of the autocorrelation in the residuals.
Lastly, the ideas of overfitting and parameter redundancy were presented.

EXERCISES

8.1 For an AR(1) model with ¢ = 0.5 and n = 100, the lag 1 sample autocorrelation of
the residuals is 0.5. Should we consider this unusual? Why or why not?

8.2 Repeat Exercise 8.1 for an MA(1) model with 6 ~ 0.5 and n = 100.

8.3 Based on a series of length n = 200, we fit an AR(2) model and obtain residual
autocorrelations of #,=0.13, #,=0.13,and #3=0.12.If $, = 1.1 and $, = 0.8,
do these residual autocorrelations support the AR(2) specification? Individually?
Jointly?
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8.4

8.5

8.6

8.7

8.8

Simulate an AR(1) model with n =30 and ¢ =0.5.

(a) Fit the correctly specified AR(1) model and look at a time series plot of the
residuals. Does the plot support the AR(1) specification?

(b) Display a normal quantile-quantile plot of the standardized residuals. Does
the plot support the AR(1) specification?

(c) Display the sample ACF of the residuals. Does the plot support the AR(1)
specification?

(d) Calculate the Ljung-Box statistic summing to K = 8. Does this statistic sup-
port the AR(1) specification?

Simulate an MA(1) model with n =36 and 6 = —0.5.

(a) Fit the correctly specified MA(1) model and look at a time series plot of the
residuals. Does the plot support the MA(1) specification?

(b) Display a normal quantile-quantile plot of the standardized residuals. Does
the plot support the MA(1) specification?

(¢) Display the sample ACF of the residuals. Does the plot support the MA(1)
specification?

(d) Calculate the Ljung-Box statistic summing to K = 6. Does this statistic sup-
port the MA(1) specification?

Simulate an AR(2) model with n =48, ¢; = 1.5, and ¢, = -0.75.

(a) Fit the correctly specified AR(2) model and look at a time series plot of the
residuals. Does the plot support the AR(2) specification?

(b) Display a normal quantile-quantile plot of the standardized residuals. Does
the plot support the AR(2) specification?

(c) Display the sample ACF of the residuals. Does the plot support the AR(2)
specification?

(d) Calculate the Ljung-Box statistic summing to K = 12. Does this statistic sup-
port the AR(2) specification?

Fit an AR(3) model by maximum likelihood to the square root of the hare abun-

dance series (filename hare).

(a) Plot the sample ACF of the residuals. Comment on the size of the correlations.

(b) Calculate the Ljung-Box statistic summing to K = 9. Does this statistic sup-
port the AR(3) specification?

(¢) Perform a runs test on the residuals and comment on the results.

(d) Display the quantile-quantile normal plot of the residuals. Comment on the
plot.

(e) Perform the Shapiro-Wilk test of normality on the residuals.

Consider the oil filter sales data shown in Exhibit 1.8 on page 7. The data are in

the file named oilfilters.

(a) Fit an AR(1) model to this series. Is the estimate of the ¢ parameter signifi-
cantly different from zero statistically?

(b) Display the sample ACF of the residuals from the AR(1) fitted model. Com-
ment on the display.
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8.9

8.10

8.11

Model Diagnostics

The data file named robot contains a time series obtained from an industrial robot.

The robot was put through a sequence of maneuvers, and the distance from a

desired ending point was recorded in inches. This was repeated 324 times to form

the time series. Compare the fits of an AR(1) model and an IMA(1,1) model for
these data in terms of the diagnostic tests discussed in this chapter.

The data file named deere3 contains 57 consecutive values from a complex

machine tool at Deere & Co. The values given are deviations from a target value

in units of ten millionths of an inch. The process employs a control mechanism
that resets some of the parameters of the machine tool depending on the magni-
tude of deviation from target of the last item produced. Diagnose the fit of an

AR(1) model for these data in terms of the tests discussed in this chapter.

Exhibit 6.31 on page 139, suggested specifying either an AR(1) or possibly an

AR(4) model for the difference of the logarithms of the oil price series. (The file-

name is oil.price).

(a) Estimate both of these models using maximum likelihood and compare the
results using the diagnostic tests considered in this chapter.

(b) Exhibit 6.32 on page 140, suggested specifying an MA(1) model for the dif-
ference of the logs. Estimate this model by maximum likelihood and perform
the diagnostic tests considered in this chapter.

(¢) Which of the three models AR(1), AR(4), or MA(1) would you prefer given
the results of parts (a) and (b)?



CHAPTER 9

FORECASTING

One of the primary objectives of building a model for a time series is to be able to fore-
cast the values for that series at future times. Of equal importance is the assessment of
the precision of those forecasts. In this chapter, we shall consider the calculation of fore-
casts and their properties for both deterministic trend models and ARIMA models. Fore-
casts for models that combine deterministic trends with ARIMA stochastic components
are considered also.

For the most part, we shall assume that the model is known exactly, including spe-
cific values for all the parameters. Although this is never true in practice, the use of esti-
mated parameters for large sample sizes does not seriously affect the results.

9.1 Minimum Mean Square Error Forecasting

Based on the available history of the series up to time #, namely Yy, Y5,..., Y, _, Y}, we
would like to forecast the value of Y; , , that will occur ¢ time units into the future. We
call time 7 theAforecast origin and ¢ the lead time for the forecast, and denote the fore-
castitself as ¥ ,(¢).

As shown in Appendix F, the minimum mean square error forecast is given by

A
Yo = E(r, 1YYy .0 1) ©.1.1)

4 t

(Appendices E and F on page 218 review the properties of conditional expectation and
minimum mean square error prediction.)

The computation and properties of this conditional expectation as related to fore-
casting will be our concern for the remainder of this chapter.

9.2 Deterministic Trends

Consider once more the deterministic trend model of Chapter 3,
Y, = pn+X, 9.2.1)

where the stochastic component, X;, has a mean of zero. For this section, we shall
assume that {X,} is in fact white noise with variance y,. For the model in Equation
(9.2.1), we have

191
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A
Yt(é) = E(“H.z t+€|Y Y2, ...,Yt)
= E(MHélYl’ PR Yl)+E(Xt+Z|Y1’ Yz,...,Yt)
= u[+£+E(Xt+€)
or
P () = 22
Yt(é) - MI+€ (9 . )

since for ¢> 1, X, | ,is independent of Y1, Y5,..., ¥, _{, ¥; and has expected value zero.
Thus, in this simple case, forecasting amounts to extrapolating the deterministic time
trend into the future.

For the linear trend case, 1, = 3 + 3¢, the forecast is

P,(0) = By+B,(1+6) 9.2.3)

As we emphasized in Chapter 3, this model assumes that the same linear time trend per-
sists into the future, and the forecast reflects that assumption. Note that it is the lack of
statistical dependence between Y, , ,and Y|, Y»,..., Y; _{, Y, that prevents us from
improving on L, , ,as a forecast.

For seasonal models where, say, p, = u,, |, , our forecast is i (0 =

124¢
Y [(¢+12). Thus the forecast will also be periodic, as desired. Freize
The forecast error, ¢,(¢), is given by
AN
e, (o) = Yt+é_ Y, (0)
= Mt XM
BT/
so that
E(e(0) = E(X,, ) =
That is, the forecasts are unbiased. Also
Var(e,(¢)) = Var(XHg) =Y 9.2.4)

is the forecast error variance for all lead times ¢.
The cosine trend model for the average monthly temperature series was estimated
in Chapter 3 on page 35 as

f, = 46.2660 + (—26.7079) cos (27) + (~2.1697 ) sin (277)

Here time is measured in years with a starting value of January 1964, frequency f= 1 per
year, and the final observed value is for December 1975. To forecast the June 1976 tem-
perature value, we use ¢ = 1976.41667 as the time value' and obtain

T June is the fifth month of the year, and 5/12 = 0.416666666... .
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A

K

46.2660 + (—26.7079)cos(21(1976.41667)) + (-2.1697 ) sin (2 (1976.41667))
68.3 °F

Forecasts for other months are obtained similarly.

9.3 ARIMA Forecasting

For ARIMA models, the forecasts can be expressed in several different ways. Each
expression contributes to our understanding of the overall forecasting procedure with
respect to computing, updating, assessing precision, or long-term forecasting behavior.

AR(1)

We shall first illustrate many of the ideas with the simple AR(1) process with a nonzero
mean that satisfies

Yi—p =0, —p)+e, 9.3.1)

Consider the problem of forecasting one time unit into the future. Replacing ¢ by 7 + 1 in
Equation (9.3.1), we have

Yip1-1n=0Y,—p)+e, 9.3.2)

Given Yy, Y5,..., Y, _4, ¥;, we take the conditional expectations of both sides of Equa-
tion (9.3.2) and obtain

A
Y, ()—p = O[E(Y|Y), Yoy s Y) =l + E(e, 1|V}, Yy o0 X)) (9.3.3)

Now, from the properties of conditional expectation, we have

E(Y|Y,Y,,...Y) =Y, (9.34)
Also, since ¢, , | is independent of Yy, Y», ..., Y, _{, ¥;, we obtain
E(e, (1Y, Y,, ..., Y,) = E(e,, ) =0 (9.3.5)

Thus, Equation (9.3.3) can be written as

P(1) = u+o(Y,-n) (9.3.6)

In words, a proportion ¢ of the current deviation from the process mean is added to the
process mean to forecast the next process value.

Now consider a general lead time ¢. Replacing ¢ by ¢ + ¢in Equation (9.3.1) and tak-
ing the conditional expectations of both sides produces

PO = u+o[P (e—1)—p] forex1 9.3.7)

since E(Y, ,_ 1|Y1, Y, ..,Y)= I/}t(Z— 1) and, for¢> 1, ¢, , ,is independent of Y,

Yy .. ¥, 1. Y,
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Equation (9.3.7), which is recursive in the lead time ¢, shows how the forecast for
any lead time ¢ can be built up from the forecasts for shorter lead times by startmg with
the initial forecast Y (1)computed using Equatlon (9.3.6). The forecast ¥ (2)is then
obtamed from Y[(2) = pn+ ¢[Y (1) =], then ? ((3) from P [(2), and so on until the
desired Y[(Z) is found. Equation (9.3.7) and its generahzatlons for other ARIMA models
are most convenient for actually computing the forecasts. Equation (9.3.7) is sometimes
called the difference equation form of the forecasts.

However, Equation (9.3.7) can also be solved to yield an explicit expression for the
forecasts in terms of the observed history of the series. Iterating backward on ¢ in Equa-
tion (9.3.7), we have

P.(0) = o[P,(ec-1)—pl+n
= 0LoLF (-2 -nl} +p

= P (D —ul+p
or
.0 = n+ o4y, - (9.3.8)

The current deviation from the mean is discounted by a factor ¢‘, whose magnitude
decreases with increasing lead time. The discounted deviation is then added to the pro-
cess mean to produce the lead ¢ forecast.

As a numerical example, consider the AR(1) model that we have fitted to the indus-
trial color property time series. The maximum likelihood estimation results were par-
tially shown in Exhibit 7.7 on page 165, but more complete results are shown in Exhibit
9.1.

Exhibit 9.1 Maximum Likelihood Estimation of an AR(1) Model for Color

Coefficients: arl  intercept’
0.5705 74.3293
s.e. 0.1435 1.9151

sigma”2 estimated as 24.8: log-likelihood = —106.07, AIC =216.15

fRemember that the intercept here is the estimate of the process mean pL—not 6y

> data(color)
> ml.color=arima (color,order=c(1,0,0))
> ml.color

For illustration purposes, we assume that the estimates ¢ = 0.5705 and p = 74.3293 are
true values. The final forecasts may then be rounded.
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The last observed value of the color property is 67, so we would forecast one time
period ahead as’

(1)

74.3293 + (0.5705)(67 — 74.3293)
74.3293 — 4.181366
70.14793

For lead time 2, we have from Equation (9.3.7)

P.(2) = 743293 +0.5705(70.14793 — 74.3293)
74.3293 — 2.385472

71.94383

Alternatively, we can use Equation (9.3.8):

AN
Y, (2) = 743293 + (0.5705)2(67 — 74.3293)
= 71.92823
At lead 5, we have
A
Y (5) = 74.3293 + (0.5705)3(67 — 74.3293)
73.88636

and by lead 10 the forecast is
AN
Y,(10) = 74.30253
which is very nearly p (= 74.3293). In reporting these forecasts we would probably

round to the nearest tenth.
In general, since |§| < 1, we have simply

AN
Y (6) = p for large ¢ 9.3.9)

Later we shall see that Equation (9.3.9) holds for all stationary ARMA models.
Consider now the one-step-ahead forecast error, ¢,(1). From Equations (9.3.2)

and (9.3.6), we have
A
e (1) =Y, =-Y,(1)

[O0(Y,—w)+u+e,, 1-[0(Y,—p)+p]

or
e (1) =e, (9.3.10)

T As round off error will accumulate, you should use many decimal places when performing
recursive calculations.
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The white noise process {e;} can now be reinterpreted as a sequence of one-step-ahead
forecast errors. We shall see that Equation (9.3.10) persists for completely general
ARIMA models. Note also that Equation (9.3.10) implies that the forecast error e,(1) is
independent of the history of the process Y|, Y», ..., ¥, _{, ¥; up to time ¢. If this were
not so, the dependence could be exploited to improve our forecast.

Equation (9.3.10) also implies that our one-step-ahead forecast error variance is
given by

Var(e(1)) = o2 (9.3.11)
To investigate the properties of the forecast errors for longer leads, it is convenient to

express the AR(1) model in general linear process, or MA(), form. From Equation
(4.3.8) on page 70, we recall that
Y, = et+¢et_1+¢2et_2+¢3et_3+--- (9.3.12)

Then Equations (9.3.8) and (9.3.12) together yield

e(6) =Y, = n= 0¥, ~ )

= et+€+¢et+e71+"'+¢Z_let+1+¢ée,
+..._¢f(et+¢et_l+...)
so that
e (0) = e[+£+<|>e[+z_l+---+¢He,+1 (9.3.13)

which can also be written as
e (¢) = e, gtV TVl T, e (9.3.14)

Equation (9.3.14) will be shown to hold for all ARIMA models (see Equation (9.3.43)
on page 202).

Note that E(e,(¢)) = 0 thus the forecasts are unbiased. Furthermore, from Equa-
tion (9.3.14), we have

Var(e,(¢)) = 662(1 +\|/%+\V%+ +\Vg2_1) (9.3.15)

We see that the forecast error variance increases as the lead ¢ increases. Contrast this
with the result given in Equation (9.2.4) on page 192, for deterministic trend models.
In particular, for the AR(1) case,

Var(e,(¢)) = c?ﬁ‘_—fﬂ (9.3.16)

which we obtain by summing a finite geometric series.
For long lead times, we have
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2
c
Var(e, ()~ . €¢2 for large ¢ (9.3.17)
or, by Equation (4.3.3), page 66,
Var(e,(¢)) = Var(Y,) =y, forlarge ¢ (9.3.18)

Equation (9.3.18) will be shown to be valid for all stationary ARMA processes (see
Equation (9.3.39) on page 201).

MA(1)

To illustrate how to solve the problems that arise in forecasting moving average or
mixed models, consider the MA(1) case with nonzero mean:

Y, = p+e,—0e,_,
Again replacing ¢ by ¢ + 1 and taking conditional expectations of both sides, we have
AN
Y (1) = n-06E(e,|Y,, Y,, ..., Y,) (9.3.19)

However, for an invertible model, Equation (4.5.2) on page 80 shows that e, is a func-
tionof Yy, Y5, ..., Y, and so
E(e|Y, Yy, ....Y,) = ¢ (9.3.20)

t

In fact, an approximation is involved in this equation since we are conditioning only on
Y, Y5, ..., Y, and not on the infinite history of the process. However, if, as in practice, ¢
is large and the model is invertible, the error in the approximation will be very small. If
the model is not invertible—for example, if we have overdifferenced the data—then
Equation (9.3.20) is not even approximately valid; see Harvey (1981c, p.161).

Using Equations (9.3.19) and (9.3.20), we have the one-step-ahead forecast for an
invertible MA(1) expressed as

P.(1) = n—0e, (9.3.21)

The computation of ¢; will be a by-product of estimating the parameters in the model.
Notice once more that the one-step-ahead forecast error is

AN
e(l) =Y, =Y,(1)
(H+et+1_661)_(u_ee[)

= e

t+1

as in Equation (9.3.10), and thus Equation (9.3.11) also obtains.
For longer lead times, we have

A
Y0 = u+ECe, |Y), Y, ..., ¥)-0E(e Y, Y . ¥))

t+€—l|
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But, for¢> 1, both e, , ,and e, , ,_ ; are independent of Y, Y>,..., ¥,. Consequently,
these conditional expected values are the unconditional expected values, namely zero,
and we have

AN
Y, (6) = p fore>1 (9.3.22)
Notice here that Equation (9.3.9) on page 195 holds exactly for the MA(1) case when ¢>

1. Since for this model we trivially have y| = -6 and y; = 0 for j > 1, Equations (9.3.14)
and (9.3.15) also hold.

The Random Walk with Drift

To illustrate forecasting with nonstationary ARIMA series, consider the random walk
with drift defined by

Y, =Y,_+0,+e, (9.3.23)
Here

A
P(1) = EQY|Y,, Yo, ., Y) + 0+ E(e, |V, Yy ooy ¥))

so that
A
Y, (1) =Y,+6, (9.3.24)

Similarly, the difference equation form for the lead ¢ forecast is
P = Pe—1)+0, fore=1 (9.3.25)
and iterating backward on ¢ yields the explicit expression
P(6) = ¥,+0,¢ fore>1 (9.3.26)

In contrast to Equation (9.3.9) on page 195, if 6 # 0, the forecast does not converge for
long leads but rather follows a straight line with slope 6, for all ¢.

Note that the presence or absence of the constant term 6, significantly alters the
nature of the forecast. For this reason, constant terms should not be included in nonsta-
tionary ARIMA models unless the evidence is clear that the mean of the differenced
series is significantly different from zero. Equation (3.2.3) on page 28 for the variance
of the sample mean will help assess this significance.

However, as we have seen in the AR(1) and MA(1) cases, the one-step-ahead fore-
cast error is

A
e(l) =Y, -Y(1) =¢

Also
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e =Y, -0

(Yt+660+et+1+-~~+et+€)—(Yt+eOO)

SeCyp et te

which agrees with Equation (9.3.14) on page 196 since in this model y; = 1 for all j.
(See Equation (5.2.6) on page 93 with 6 =0.)
So, as in Equation (9.3.15), we have

(-1
Var(e () = o7 Y v} = (o] (9.3.27)
j=0

In contrast to the stationary case, here Var(e,(¢)) grows without limit as the forecast
lead time ¢ increases. We shall see that this property is characteristic of the forecast error
variance for all nonstationary ARIMA processes.

ARMA(p,q)

For the general stationary ARMA(p,q) model, the difference equation form for comput-
ing forecasts is given by

P = P (- D)+ 0,0 (e-2) + 49,7 (¢~ p) + 0

_elE(eHZ— 1|Y1’ Yy o Yt)_GZE(et+€—2|Y1’ Yoo 1) (9.3.28)
_ ... —qu("’HequYl’ Yy, .., Y)
where
- ¥, ¥ r) 0 forj>0 (9.3.29)
e i El 5 sty = o
tHj 2 ! €, forj<0

We note that I?Z(j) is a true forecast for j > 0, but for j < 0, I/}l(j) = YH].. As in Equa-
tion (9.3.20) on page 197, Equation (9.3.29) involves some minor approximation. For
an invertible model, Equation (4.5.5) on page 80 shows that, using the n-weights, e, can
be expressed as a linear combination of the infinite sequence Y,, ¥, _, ¥; _»,.... How-
ever, the n-weights die out exponentially fast, and the approximation assumes that 7; is
negligible forj >t —gq.

As an example, consider an ARMA(1,1) model. We have

P.(1) = oY, +0,-0e, (9.3.30)
with
A A
P.(2) = oF (1) +6,

and, more generally,
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P(o) = ¢P,e=1)+6, fore=2 (9.3.31)

using Equation (9.3.30) to get the recursion started.
Equations (9.3.30) and (9.3.31) can be rewritten in terms of the process mean and
then solved by iteration to get the alternative explicit expression

P(0) = p+ oY, - ) — ¢t e, forex1 (9.3.32)

As Equations (9.3.28) and (9.3.29) indicate, the noise terms ¢, _ (, _ 1),..., €, _ 1, ¢
appear directly in the computation of the forecasts for leads ¢= 1, 2,..., g. However, for
¢> g, the autoregressive portion of the difference equation takes over, and we have

P0) = 07 (e= 1)+ 0,0 (6= 2)+ -+ 9, ¥ (¢~ p) + 0, fore>g (9.3.33)

Thus the general nature of the forecast for long lead times will be determined by the
autoregressive parameters ¢, ¢»,..., d)p (and the constant term, 0, which is related to
the mean of the process).

Recalling from Equation (5.3.17) on page 97 that 0, = pu(1 - —¢,— - - (])p) ,
we can rewrite Equation (9.3.33) in terms of deviations from p as

Po-n=¢,[0,0- D) —pl+o,[P(e-2)—p]+ -
+0,[¥,(¢~p)—n] fore> g

As a function of lead time ¢, Y [(¢) — ufollows the same Yule-Walker recursion as the
autocorrelation function pj, of the process (see Equation (4.4.8), page 79). Thus, as in
Section 4.3 on page 66 and Section 4.4 on page 77, the roots of the characteristic equa-
t1on will determine the general behavior of Y (6) — pfor large lead times. In particular,
? (6) — 1 can be expressed as a linear combination of exponentially decaying terms in ¢
(corresponding to the real roots) and damped sine wave terms (corresponding to the
pairs of complex roots). R

Thus, for any stationary ARMA model, ¥ ,(¢) — n decays to zero as ¢ increases, and
the long-term forecast is simply the process mean p as given in Equation (9.3.9) on
page 195. This agrees with common sense since for stationary ARMA models the
dependence dies out as the time span between observations increases, and this depen-
dence is the only reason we can improve on the “naive” forecast of using L alone.

To argue the validity of Equation (9.3.15) for e,(¢) in the present generality, we
need to consider a new representation for ARIMA processes. Appendix G shows that
any ARIMA model can be written in truncated linear process form as

Y, = CO+1(0) fore>1 (9.3.35)

r+

(9.3.34)

where, for our present purposes, we need only know that C,(¢) is a certain function of Y,
Y,_1,... and

1(0) = €yt VIC, L TV, Y, e fore>1 (9.3.36)
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Furthermore, for invertible models with ¢ reasonably large, C,(¢) is a certain function of
the finite history Y, Y;_,..., Y;. Thus we have

A
Y(6) = E(CCAO|Y}, Yy, ., Y) + EA(O|Y}, Yy, .., V)

G,

Finally,

e =Y V(0
[C(O)+1,(0)]-C(O)
1,(0)

I SEAWEN R S LTI R LS|

Thus, for a general invertible ARIMA process,
Ele(6)] = 0 fore¢x1 (9.3.37)

and

(-1
Var(e,(6)) = 62 Y y? for¢> 1 (9.3.38)
=0

From Equations (4.1.4) and (9.3.38), we see that for long lead times in stationary
ARMA models, we have

v7

M8

Var(e,(¢)) = GZ
J

0

or
Var(e,(¢)) =y, forlarge ¢ (9.3.39)

Nonstationary Models

As the random walk shows, forecasting for nonstationary ARIMA models is quite simi-
lar to forecasting for stationary ARMA models, but there are some striking differences.
Recall from Equation (5.2.2) on page 92 that an ARIMA(p,1,q) model can be written as
a nonstationary ARMA(p+1,¢) model, We shall write this as

Yi=0Y,_1+9), _»+¢3¥, 3+ +(pth—p+(pp+1Yt—p—1
(9.3.40)

+te,—0e,_ -0y, - -0,

where the script coefficients ¢ are directly related to the block ¢ coefficients. In particu-
lar,
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@ = 1+6,,0;=0;-6;,  forj=12 ..p
and (9.3.41)
(Pp+1 = _(I)p

For a general order of differencing d, we would have p + d of the ¢ coefficients.

From this representation, we can immediately extend Equations (9.3.28), (9.3.29),
and (9.3.30) on page 199 to cover the nonstationary cases by replacing p by p + d and ¢;
by ;.

As an example of the necessary calculations, consider the ARIMA(1,1,1) case.
Here

Y=Y, = 0(Y,_ - Y, ) +05+e,—be,_
so that
Y, = (1+¢)Y, | -¢Y,_,+0y+e,—0¢,_,
Thus
P(1) = (1+¢)Y,—¢Y,_, +0,-0e,
P(2) = (1+0)P,(1)- Y, +0,

(9.3.42)
and

P = (1+0)P(e-1)- 9P (¢-2)+8,

For the general invertible ARIMA model, the truncated linear process representation
given in Equations (9.3.35) and (9.3.36) and the calculations following these equations
show that we can write

e () = €,y tVIe, TVl T, e fore>1 (9.3.43)
and so
E(e,(¢)) = 0 forex1 (9.3.44)
and
Var(e, () = o2 Z \,;2 fore¢>1 (9.3.45)

j =
However, for nonstationary series, the y;-weights do not decay to zero as j increases.
For example, for the random walk model, Y, = 1 for all j; for the IMA(1,1) model, Y=
1- 0 for j > 1; for the IMA(2,2) case, yi=1+ 0, + (1 =0, —0,)j for j > 1; and for the
ARI(1,1) model, yi=(1- <|)J+1)/(1 0) for] > 1 (see Chapter 5).

Thus, for any nonstationary model, Equation (9.3.45) shows that the forecast error
variance will grow without bound as the lead time ¢ increases. This fact should not be
too surprising since with nonstationary series the distant future is quite uncertain.
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9.4 Prediction Limits

As in all statistical endeavors, in addition to forecasting or predicting the unknown Y, , ,,
we would like to assess the precision of our predictions.

Deterministic Trends

For the deterministic trend model with a white noise stochastic component {X,}, we
recall that

7 _
{0 = Hive

and
Var(e,(¢)) = Var(XH_Z) =Y

If the stochastic component is normally distributed, then the forecast error

e =Y V(=X 9.4.1)

+¢

is also normally distributed. Thus, for a given confidence level 1 — o, we could use a
standard normal percentile, z; _ ,/», to claim that

A
1-a/2 Var(et(é)) 1-o/2

or, equivalently,

PIY (O =z o fVar(e )<Y, <V (O +2,_yVar(e@)] = 1-a

Thus we may be (1 — a)100% confident that the future observation Y, , , will be
contained within the prediction limits

P02, o Var(e ) 9.4.2)

As a numerical example, consider the monthly average temperature series once
more. On page 192, we used the cosine model to predict the June 1976 average temper-
ature as 68.3°F. The estimate of ,/Var(e(¢)) = J% for this model is 3.7°F. Thus 95%
prediction limits for the average June 1976 temperature are

68.3+1.96(3.7) = 68.3+£7.252 or 61.05°F to 75.55°F

Readers who are familiar with standard regression analysis will recall that since the
forecast involves estimated regression parameters, the correct forecast error variance is
given by yo[1 + (1/n) +c, /I, where ¢, ,is a certain function of the sample size n and the
lead time ¢. However, it may be shown that for the types of trends that we are consider-
ing (namely, cosines and polynomials in time) and for large sample sizes n, the 1/n and
¢, are both negligible relative to 1. For example, with a cosine trend of period 12 over
N = n/12 years, we have that Cpe= 2/n; thus the correct forecast error variance is
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Yol1 + (3/n)] rather than our approximate . For the linear time trend model, it can be
shown that ¢, ,= 3(n + 2¢— 1)2/[11(112 — 1)] = 3/n for moderate lead ¢ and large n. Thus,
again our approximation seems justified.

ARIMA Models

If the white noise terms {e,} in a general ARIMA series each arise independently from a
normal distribution, then from Equation (9.3.43) on page 202, the forecast error
e, (¢) will also have a normal distribution, and the steps leading to Equation (9.4.2)
remain valid. However, in contrast to the deterministic trend model, recall that in the
present case

-1
Var(e,(¢)) = GZ Z W,2
j=0

In practice, cg will be unknown and must be estimated from the observed time series.
The necessary y-weights are, of course, also unknown since they are certain functions
of the unknown ¢’s and 0’s. For large sample sizes, these estimations will have little
effect on the actual prediction limits given above.

As a numerical example, consider the AR(1) model that we estimated for the indus-
trial color property series. From Exhibit 9.1 on page 194, we use ¢ = 0.5705, pu =
74.3293, and Gez = 24.8. For an AR(1) model, we recall Equation (9.3.16) on page 196

LY,
Var(e,(¢)) = 03[11 _(2)2J

For a one-step-ahead prediction, we have

70.14793 £ 1.964/24.8 = 70.14793 £9.760721 or 60.39 to 79.91

Two steps ahead, we obtain

71.86072 £ 11.88343 or 60.71 to 83.18

Notice that this prediction interval is wider than the previous interval. Forecasting ten
steps ahead leads to
74.173934 £ 11.88451 or 62.42 to 86.19

By lead 10, both the forecast and the forecast limits have settled down to their long-lead
values.

9.5 Forecasting lllustrations

Rather than showing forecast and forecast limit calculations, it is often more instructive
to display appropriate plots of the forecasts and their limits.
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Deterministic Trends

Exhibit 9.2 displays the last four years of the average monthly temperature time series
together with forecasts and 95% forecast limits for two additional years. Since the
model fits quite well with a relatively small error variance, the forecast limits are quite
close to the fitted trend forecast.

Exhibit 9.2 Forecasts and Limits for the Temperature Cosine Trend
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> data (tempdub)
tempdubl=ts (c (tempdub, rep (NA,24)),start=start (tempdub) ,
freg=frequency (tempdub) )

\%

> har.=harmonic (tempdub, 1)

> m5.tempdub=arima (tempdub, order=c(0,0,0) ,xreg=har.)

> newhar.=harmonic (ts(rep(1,24), start=c(1976,1),freqg=12),1)

> win.graph(width=4.875, height=2.5,pointsize=8)

> plot (m5.tempdub,n.ahead=24,nl=c(1972,1) ,newxreg=newhar.,
type='b',ylab="'Temperature',xlab="'Year'))

ARIMA Models

We use the industrial color property series as our first illustration of ARIMA forecast-
ing. Exhibit 9.3 displays this series together with forecasts out to lead time 12 with the
upper and lower 95% prediction limits for those forecasts. In addition, a horizontal line
at the estimate for the process mean is shown. Notice how the forecasts approach the
mean exponentially as the lead time increases. Also note how the prediction limits
increase in width.
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Exhibit 9.3 Forecasts and Forecast Limits for the AR(1) Model for Color
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> data (color)
> ml.color=arima (color,order=c(1,0,0))
> plot (ml.color,n.ahead=12,type="'b',xlab="Time",
ylab='Color Property')
> abline (h=coef (ml.color) [names (coef (ml.color))=="intercept'])

The Canadian hare abundance series was fitted by working with the square root of
the abundance numbers and then fitting an AR(3) model. Notice how the forecasts
mimic the approximate cycle in the actual series even when we forecast with a lead time
out to 25 years in Exhibit 9.4.

Exhibit 9.4 Forecasts from an AR(3) Model for Sqrt(Hare)
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> data (hare)

> ml.hare=arima (sqrt (hare) ,order=c(3,0,0))

> plot (ml.hare, n.ahead=25,type='Db"',
xlab="'Year',ylab="'Sqgrt (hare) ')

> abline (h=coef (ml.hare) [names (coef (ml.hare))=="'intercept'])
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9.6 Updating ARIMA Forecasts

Suppose we are forecasting a monthly time series. Our last observation is, say, for Feb-
ruary, and we forecast for March, April, and May. As time goes by, the actual value for
March becomes available. With this new value in hand, we would like to update or
revise (and, one hopes, improve) our forecasts for April and May. Of course, we could
compute new forecasts from scratch. However, there is a simpler way.

For a general forecast origin ¢ and lead time ¢ + 1, our original forecast is denoted
Y (¢+1).Once the observation at time ¢ + 1 becomes available, we would like to update
our forecast as ¥ /+1(0). Equations (9.3.35) and (9.3.36) on page 200 yield

Yt+€+1 = G+ l)+et+é+l+Wlet+é+\'}2€t+£—l+ R VLTS

Since C(¢+1) and e, , | are functions of Y, |, Y,,..., whereas e, , ,, 1, €, 4 ..., €; 4 p ar€
independent of Y, {, ¥},..., we quickly obtain the expression

AN
Y, (0= Cle+ 1)+\yéel+]

A AN
However, Y (¢+1) = C,(¢+ 1), and, of course, e,, | = Y, ;— Y (1). Thus we have
the general updating equation

Pro1@ = Pier 1wy, - P (1) ©6.1)

Notice that [Y,, | - ? (1)] is the actual forecast error at time ¢ + 1 onceY, | | has been
observed.

As a numerical example, consider the industrial color property time series. Follow-
1ng Exhibit 9.1 on page 194, we fit an AR(1) model to forecast one step ahead as
Y35(1) = 70.096 and two steps ahead as Y35(2) = 71.86072. If now the next color
value becomes available as Y, , | = Y34 = 65, then we update the forecast for time 1 = 37

as

P, (1) = Py(1) = 71.86072 + 0.5705(65 — 70.096) = 68.953452

9.7 Forecast Weights and Exponentially Weighted
Moving Averages

For ARIMA models without moving average terms, it is clear how the forecasts are
explicitly determined from the observed series Y;, Y, _,..., Y. However, for any model
with g > 0, the noise terms appear in the forecasts, and the nature of the forecasts explic-
itly in terms of Y, ¥, _,..., Yy is hidden. To bring out this aspect of the forecasts, we
return to the inverted form of any invertible ARIMA process, namely

Y = rrlYt_l +rr2Yt_2+n3Yl_3+ e te

t t

(See Equation (4.5.5) on page 80.) Thus we can also write
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YH_1 = T[lYt+T[2Y

1ty te

t+1

Taking conditional expectations of both sides, given Y,, Y;_ |, ..., Y;, we obtain
V(1) = 1Y, + 1Y, +m5Y, o+ (9.7.1)

(We are assuming the ¢ is sufficiently large and/or that the n-weights die out sufficiently
quickly so that ;, m; , {,... are all negligible.)

For any invertible ARIMA model, the n-weights can be calculated recursively from
the expressions

min(j, q)

z Ginj_l.+(pj for 1<j<p+d

i=1
. o= 9.7.2)
min(j, q)

Z Oinjiiforj>p+d

i=1

with initial value ny = —1. (Compare this with Equations (4.4.7) on page 79 for the
y-weights.)
Consider in particular the nonstationary IMA(1,1) model

Y, =Y, _+e-0¢_,
Herep=0,d=1, g=1, with | = 1; thus

n, =0ny+1 =1-06
On, = 0(1-0)

T
and, generally,
.= Grrj_l forj>1
Thus we have explicitly
= (1-0)0/"! forj>1 (9.7.3)
so that, from Equation (9.7.1), we can write

P (1) = (1-0)Y,+(1-0)8Y,_, +(1-0)02Y,_,+--- (9.7.4)

In this case, the n-weights decrease exponentially, and furthermore,
0 o0 . 1-06
n=(1-0)yY 6 1=_""2=1
j; ! j; 1-6

Thus I?I( 1)is called an exponentially weighted moving average (EWMA).
Simple algebra shows that we can also write

P(1) = (1-0)y,+07,_ (1) 9.7.5)
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and
Py =P, ()+-0)y,-F,_ (1) (9.7.6)

Equations (9.7.5) and (9.7.6) show how to update forecasts from origin 7 — 1 to origin ¢,
and they express the result as a linear combination of the new observation and the old
forecast or in terms of the old forecast and the last observed forecast error.

Using EWMA to forecast time series has been advocated, mostly on an ad hoc
basis, for a number of years; see Brown (1962) and Montgomery and Johnson (1976).

The parameter 1 — 0 is called the smoothing constant in EWMA literature, and its
selection (estimation) is often quite arbitrary. From the ARIMA model-building
approach, we let the data indicate whether an IMA(1,1) model is appropriate for the
series under consideration. If so, we then estimate 0 in an efficient manner and compute
an EWMA forecast that we are confident is the minimum mean square error forecast. A
comprehensive treatment of exponential smoothing methods and their relationships with
ARIMA models is given in Abraham and Ledolter (1983).

9.8 Forecasting Transformed Series

Differencing

Suppose we are interested in forecasting a series whose model involves a first difference
to achieve stationarity. Two methods of forecasting can be considered:

1. forecasting the original nonstationary series, for example by using the difference
equation form of Equation (9.3.28) on page 199, with ¢’s replaced by ¢’s
throughout, or

2. forecasting the stationary differenced series W, =Y, — Y, _; and then “undoing”
the difference by summing to obtain the forecast in original terms.

We shall show that both methods lead to the same forecasts. This follows essentially
because differencing is a linear operation and because conditional expectation of a lin-
ear combination is the same linear combination of the conditional expectations.

Consider in particular the IMA(1,1) model. Basing our work on the original nonsta-
tionary series, we forecast as

P.(1) = v,-0e, 9.8.1)
and
AN AN
P(0) = ¥ (e-1) fore>1 (9.8.2)

Consider now the differenced stationary MA(1) series W, =Y, - Y, _|. We would fore-
cast W, ,as

W(1) = —0e (9.8.3)

t
and

W) = 0 for¢> 1 (9.8.4)
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However, W(1) = ¥,(1)=¥,; thus W,(1) = —0e, is equivalent to ¥,(1) = ¥, - 0e,

as before. Similarly, Vli\/t(z) =7 (0 — % (¢~ 1), and Equation (9.8.4) becomes Equation
(9.8.2), as we have claimed.

The same result would apply to any model involving differences of any order and
indeed to any type of linear transformation with constant coefficients. (Certain linear
transformations other than differencing may be applicable to seasonal time series. See
Chapter 10.)

Log Transformations

As we saw earlier, it is frequently appropriate to model the logarithms of the original
series—a nonlinear transformation. Let ¥, denote the original series value and let Z, =
log(Y,). It can be shown that we always have

E(Y,+5|Yz> Y, .. Y2 exp[E(Zt+e|Zt, Z, 1 Z))] (9.8.9)

JAY

with equality holding only in trivial cases. Thus, the naive forecast exp[Z,(¢)] is not the
minimum mean square error forecast of Y, ., To evaluate the minimum mean square
error forecast in original terms, we shall find the following fact useful: If X has a normal
distribution with mean p and variance o2, then

Elexp(X)] = exp[p.+c—2q

(This follows, for example, from the moment-generating function for X.) In our applica-
tion

w=EQZ 2,2 V7))

—1

and

62 = Va r(Zt

A2 Z)

Varle () +C(OI|Z,Z, ,,....Z,]
Varle (O|Z,Z, |, ....Z 1+ Var[C(O|Z,Z,_,,....Z|]

Var[et(€)|Zt, Zi 45 2]
Var[e,(¢)]

These follow from Equations (9.3.35) and (9.3.36) (applied to Z,) and the fact that Cl(l)
is a function of Z;, Z, _,..., whereas ¢,(¢) is independent of Z;, Z, _,... . Thus the mini-
mum mean square error forecast in the original series is given by

exp{ft(z) + %Var[et(z)]} (9.8.6)

Throughout our discussion of forecasting, we have assumed that minimum mean square
forecast error is the criterion of choice. For normally distributed variables, this is an
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excellent criterion. However, if Z, has a normal distribution, then Y, = exp(Z,) has a log-
normal distribution, for which a different criterion may be desirable. In particular, since
the log-normal distribution is asymmetric and has a long right tail, a criterion based on
the mean absolute error may be more appropriate. For this criterion, the optimal forecast
is the median of the distribution of Z, ,, conditional on Z,;, Z, _ ,..., Z;. Since the log
transformation preserves medians and since, Afor a normal distribution, the mean and
median are identical, the naive forecast exp[Z,(¢)] is the optimal forecast for ¥, , ,in
the sense that it minimizes the mean absolute forecast error.

9.9 Summary of Forecasting with Certain ARIMA Models

Here we bring together various forecasting results for special ARIMA models.
ARQ1): Y, = u+o(Y,_, - +e,
PO =p+¢[¥(e-1)-p] fore=1
= u+ oY, —p) forix1

A
Y ()~ p for large ¢

— (-1
e (o) = e[+e+(|)el+z_1+ +0°7 e,

Var(e,(¢)) = 662|:l:_¢_2_g:|

1—¢2
G2
e
Var(e,(¢)) = s =y, forlarge ¢

v, = o/ for j>0

MA(1): ¥, = p+e,—0e,_,

AN

Y, (1) = u—0e,
A
Y () =p forl>1

e(l) =e, .

e,(0) = et”—eet”_1 fore> 1

2 _
G, for¢ = 1

Var(e,(¢)) = {

682(1 +02) fore>1
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_ =6 forj =1
Vi = 0 forj>1

IMA (1,1) with Constant Term: ¥, = ¥, | +0,+e,—0¢,_,
A
Y, (o)

A
Y, (¢-1)+06,-0e,
Yt+560—9€t

I?t(l) = (l—O)Yt+(1—9)9Yt_1+(1—6)62Yt_2+~~~(theEWMAf0r 0,=0)
e () = eHZ+(1—G)eHZ_1+(1—9)et+Z_2+---+(1—9)et+1 for¢>1
Var(e,(¢)) = (582[1 +(¢-1)(1-0)2]

y; = 1-6 forj>0

Note that if 6 # 0, the forecasts follow a straight line with slope 8y, but if 8, = 0, which
is the usual case, then the forecast is the same for all lead times, namely

A
Y0 = v,—0e,

IMA(2,2): ¥, = 2Y, ,-Y, ,+0,+e,—0e,_|—05e, ,

Y(l) =2Y,-Y,_ [ +05-0,e,-05e, ,
P(2) = 29 (1)= ¥, +0,—0,e, 9.9.1)
P =29, 1)= P (¢=2)+6, fore>2

» 0 ,
Yt(e) = A+ B+ Eé 9.9.2)
where
A A
A=2Y,(1)-Y,(2)+9, (9.9.3)
and
A A 3
B=Y(2)-Y,(1)- 590 9.9.4)

If 6y # 0, the forecasts follow a quadratic curve in ¢, but if 6 = 0, the forecasts form a
stralght lm;c\ with slope ? [(2)—Y,(1) and will pass through the two initial forecasts

Y,(1)and Y ,(2). It can be shown that Var(e,(¢))is a certain cubic function of ¢; see
Box, Jenkins, and Reinsel (1994, p. 156). We also have

Y= 1+0,+(1-0,-0,)j forj>0 (9.9.5)
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It can also be shown that forecasting the special case with 6; = 2w and 0, = —® is

equivalent to so-called double exponential smoothing with smoothing constant 1 — ®;
see Abraham and Ledolter (1983).

9.10 Summary

Forecasting or predicting future as yet unobserved values is one of the main reasons for
developing time series models. Methods discussed in this chapter are all based on mini-
mizing the mean square forecasting error. When the model is simply deterministic trend
plus zero mean white noise error, forecasting amounts to extrapolating the trend. How-
ever, if the model contains autocorrelation, the forecasts exploit the correlation to pro-
duce better forecasts than would otherwise be obtained. We showed how to do this with
ARIMA models and investigated the computation and properties of the forecasts. In
special cases, the computation and properties of the forecasts are especially interesting
and we presented them separately. Prediction limits are especially important to assess
the potential accuracy (or otherwise) of the forecasts. Finally, we addressed the problem
of forecasting time series for which the models involve transformation of the original
series.

EXERCISES

9.1 Foran AI/{\(I) model with ¥,=12.2, $ =-0.5, and p = 10.8,
(a) Find Y (1 ),.\
(b) Calculate l/( [(2) in two different ways.
(¢) Calculate ¥ ,(10).
9.2 Suppose that annual sales (in millions of dollars) of the Acme Corporation follow
the AR(2) model ¥, = 5+1.1Y,_;-0.5Y,_, + e, with o2 =2.
(a) If sales for 2005, 2006, and 2007 were $9 million, $11 million, and $10 mil-
lion, respectively, forecast sales for 2008 and 2009.
(b) Show that y; = 1.1 for this model.
(c) Calculate 95% prediction limits for your forecast in part (a) for 2006.
(d) If sales in 2006 turn out to be $12 million, update your forecast for 2007.
9.3  Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, lowa, for April 1976.
(b) Find a 95% prediction interval for that April forecast. (The estimate of A/%
for this model is 3.719°F.)
(c) What is the forecast for April, 1977? For April 2009?
9.4 Using the estimated cosine trend on page 192:
(a) Forecast the average monthly temperature in Dubuque, lowa, for May 1976.
(b) Find a 95% prediction interval for that May 1976 forecast. (The estimate of
«/V_O for this model is 3.719°F.)
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9.5

9.6

9.7

9.8

9.9

9.10

Forecasting

Using the seasonal means model without an intercept shown in Exhibit 3.3 on

page 32:

(a) Forecast the average monthly temperature in Dubuque, lowa, for April, 1976.

(b) Find a 95% prediction interval for that April forecast. (The estimate of J%
for this model is 3.419°F.)

(¢) Compare your forecast with the one obtained in Exercise 9.3.

(d) What is the forecast for April 1977? April 2009?

Using the seasonal means model with an intercept shown in Exhibit 3.4 on page

33:

(a) Forecast the average monthly temperature in Dubuque, lowa, for April 1976.

(b) Find a 95% prediction interval for that April forecast. (The estimate of J%
for this model is 3.419°F.)

(¢) Compare your forecast with the one obtained in Exercise 9.5.

Using the seasonal means model with an intercept shown in Exhibit 3.4 on page

33

(a) Forecast the average monthly temperature in Dubuque, Iowa, for January
1976.

(b) Find a 95% prediction interval for that January forecast. (The estimate of J%
for this model is 3.419°F.)

Consider the monthly electricity generation time series shown in Exhibit 5.8 on

page 99. The data are in the file named electricity.

(a) Fit a deterministic trend model containing seasonal means together with a lin-
ear time trend to the logarithms of the electricity values.

(b) Plot the last five years of the series together with two years of forecasts and
the 95% forecast limits. Interpret the plot.

Simulate an AR(1) process with ¢ = 0.8 and p = 100. Simulate 48 values but set

aside the last 8 values to compare forecasts to actual values.

(a) Using the first 40 values of the series, find the values for the maximum likeli-
hood estimates of ¢ and L.

(b) Using the estimated model, forecast the next eight values of the series. Plot
the series together with the eight forecasts. Place a horizontal line at the esti-
mate of the process mean.

(¢) Compare the eight forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and the same sample size.

Simulate an AR(2) process with ¢; = 1.5, ¢, = —0.75, and p = 100. Simulate 52

values but set aside the last 12 values to compare forecasts to actual values.

(a) Using the first 40 values of the series, find the values for the maximum likeli-
hood estimates of the ¢’s and p.

(b) Using the estimated model, forecast the next 12 values of the series. Plot the
series together with the 12 forecasts. Place a horizontal line at the estimate of
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9.11

9.12

9.13

the process mean.

(¢) Compare the 12 forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an MA(1) process with 6 = 0.6 and p = 100. Simulate 36 values but set

aside the last 4 values to compare forecasts to actual values.

(a) Using the first 32 values of the series, find the values for the maximum likeli-
hood estimates of the 0 and p.

(b) Using the estimated model, forecast the next four values of the series. Plot the
series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(¢) Compare the four forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an MA(2) process with 0, = 1, 6, = —0.6, and p = 100. Simulate 36 val-

ues but set aside the last 4 values with compare forecasts to actual values.

(a) Using the first 32 values of the series, find the values for the maximum likeli-
hood estimates of the 0’s and p.

(b) Using the estimated model, forecast the next four values of the series. Plot the
series together with the four forecasts. Place a horizontal line at the estimate
of the process mean.

(c) What is special about the forecasts at lead times 3 and 4?

(d) Compare the four forecasts with the actual values that you set aside.

(e) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(f) Repeat parts (a) through (e) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an ARMA(1,1) process with ¢ = 0.7, 6 =—0.5, and p = 100. Simulate 50

values but set aside the last 10 values to compare forecasts with actual values.

(a) Using the first 40 values of the series, find the values for the maximum likeli-
hood estimates of ¢, 6, and L.

(b) Using the estimated model, forecast the next ten values of the series. Plot the
series together with the ten forecasts. Place a horizontal line at the estimate of
the process mean.

(¢) Compare the ten forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.
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9.14

9.15

9.16

9.17

Forecasting

Simulate an IMA(1,1) process with 6 = 0.8 and 6 = 0. Simulate 35 values, but set

aside the last five values to compare forecasts with actual values.

(a) Using the first 30 values of the series, find the value for the maximum likeli-
hood estimate of 6.

(b) Using the estimated model, forecast the next five values of the series. Plot the
series together with the five forecasts. What is special about the forecasts?

(¢) Compare the five forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an IMA(1,1) process with 6 = 0.8 and 6, = 10. Simulate 35 values, but

set aside the last five values to compare forecasts to actual values.

(a) Using the first 30 values of the series, find the values for the maximum likeli-
hood estimates of 6 and 6.

(b) Using the estimated model, forecast the next five values of the series. Plot the
series together with the five forecasts. What is special about these forecasts?

(¢) Compare the five forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an IMA(2,2) process with 6, = 1, 8, = -0.75, and 6 = 0. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.

(a) Using the first 40 values of the series, find the value for the maximum likeli-
hood estimate of 6; and 6,.

(b) Using the estimated model, forecast the next five values of the series. Plot the
series together with the five forecasts. What is special about the forecasts?

(¢) Compare the five forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.

Simulate an IMA(2,2) process with 8; = 1, 6, = —0.75, and 6 = 10. Simulate 45

values, but set aside the last five values to compare forecasts with actual values.

(a) Using the first 40 values of the series, find the values for the maximum likeli-
hood estimates of 0, 6,, and 0,

(b) Using the estimated model, forecast the next five values of the series. Plot the
series together with the five forecasts. What is special about these forecasts?

(¢) Compare the five forecasts with the actual values that you set aside.

(d) Plot the forecasts together with 95% forecast limits. Do the actual values fall
within the forecast limits?

(e) Repeat parts (a) through (d) with a new simulated series using the same values
of the parameters and same sample size.
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9.18

9.19
9.20
9.21

9.22

9.23

9.24

9.25

Consider the model Y, = B+ B,7+X,, where X, = ¢X, | +e,. We assume

that 3, B, and ¢ are known Show that the minimum mean square error forecast ¢

steps ahead can be written as Y (0 =By +B(t+0)+ ¢Z(Y Bo—B D).

Verify Equation (9.3.16) on page 196.

Verify Equation (9.3.32) on page 200.

The data file named deere3 contains 57 consecutive values from a complex

machine tool process at Deere & Co. The values given are deviations from a tar-

get value in units of ten millionths of an inch. The process employs a control

mechanism that resets some of the parameters of the machine tool depending on

the magnitude of deviation from target of the last item produced.

(a) Using an AR(1) model for this series, forecast the next ten values.

(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

The data file named days contains accounting data from the Winegard Co. of Bur-

lington, Iowa. The data are the number of days until Winegard receives payment

for 130 consecutive orders from a particular distributor of Winegard products.

(The name of the distributor must remain anonymous for confidentiality reasons.)

The time series contains outliers that are quite obvious in the time series plot.

Replace each of the unusual values at “times” 63, 106, and 129 with the much

more typical value of 35 days.

(a) Use an MA(2) model to forecast the next ten values of this modified series.

(b) Plot the series, the forecasts, and 95% forecast limits, and interpret the results.

The time series in the data file robot gives the final position in the “x-direction”

after an industrial robot has finished a planned set of exercises. The measure-

ments are expressed as deviations from a target position. The robot is put through

this planned set of exercises in the hope that its behavior is repeatable and thus

predictable.

(a) Use an IMA(1,1) model to forecast five values ahead. Obtain 95% forecast
limits also.

(b) Display the forecasts, forecast limits, and actual values in a graph and inter-
pret the results.

(¢) Now use an ARMA(1,1) model to forecast five values ahead and obtain 95%
forecast limits. Compare these results with those obtained in part (a).

Exhibit 9.4 on page 206 displayed the forecasts and 95% forecast limits for the

square root of the Canadian hare abundance. The data are in the file named hare.

Produce a similar plot in original terms. That is, plot the original abundance val-

ues together with the squares of the forecasts and squares of the forecast limits.

Consider the seasonal means plus linear time trend model for the logarithms of

the monthly electricity generation time series in Exercise 9.8. (The data are in the

file named electricity.)

(a) Find the two-year forecasts and forecast limits in original terms. That is, expo-
nentiate (antilog) the results obtained in Exercise 9.8.

(b) Plot the last five years of the original time series together with two years of
forecasts and the 95% forecast limits, all in original terms. Interpret the plot.
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Appendix E: Conditional Expectation

If X and Y have joint pdf f(x,y) and we denote the marginal pdf of X by f(x), then the
conditional pdf of Y given X = x is given by

_ ()
fy]x) = 0

For a given value of x, the conditional pdf has all of the usual properties of a pdf. In par-
ticular, the conditional expectation of ¥ given X = x is defined as

E(Y|X=x) = [ 7 yf(y|x)dy

As an expected value or mean, the conditional expectation of Y given X = x has all of
the usual properties. For example,

E(aY+bZ+c|X=x) = aE(Y|X=x)+ bE(Z|X=x)+¢ 9.E.1)
and

E[h(V)|X=x] = [ 2yf(y|x)dx (9.E.2)

In addition, several new properties arise:
E[h(X)|X=x] = h(x) (9.E.3)

That is, given X = x, the random variable /4(X) can be treated like a constant A(x). More
generally,

E[h(X, Y)|X=x] = E(h(x, Y)|X=x) (9.E.4)

If we set E(Y|X=x) = g(x), then g(X) is a random variable and we can consider
E[g(X)]. It can be shown that

E[g(X)] = E(Y)
which is often written as
E[E(Y|X)] = E(Y) (9.E.5)

If Y and X are independent, then
E(Y|X) = E(Y) (9.E.6)

Appendix F: Minimum Mean Square Error Prediction

Suppose Y is a random variable with mean py and variance G%. If our object is to pre-
dict Y using only a constant ¢, what is the best choice for ¢? Clearly, we must first define
best. A common (and convenient) criterion is to choose ¢ to minimize the mean square
error of prediction, that is, to minimize

g(c) = E[(Y-¢)?]
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If we expand g(c), we have
g(c) = E(Y?)-2cE(Y) + c?

Since g(c) is quadratic in ¢ and opens upward, solving g'(c) = 0 will produce the
required minimum. We have

g'(c) = —2E(Y)+2c
so that the optimal c is

c=EY)=yp 9.E1)
Note also that
inciizoog(c) = E(Y-p)? = c%, 9.F2)

—00

Now consider the situation where a second random variable X is available and we
wish to use the observed value of X to help predict Y. Let p = Corr (X,Y). We first sup-
pose, for simplicity, that only /inear functions a + bX can be used for the prediction. The
mean square error is then given by

g(a,b) = E(Y—a-bX)?
and expanding we gave
g(a,b) = E(Y?) +a?+ b2E(X?) - 2aE(Y) + 2abE(X) — 2bE(XY)

This is also quadratic in a and b and opens upward. Thus we can find the point of mini-
mum by solving simultaneous linear equations dg(a, b)/0a = 0 and dg(a, b)/0b =0.
We have

0g(a,b)/0a = 2a—2E(Y)+2bE(X) = 0
0g(a, b)/0b = 2bE(X?) +2aE(X)-2E(XY) = 0
which we rewrite as
a+E(X)b = E(Y)
E(X)a+ E(X?)b = EXY

Multiplying the first equation by E(X) and subtracting yields

p = EXY)-EX)EQY) _ Cov(X.Y) _ Oy

(9.E3)
E(X?)-[E(X)]? Var(X) Gx

Then
Oy
a =EY)-DbEX) = py—pc—ux (9.F4)
X

A . . . . .
If we let Y be the minimum mean square error prediction of Y based on a linear
function of X, then we can write

A

P = o 2 lx 9F5
= P-Y_pGXP-X + ch“X (O.ES5)

or
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[9 = 06

Oy Ox

In terms of standardized variables ¥ and X , we have simply P = pX "
Also, using Equations (9.F.3) and (9.F.4), we find

min g(a,b) = 612/(1 -p?) (9.E7)

which provides a proof that —1 < p <+1 since g(a,b) > 0.

If we compare Equation (9.F.7) with Equation (9.F.2), we see that the minimum
mean square error obtained when we use a linear function of X to predict Y is reduced by
a factor of 1 — p2 compared with that obtained by ignoring X and simply using the con-
stant L1y for our prediction.

Let us now consider the more general problem of predicting Y with an arbitrary
function of X. Once more our criterion will be to minimize the mean square error of pre-
diction. We need to choose the function i(X), say, that minimizes

E[Y-h(X)]? (9.F.8)
Using Equation (9.E.5), we can write this as
E[Y-h(X)]*> = E(E{[Y-h(X)]?|X}) (9.F9)
Using Equation (9.E.4), the inner expectation can be written as
E{[Y-h(X)]?|X=x} = E{[Y-h(x)]?|X =x} (9.F.10)

For each value of x, h(x) is a constant, and we can apply the result of Equation (9.F.1) to
the conditional distribution of Y given X = x. Thus, for each x, the best choice of h(x) is

h(x) = E(Y|X = x) (O.F.11)

Since this choice of 4(x) minimizes the inner expectation in Equation (9.F.9), it must
also provide the overall minimum of Equation (9.F.8). Thus

h(X) = E(Y|X) (9.F.12)

is the best predictor of Y of all functions of X.
If X and Y have a bivariate normal distribution, it is well-known that

Oy
E(Y|X) = py+p—(X—py)
X

so that the solutions given in Equations (9.F.12) and (9.F.5) coincide. In this case, the
linear predictor is the best of all functions.

More generally, if Y is to be predicted by a function of X;, X5,..., X,,, then it can be
easily argued that the minimum square error predictor is given by

E(Y|Xp X,y -0 X, ) (9.F.13)
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Appendix G: The Truncated Linear Process

Suppose {Y,} satisfies the general ARIMA(p,d,q) model with AR characteristic polyno-
mial ¢(x), MA characteristic polynomial 6(x), and constant term 6. Then the truncated
linear process representation for {Y,} is given by

Y. = Ct(é) +Il(é) fore¢>1 9.G.1)
where
I(g) = z Ve, f0r£>1 9.G.2)
r P -1
(o) = Z A+ Y Z Bl]z](G ) (9.G.3)
i=1j=

and A;, BU, i=1,2,.,rj=1,2,..., p;, are constant in ¢ and depend only on Y,,

Y, _1,...." As always, the y-weights are defined by the identity
)1 =X)L+ yyx + y,ox? +--) = 0(x) (9.G.4)
or
O (1 +yx+yyx2+ ) = 0(x) 9.G.5)

We shall show that the representation given by Equation (9.G.1) is valid by arguing
that, for fixed 7, C,(¢) is essentially the complementary function of the defining differ-
ence equation, that is,

ClO)—9,C(=1)=,C(¢-2)— -~ (pp+dCt(é—p -d) = 0, for¢20 (9.G.6)
and that /,(¢) is a particular solution (without 6):

LO =0 L (6= 1) =0/ (¢ =2) = =@, I (¢(-p-d)

9.G.7)
= e,+g_elet+lfl_ezet+172_ _eqet+l—q for¢>¢

Since C,(¢) contains p + d arbitrary constants (the A’s and the B’s), summing C,(¢) and
1,(¢) yields the general solution of the ARIMA equation. Specific values for the A’s and
B’s will be determined by initial conditions on the {Y,} process.

We note that A is not arbitrary. We have

eO
(T=0,—0,— - d!

The proof that C,(¢) as given by Equation (9.G.2) is the complementary function and
satisfies Equation (9.G.6) is a standard result from the theory of difference equations

Ay = 9.G.8)

T The only property of the C,(¢) that we need is that it depends only on Y, ¥, _1,... .
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(see, for example, Goldberg, 1958). We shall show that the particular solution /,(¢)
defined by Equation (9.G.2) does satisfy Equation (9.G.7).

For convenience of notation, we let ¢ ;= 0 for j > p + d. Consider the left-hand side
of Equation (9.G.7). It can be written as:

(Wo, gt V1€ g TtV e ) =01 (Woe, p T Wie, 5
TV gl ) T =0y d (Vo (9.G.9)
VI e a1 T Y g Gt

Now grouping together common e, terms and picking off their coefficients, we obtain
Coefficientof e,  ,_ | : y,,
Coefficientof e, . ,_»: Y[ — 0V
Coefficientof e, ,_3: Yy — QW — Py,

Coefficientof ¢; . | Ve =PV =PV 3= =Py,
If ¢ > g, we can match these coefficients to the corresponding coefficients on the
right-hand side of Equation (9.G.7) to obtain the relationships

v, =1
Vi—91¥o = 9
Vo= Q¥ — 99 = 6
2o e ? (9.G.10)
V=P Vg1 =PV = 0yVo = —eq
Vo 1 7PV =Py 3= = PpraVy_ g1 = 0 for ¢>¢q

However, by comparing these relationships with Equation (9.G.5), we see that Equa-
tions (9.G.10) are precisely the equations defining the y-weights and thus Equation
(9.G.7) is established as required.

Appendix H: State Space Models

Control theory engineers have developed and successfully used so-called state space
models and Kalman filtering since Kalman published his seminal work in 1960.
Recent references include Durbin and Koopman (2001) and Harvey et al. (2004).

Consider a general stationary and invertible ARMA(p,q) process {Z,}. Put m =
max(p, g + 1) and define the state of the progess at time ¢ as the column vector Z(¢) of
length m whose jth element is the forecast Z(]) for] =0,1,2,. — 1, based on Z,,
Z;_{,... . Note that the lead element of Z(z) is just 2 0)=2.

Recall the updating Equation (9.6.1) on page 207, which in the present context can
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be written

A A

Z, (O =Z(e+1)+vy,e, (9.H.1)
We shall use this expression directly for¢=0, 1, 2,..., m — 2. For ¢=m — 1, we have

A
Zt(m) + Vin—1€+1

A A A
O, Z(m=1)+¢,Z,(m-2)+ ... +(1)pZt(m—p)+\|/m_1etJrl

JAN
Z, 4 (m=1)

(9.H.2)

where the last expression comes from Equation (9.3.34) on page 200, with p = 0.
The matrix formulation of Equations (9.H.1) and (9.H.2) relating Z(7 + 1) to Z(¢)

and e, |, called the equations of state (or Akaike’s Markovian representation), is
given as
Z(t+1) = FZ(t) + Ge, (9.H.3)
where
0 1 0 o 0 ]
0 0 1 0 0
F = 0 0 0 1 0 (9.HA4)
0 0 0 0 1
L (')m ¢m—l . . ' ¢l i
and
_ | -
Vi
G=| vy, (9.H.5)
V-1

with d)j = Ofor j > p. Note that the simplicity of Equation (9.H.3) is obtained at the
expense of having to deal with vector-valued processes. Because the state space formu-
lation also usually allows for measurement error, we do not observe Z, directly but only
observe Y, through the observational equation

Y, = HZ(1) +¢, (9.H.6)

where H =1, 0, 0,..., 0] and {et} is another zero-mean white noise process indepen-
dent of {e,}. The special case of no measurement error is obtained by setting ¢, = Oin
Equation (9.H.6). Equivalently, this case is obtained by taking 082 = 0 in subsequent
equations. More general state space models allow F, G, and H to be more general, pos-
sibly also depending on time.
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Evaluation of the Likelihood Function and Kalman Filtering

First a definition: The covariance matrix for a vector of random variables X of dimen-
sion nx1 is defined to be the nxn matrix whose ijth element is the covariance between
the ith and jth components of X.
If Y = AX + B, then it is easily shown that the covariance matrix for Y is AVAT,
where V is the covariance matrix for X and the superscript 7 denotes matrix transpose.
Getting back to the Kalman filter, we let Z(¢+ 1|f) denote the mx 1 vector whose
jth component is E[£l+ 1(j)|Y[, ) ST Yl] forj=0,1,2,..., m — 1. Similarly, let

Z(t|t) be the vector whose jth component is E[ft(j)|Yt, Y, .., Y ]forj=0,1,
2,...,m—1.

Then, since ¢, ; is independent of Z;, Z, _|,..., and hence also of ¥, Y, _,..., we
see from Equation (9.H.3) that
Z(t+1]|t) = FZ(1|t) (9.H.7)

Also letting P(t+ 1|t) be the covariance matrix for the “forecast error” Z(t+1)—
Z(t+1|t) and P(t|t) be the covariance matrix for the “forecast error” Z(t) — Z(t|t),
we have from Equation (9.H.3) that

P(t+1]t) = F[P({|)]F +52GG" (9.H.8)
From the observational equation (Equation (9.H.6)) and then replacing 7 + 1 by ¢,
Y(t+1|t) = HZ(t + 1]1) (9.H.9)

where Y(1+ 1[t) = E(Y, ||V, Y, |, ... Y)).

It can now be shown that the following relationships hold (see, for example, Har-
vey, 1981c):

Z(t+1t+1) = Z(t+ )+ K(t+ D[Y,, | - Y(t+ 1]|1)] (9.H.10)
where
K(t+1) = P(t+ 1|0H [HP(t + 1|)H + 2] (9.H.11)
and
P(t+1](r+ 1)) = P(t+ 1|t) k(1 + DHP(t + 1]1) (9.H.12)

Collectively, Equations (9.H.10), (9.H.11), and (9.H.12) are referred to as the Kalman
filter equations. The quantity

err, =Y, - Y(t+1]r) (9.H.13)

t+1
in Equation (9.H.10) is the prediction error and is independent of (or at least uncorre-
lated with) the past observations Y,, ¥, _{,... . Since we are allowing for measurement
error, err, . | is not, in general, the same as e, __ |.

From Equations (9.H.13) and (9.H.6), we have

V1 = Var(err,, ) = HP(t+ 1|NH' + 2 (9.H.14)
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Now consider the likelihood function for the observed series Y, Y»,..., Y,,. From the
definition of the conditional probability density function, we can write

f(yl’ yza LR yn) = f(yn|yls yzs ~-->yn_1)f(y19y2’ L] yn_l)
or, by taking logs,
10gf(y1, ¥s -5 ) = 108f(V 1, g e ¥y 1) +108f (Y1, ¥ sy, 1) (O.HL1S)

Assume now that we are dealing with normal distributions, that is, that {e,} and
{,} are normal white noise processes. Then it is known that the distribution of ¥}, con-
ditional on Y| =y, Y5 =yo,..., ¥, _ 1 =, _ 1 is also normal with mean y(n|n — 1) and
variance v,,. In the remainder of this section and the next, we write y(n|n—1) for the
observed value of Y(n|n—1).The second term on the right-hand side of Equation
(9.H.15) can then be written

[y, - y(nln-1)]?

Vn

1 1 1
10gf(y,ly 15 y3s s ¥, 1) = —3log2n —Slogv, —5

Furthermore, the first term on the right-hand side of Equation (9.H.15) can be
decomposed similarly again and again until we have

n
1ng(y19 )’2, LRRE yn) = Z logf(ytlyla yz? AR yt_ 1) + logf(yl) (9H16)
t=2
which then becomes the prediction error decomposition of the likelihood, namely

[y, —y(tlt=1)1?

n 1 12
logf(yy, g s ¥,) = —ElogZTr—Et vt—itgl . (9.H.17)

M=

1 t

with y(1/0) = Oand v; = Var(Y)).

The overall strategy for computing the likelihood for a given set of parameter val-
ues is to use the Kalman filter equations to generate recursively the prediction errors and
their variances and then use the prediction error decomposition of the likelihood func-
tion. Only one point remains: We need initial values Z(0]|0) and P(0|0) to get the recur-
sions started.

The Initial State Covariance Matrix

The initial state vector Z(0|0) will be a vector of zeros for a zero-mean process, and
P(0]0) is the covariance matrix fo/{ Z(0) —Z/(OlO) = Z(0). Now, because Z(0)is the
column vector with elements [Z,, Z((1), ..., Zy(m —1)], it is necessary for us to evalu-
ate

CoviZy(i), 2o()]  forij =0,1,...m—1

,, From the truncated linear process form, Equation (9.3.35) on page 200 with C,(¢)
= Z,(¢), we may write, for j > 0
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Z = ZO(])+ z Yy g €k (9.H.18)
k=-j

Multiplying Equation (9.H.18) by Z, and taking expected values yields
= E(Z, Z) = E[Z O(O)(ZO(]))] forj=0 (9.H.19)

Now multiply Equation (9.H.18) by itself with j replaced by i and take expected values.
Recalling that the e’s are independent of past Z’s and assuming 0 < i <j, we obtain

1—1
Vi = = Cov[Z O(l) ZO(]) +G Z (A (9.H.20)

Combining Equations (9.H.19) and (9.H.20), we have as the required elements of
P(0[0)

Y; 0=i<j<m-1

JAY A
Cov[Zy(i), Zy())] = i1 o (9.H21)
Vim0l Y WiWisj i 1<i<j<m-1
k=0

where the y-weights are obtained from the recursion of Equation (4.4.7) on page 79,
and y;, the autocovariance function for the {Z;} process, is obtained as in Appendix C
on page 85.

The variance 67 can be removed from the problem by dividing 62 by cs . The
prediction error varlance v, is then replaced by o v in the log- hkehhood of Equatlon
(9.H.17), and we set 03 = 1 in Equation (9.H.8). Dropping unneeded constants, we get
the new log-likelihood

2

n —y(t]t-1)]?
(=¥ {mg(cgv,) + M} (9.H.22)
t=1 1
which can be minimized analytically with respect to 02 . We obtain
no(Ly,—y@lr=1)]
= Z # (9.H.23)
- G, 2y ;
Substituting this back into Equation (9.H.22), we now find that
-yt 1)]?
z logv, + nlog Z —_ (9.H.24)

t=1 r=1 Yy

which must be minimized numerically with respect to ¢y, ¢5,..., ¢, 8y, 65,..., 8, and

2 . Having done so, we return to Equation (9.H.23) to estimate 62 The functlon
defrned by Equation (9.H.24) is sometimes called the concentrated log-likelihood
function.



CHAPTER 10

SEASONAL MODELS

In Chapter 3, we saw how seasonal deterministic trends might be modeled. However, in
many areas in which time series are used, particularly business and economics, the
assumption of any deterministic trend is quite suspect even though cyclical tendencies
are very common in such series.

Here is an example: Levels of carbon dioxide (CO,) are monitored at several sites
around the world to investigate atmospheric changes. One of the sites is at Alert, North-
west Territories, Canada, near the Arctic Circle.

. __uf _}__,——\/—\.L

Exhibit 10.1 displays the monthly CO, levels from January 1994 through Decem-
ber 2004. There is a strong upward trend but also a seasonality that can be seen better in
the more detailed Exhibit 10.2, where only the last few years are graphed using monthly
plotting symbols.

Exhibit 10.1 Monthly Carbon Dioxide Levels at Alert, NWT, Canada

o
2 |
m_
) i
S 8
m_
2
a T T T T T T
1994 1996 1998 2000 2002 2004
Time

> data (co2)
> win.graph(width=4.875,height=3,pointsize=8)
> plot (co2,ylab='C02")
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As we see in the displays, carbon dioxide levels are higher during the winter
months and much lower in the summer. Deterministic seasonal models such as seasonal
means plus linear time trend or sums of cosine curves at various frequencies plus linear
time trend as we investigated in Chapter 3 could certainly be considered here. But we
discover that such models do not explain the behavior of this time series. For this series
and many others, it can be shown that the residuals from a seasonal means plus linear
time trend model are highly autocorrelated at many lags.T In contrast, we will see that
the stochastic seasonal models developed in this chapter do work well for this series.

Exhibit 10.2 Carbon Dioxide Levels with Monthly Symbols

CO2

360 365 370 375 380
|

2000 2001 2002 2003 2004 2005

Time

> plot (window (co2, start=c(2000,1)),ylab="C02")
> Month:c(VJlllFlllMllIAIIlMlllJlllJVIYAYIYSIIIOIIINIIIDI)
> points (window (co2, start=c(2000,1)),pch=Month)

10.1 Seasonal ARIMA Models

We begin by studying stationary models and then consider nonstationary generalizations
in Section 10.3. We let s denote the known seasonal period; for monthly series s = 12
and for quarterly series s = 4.

Consider the time series generated according to

Y, = e,-0¢,_,

Notice that
Cov(Y,Y, ;) = Cov(e,—Oe, |y,e, | —0Oe, ,3)
0

but that

T We ask you to verify this in Exercise 10.8.
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Cov(Y, Y, 1) = Cov(e,~@¢,_y,e, 1, —-0e,_5)
= —@Gg

It is easy to see that such a series is stationary and has nonzero autocorrelations only at
lag 12.

Generalizing these ideas, we define a seasonal MA(Q) model of order Q with sea-
sonal period s by

t

Y = et—®le[_s—®2el_25—-~~—®Qet_Qs (10.1.1)
with seasonal MA characteristic polynomial
O(x) = 1 -0 x% - Oyx> — ... _@Qsz (10.1.2)

It is evident that such a series is always stationary and that the autocorrelation function
will be nonzero only at the seasonal lags of s, 2s, 3s,..., Os. In particular,

=0, +0,0; 1 +0,0;  ,+ -

+0,_,0
-k
Prs = QK 0Q fork=1,2,...,0 (10.1.3)

1+07+03+--+07

(Compare this with Equation (4.2.5) on page 65 for the nonseasonal MA process.) For
the model to be invertible, the roots of ®(x) = 0 must all exceed 1 in absolute value.

It is useful to note that the seasonal MA(Q) model can also be viewed as a special
case of a nonseasonal MA model of order g = Qs but with all 0-values zero except at the
seasonal lags s, 2s, 3s,..., Os.

Seasonal autoregressive models can also be defined. Consider

Y, = DY, ,+e, (10.1.4)

where |®| < 1 and e, is independent of ¥, _{, ¥; _,,... . It can be shown that |®| < 1
ensures stationarity. Thus it is easy to argue that E(Y,) = 0; multiplying Equation
(10.1.4) by Y, _ ,taking expectations, and dividing by y yields

pr=Pp;_y fork=1 (10.1.5)

Clearly
Pip = Ppy = @ and pyy = Op, = 2

More generally,
Pox = ®F fork = 1,2, ... (10.1.6)
Furthermore, setting k = 1 and then k = 11 in Equation (10.1.5) and using p; = p_; gives
us
Py = @pyy and pyy = @p,
which implies that p; = py; = 0. Similarly, one can show that p; = 0 except at the sea-

sonal lags 12, 24, 36,... . At those lags, the autocorrelation function decays exponen-
tially like an AR(1) model.
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With this example in mind, we define a seasonal AR(P) model of order P and
seasonal period s by

Y, = ®Y, +®,¥, 5+ +DpY, pote, (10.1.7)

with seasonal characteristic polynomial
D(x) = 1 - D x5 = Dyx?s — - — D pxPs (10.1.8)

As always, we require e, to be independent of Y, _ 4, Y;_,,..., and, for stationarity, that
the roots of @(x) = 0 be greater than 1 in absolute value. Again, Equation (10.1.7) can be
seen as a special AR(p) model of order p = Ps with nonzero ¢-coefficients only at the
seasonal lags s, 2s, 3s,..., Ps.

It can be shown that the autocorrelation function is nonzero only at lags s, 2s, 3s,
..., where it behaves like a combination of decaying exponentials and damped sine func-
tions. In particular, Equations (10.1.4), (10.1.5), and (10.1.6) easily generalize to the
general seasonal AR(1) model to give

prs = OF fork = 1,2, .. (10.1.9)

with zero correlation at other lags.

10.2 Multiplicative Seasonal ARMA Models

Rarely shall we need models that incorporate autocorrelation only at the seasonal lags.
By combining the ideas of seasonal and nonseasonal ARMA models, we can develop
parsimonious models that contain autocorrelation for the seasonal lags but also for low
lags of neighboring series values.

Consider a model whose MA characteristic polynomial is given by

(1-0x)(1 - 0x2)

Multiplying out, we have 1 —0x—®x!2+00x!3. Thus the corresponding time series
satisfies

Y,=¢,-0¢,_,—0¢,_ |,+00¢, 5 (10.2.1)

For this model, we can check that the autocorrelation function is nonzero only at lags 1,
11, 12, and 13. We find

Yo = (1+62)(1+02)c2 (10.2.2)
0
= (10.2.3)
P1 1+62
P11 = P13 00 (10.2.4)

- (1+062)(1+02)

and
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®

- (10.2.5)
1+02

P2 =

Exhibit 10.3 displays the autocorrelation functions for the model of Equation (10.2.1)
with 6 = 0.5 and ® = —0.8 as given by Equations (10.2.2)-(10.2.5).

Exhibit 10.3 Autocorrelations from Equations (10.2.2)-(10.2.5)

p 6=-05,06=-0.8 - 6=+0.50=-0.8
~
o
<~
S _
& & o
o

0.0

Lag k Lag k

Of course, we could also introduce both short-term and seasonal autocorrelations
by defining an MA model of order 12 with only 8; and 0, nonzero. We shall see in the
next section that the “multiplicative” model arises quite naturally for nonstationary
models that entail differencing.

In general, then, we define a multiplicative seasonal ARMA (p,q)x(P,Q), model
with seasonal period s as a model with AR characteristic polynomial ¢(x)P(x) and MA
characteristic polynomial 0(x)®(x), where

O(x) = 1= x—px?— - = ¢ xP
(10.2.6)
D(x) = 1-D x5 = Dyx?5— ... — D pxPs
and
0(x) = 1-0,x—0,x2—... -0 x4
o q } (10.2.7)
O(x) = 1-0x° -0 x% — ... — 0, x9S

The model may also contain a constant term 6. Note once more that we have just a spe-
cial ARMA model with AR order p + Ps and MA order g + Qs, but the coefficients are
not completely general, being determined by only p + P + g + Q coefficients. If s = 12,
p + P+ g+ QO will be considerably smaller than p + Ps + ¢ + Os and will allow a much
more parsimonious model.

As another example, suppose P = g =1 and p = Q = 0 with s = 12. The model is then

Y, = ®Y,_,+e,—0e,_, (10.2.8)
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Using our standard techniques, we find that
v, = @y, - 602 (10.2.9)

and
Y = Oy fork=2 (10.2.10)

After considering the equations implied by various choices for k, we arrive at
_[L1+627

fo = [1 - (DJ%

@ for k> 1 (10.2.11)

0
Piok—1 = P12k+1 = (—1 +62®k) fork =0,1,2, ...

P12k

with autocorrelations for all other lags equal to zero.

Exhibit 10.4 displays the autocorrelation functions for two of these seasonal
ARIMA processes with period 12: one with @ = 0.75 and 6 = 0.4, the other with ® =
0.75 and 6 = —0.4. The shape of these autocorrelations is somewhat typical of the sam-
ple autocorrelation functions for numerous seasonal time series. The even simpler auto-
correlation function given by Equations (10.2.3), (10.2.4), and (10.2.5) and displayed in
Exhibit 10.3 also seems to occur frequently in practice (perhaps after differencing).

Exhibit 10.4 Autocorrelation Functions from Equation (10.2.11)

®=0.75,0=-0.4 ®=0.75,06=0.4
o _ ’ o _
© o
S g
© o
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0.0

Lag k Lag k
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10.3 Nonstationary Seasonal ARIMA Models

An important tool in modeling nonstationary seasonal processes is the seasonal differ-
ence. The seasonal difference of period s for the series {Y,} is denoted V,Y; and is
defined as

VY =YY, _ | (10.3.1)
For example, for monthly series we consider the changes from January to January, Feb-
ruary to February, and so forth for successive years. Note that for a series of length n,
the seasonal difference series will be of length n — s; that is, s data values are lost due to
seasonal differencing.

As an example where seasonal differencing is appropriate, consider a process gen-

erated according to
Y, =S8, +e, (10.3.2)

with
S =85 _ _+¢ (10.3.3)

t t—s t

where {¢,} and {¢,} are independent white noise series. Here {S,} is a “‘seasonal random
walk,” and if 6, « 5, {S;} would model a slowly changing seasonal component.
Due to the nonstationarity of {S,}, clearly {Y,} is nonstationary. However, if we sea-
sonally difference {Y,}, as given in Equation (10.3.1), we find
V¥, = 8,-8_s+e—e._

N

(10.3.4)

=g te—e g

An easy calculation shows that VY, is stationary and has the autocorrelation function of
an MA(1); model.

The model described by Equations (10.2.2) and (10.2.3) could also be generalized
to account for a nonseasonal, slowly changing stochastic trend. Consider

Y, =M +S,+e, (10.3.5)
with

S, =8,_,+¢g, (10.3.6)
and

M, =M, |+¢, (10.3.7)

where {e,}, {¢;}, and {&,;} are mutually independent white noise series. Here we take
both a seasonal difference and an ordinary nonseasonal difference to obtain"

T It should be noted that V¥, will in fact be stationary and VV,Y, will be noninvertible. We
use Equations (10.2.5), (10.2.6), and (10.2.7) merely to help motivate multiplicative sea-
sonal ARIMA models.
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VV.Y

V(Mt_Mt—sJ'-St-i-et_et—s) (10.3.8)

(E~'1+8t+et)_(8t—l +et—1)_(§t—s+et—s)+et—s—l

The process defined here is stationary and has nonzero autocorrelation only at lags 1,
s—1,s,and s + 1, which agrees with the autocorrelation structure of the multiplicative
seasonal model ARMA(0,1)x(0,1) with seasonal period s.

These examples lead to the definition of nonstationary seasonal models. A process
{Y,} is said to be a multiplicative seasonal ARIMA model with nonseasonal (regular)
orders p, d, and g, seasonal orders P, D, and Q, and seasonal period s if the differenced
series

W, = vivDy, (10.3.9)

satisfies an ARMA(p,q) x(P,Q), model with seasonal period 5.7 We say that {Y;} is an
ARIMA(p,d,q)x (P, D,Q), model with seasonal period s.

Clearly, such models represent a broad, flexible class from which to select an
appropriate model for a particular time series. It has been found empirically that many
series can be adequately fit by these models, usually with a small number of parameters,
say three or four.

10.4 Model Specification, Fitting, and Checking

Model specification, fitting, and diagnostic checking for seasonal models follow the
same general techniques developed in Chapters 6, 7, and 8. Here we shall simply high-
light the application of these ideas specifically to seasonal models and pay special atten-
tion to the seasonal lags.

Model Specification

As always, a careful inspection of the time series plot is the first step. Exhibit 10.1 on
page 227 displays monthly carbon dioxide levels in northern Canada. The upward trend
alone would lead us to specify a nonstationary model. Exhibit 10.5 shows the sample
autocorrelation function for that series. The seasonal autocorrelation relationships are
shown quite prominently in this display. Notice the strong correlation at lags 12, 24, 36,
and so on. In addition, there is substantial other correlation that needs to be modeled.

i Using the backshift operator notation of Appendix D, page 106, we may write the general
ARIMA(p, d,q)x (P, D,Q), model as d)(B)CI)(B)VdVSD Y,= 0(B)®(B)e,.
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Exhibit 10.5 Sample ACF of CO, Levels
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> acf (as.vector (co2),lag.max=36)

Exhibit 10.6 shows the time series plot of the CO, levels after we take a first differ-
ence.

Exhibit 10.6 Time Series Plot of the First Differences of CO, Levels
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Time

> plot (diff (co2),ylab='First Difference of CO2',6xlab='Time')

The general upward trend has now disappeared but the strong seasonality is still
present, as evidenced by the behavior shown in Exhibit 10.7. Perhaps seasonal differ-
encing will bring us to a series that may be modeled parsimoniously.
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Exhibit 10.7 Sample ACF of First Differences of CO, Levels
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> acf (as.vector (diff (co2)),lag.max=36)

Exhibit 10.8 displays the time series plot of the CO, levels after taking both a first
difference and a seasonal difference. It appears that most, if not all, of the seasonality is
gone now.

Exhibit 10.8 Time Series Plot of First and Seasonal Differences of CO,
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First and Seasonal Difference of C

Time

> plot (diff (diff (co2),lag=12) ,xlab="'Time"',
ylab='First and Seasonal Difference of CO2')

Exhibit 10.9 confirms that very little autocorrelation remains in the series after
these two differences have been taken. This plot also suggests that a simple model
which incorporates the lag 1 and lag 12 autocorrelations might be adequate.

We will consider specifying the multiplicative, seasonal ARIMA(0,1,1)x(0,1,1){,
model
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VaVY, = ¢,~0e, | -Oc, 1,+00e, (10.4.10)

which incorporates many of these requirements. As usual, all models are tentative and
subject to revision at the diagnostics stage of model building.

Exhibit 10.9 Sample ACF of First and Seasonal Differences of CO,
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> acf (as.vector (diff (diff (co2),lag=12)),lag.max=36,ci.type="ma')

Model Fitting

Having specified a tentative seasonal model for a particular time series, we proceed to
estimate the parameters of that model as efficiently as possible. As we have remarked
earlier, multiplicative seasonal ARIMA models are just special cases of our general
ARIMA models. As such, all of our work on parameter estimation in Chapter 7 carries
over to the seasonal case.

Exhibit 10.10 gives the maximum likelihood estimates and their standard errors for
the ARIMA(0,1,1)x(0,1,1);, model for CO, levels.

Exhibit 10.10 Parameter Estimates for the CO, Model

Coefficient 0 ®
Estimate 0.5792 0.8206
Standard error 0.0791 0.1137

82 =0.5446: log-likelinood = —139.54, AIC = 283.08

> ml.co2=arima (co2,order=c(0,1,1),seasonal=1ist (order=c(0,1,1),
period=12))
> ml.co2
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The coefficient estimates are all highly significant, and we proceed to check further on
this model.

Diagnostic Checking

To check the estimated the ARIMA(0,1,1)x(0,1,1);, model, we first look at the time
series plot of the residuals. Exhibit 10.11 gives this plot for standardized residuals.
Other than some strange behavior in the middle of the series, this plot does not suggest
any major irregularities with the model, although we may need to investigate the model
further for outliers, as the standardized residual at September 1998 looks suspicious. We
investigate this further in Chapter 11.

Exhibit 10.11 Residuals from the ARIMA(0,1,1)x(0,1,1);2 Model
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Time

> plot (window (rstandard (ml.co2) ,start=c(1995,2)),
ylab='Standardized Residuals',type='o"')
> abline (h=0)

To look further, we graph the sample ACF of the residuals in Exhibit 10.12. The
only “statistically significant” correlation is at lag 22, and this correlation has a value of
only —0.17, a very small correlation. Furthermore, we can think of no reasonable inter-
pretation for dependence at lag 22. Finally, we should not be surprised that one autocor-
relation out of the 36 displayed is statistically significant. This could easily happen by
chance alone. Except for marginal significance at lag 22, the model seems to have cap-
tured the essence of the dependence in the series.
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Exhibit 10.12 ACF of Residuals from the ARIMA(0,1,1)=(0,1,1);, Model

0.1

ACF
0.0

-0.1
]

-0.2
]

Lag

> acf (as.vector (window (rstandard (ml.co2),start=c(1995,2))),
lag.max=36)

The Ljung-Box test for this model gives a chi-squared value of 25.59 with 22
degrees of freedom, leading to a p-value of 0.27—a further indication that the model
has captured the dependence in the time series.

Next we investigate the question of normality of the error terms via the residuals.
Exhibit 10.13 displays the histogram of the residuals. The shape is somewhat
“bell-shaped” but certainly not ideal. Perhaps a quantile-quantile plot will tell us more.

Exhibit 10.13 Residuals from the ARIMA(0,1,1)x(0,1,1);, Model
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Standardized Residuals

> win.graph(width=3, height=3,pointsize=8)
> hist (window (rstandard(ml.co2),start=c(1995,2)),
xlab="'Standardized Residuals')
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Exhibit 10.14 displays the QQ-normal plot for the residuals.

Exhibit 10.14 Residuals: ARIMA(0,1,1)=(0,1,1);, Model
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> win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm (window (rstandard (ml.co2) ,start=c(1995,2)))
> ggline (window (rstandard (ml.co2) ,start=c(1995,2)))

Here we again see the one outlier in the upper tail, but the Shapiro-Wilk test of nor-
mality has a test statistic of W =0.982, leading to a p-value of 0.11, and normality is not
rejected at any of the usual significance levels.

As one further check on the model, we consider overfitting with an ARIMA(O0,1,2)
x(0,1,1)1, model with the results shown in Exhibit 10.15.

Exhibit 10.15 ARIMA(0,1,2)x(0,1,1);, Overfitted Model

Coefficient 0, 0, C)
Estimate 0.5714 0.0165 0.8274
Standard error 0.0897 0.0948 0.1224

62 =0.5427: log-likelihood = —139.52, AIC = 285.05

> m2.co2=arima (co2,order=c(0,1,2),seasonal=1ist (order=c(0,1,1),
period=12))
> m2.co2

When we compare these results with those reported in Exhibit 10.10 on page 237,
we see that the estimates of 0; and ® have changed very little—especially when the size
of the standard errors is taken into consideration. In addition, the estimate of the new
parameter, 0,, is not statistically different from zero. Note also that the estimate 62 and
the log-likelihood have not changed much while the AIC has actually increased.

The ARIMA(O0,1,1)x(0,1,1);, model was popularized in the first edition of the sem-
inal book of Box and Jenkins (1976) when it was found to characterize the logarithms of
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a monthly airline passenger time series. This model has come to be known as the airline
model. We ask you to analyze the original airline data in the exercises.

10.5 Forecasting Seasonal Models

Computing forecasts with seasonal ARIMA models is, as expected, most easily carried
out recursively using the difference equation form for the model, as in Equations
(9.3.28), (9.3.29) on page 199 and (9.3.40) on page 201. For example, consider the
model ARIMA(0,1,1)x(1,0,1)15.

Y=Y, _ | =@, ,-Y,_3)+te~-0¢,_,-0c,_|,+00¢, 3 (10.5.1)
which we rewrite as
Y, =Y, +®Y, ,-®Y,_3+e,—0¢,_|-0Oc¢, ,+00¢, 5 (10.5.2)
The one-step-ahead forecast from origin ¢ is then
AN
Y (1) = Y,+®Y,_ || -®Y,_,-0e,-0Oc¢,_ |, +60¢, |, (10.5.3)
and the next one is
A A
Y, (2) =Y (1)+®Y,_(—-DY,_;;,—O¢,_,;+00¢,_; (10.5.4)

and so forth. The noise terms e, _ 13, ¢, _ 12, €;_ 11.---, €; (as residuals) will enter into the
forecasts for lead times ¢= 1, 2,..., 13, but for ¢> 13 the autoregressive part of the model
takes over and we have

A AN A A
Y6 = Y (e-1)+ DY (¢-12)- DY (¢~ 13) for ¢> 13 (10.5.5)

To understand the general nature of the forecasts, we consider several special cases.

Seasonal AR(1)15
The seasonal AR(1);, model is
Y, = @Y, ,+e, (10.5.6)
Clearly, we have
P(0) = of (- 12) (10.5.7)
However, iterating back on ¢, we can also write
’\ k+1
Y (=", , (10.5.8)

where k and r are defined by ¢= 12k + r+ 1 with0 <r< 12 and k=0, 1, 2,... . In other
words, k is the integer part of (¢— 1)/12 and r/12 is the fractional part of (¢— 1)/12. If our
last observation is in December, then the next January value is forecast as @ times the
last observed January value, February is forecast as @ times the last observed February
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value, and so on. Two Januarys ahead is forecast as @ times the last observed J anuary.
Looking just at January values, the forecasts into the future will decay exponentially at a
rate determined by the magnitude of ®. All of the forecasts for each month will behave
similarly but with different initial forecasts depending on the particular month under
consideration.

Using Equation (9.3.38) on page 201 and the fact that the y-weights are nonzero
only for multiple of 12, namely,

jl2 .
v, = ) forj = 0,12,24, ... (105.9)
J 0 otherwise
we have that the forecast error variance can be written as
1- Q)Zk +2 2
Var(e (¢6)) = [W]Ge (10.5.10)
where, as before, k is the integer part of (¢— 1)/12.
Seasonal MA(1)45
For the seasonal MA(1);, model, we have
Y, =e,-0Oe¢, ,+0, (10.5.11)
In this case, we see that
Y (1) = —0e,_|;+6,
A
Yi(2) = =O¢,_10+ 9 (10.5.12)
Y, (12) = —@e¢,+ 0,
and
() = 0, for ¢>12 (10.5.13)

Here we obtain different forecasts for the months of the first year, but from then on all
forecasts are given by the process mean.

For this model, yy =1, y, = -0, and v = 0 otherwise. Thus, from Equation
(9.3.38) on page 201,

c? 1<¢<12

Var(e,(¢)) = { (10.5.14)
(1+02)c? 12<¢
ARIMA(0,0,0)x(0,1,1)15
The ARIMA(0,0,0)x(0,1,1), model is
Y=Y, |, =¢-0c¢ (10.5.15)
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or
Yt+£ = Yt+Z—12+et+Z_®et+€—12
so that
A
Y (1) =Y,_;-0¢_y
A
Y(2)=Y, ,,—-0e¢,
t . 1—10 t-10 (10.5.16)
. :
Y (12) = Y,-Oe,
and then
N A
Y, (¢) = Y,(¢-12) for ¢>12 (10.5.17)

It follows that all Januarys will forecast identically, all Februarys identically, and so
forth.
If we invert this model, we find that

Y, = (1-0)(Y,_ 1, +0Y, ,,+0%Y, s +-)+e,

Consequently, we can write

A X .
j=0

A © .
P(2)=(1-0)3 &Y, 1 1,
! Eo r=10-12j (10.5.18)

A 0 ,
b2y =a-0)y o,
j=0

From this representation, we see that the forecast for each January is an exponentially
weighted moving average of all observed Januarys, and similarly for each of the other
months.

In this case, we have Y= 1 -0 forj=12, 24,..., and zero otherwise. The forecast
error variance is then

Var(e,(6)) = [1+k(1 - ®)2]cse2 (10.5.19)
where k is the integer part of (¢— 1)/12.
ARIMA(0,1,1)x(0,1,1)15

For the ARIMA(0,1,1)%(0,1,1);, model
Y=Y, _+Y,_,-Y,_5te~0¢,_,-0c,_,+00¢, 3 (10.5.20)
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the forecasts satisfy

P()y=v  +Y_, -v, ., —0¢ -@c . +00e¢
t t t—11 —12 t t—11 12
A A
Y (2)=Y(l) +Y,_yy-Y,_y —Oe¢;_1p +00¢,
: (10.5.21)
A A
P2 =YDy, v, ~@e,  +60¢,_,
A AN A
P13y = 2,02+ 9 (1) -v, +00e,
and
A A A A
P = Pe—1)+ P (e-12)- P (¢ 13) for ¢>13 (10.5.22)

To understand the general pattern of these forecasts, we can use the representation

P = A +ap+ 3 [B cos(z +B sm(znf (10.5.23)
t -1 2 jZO 12 2j 12 -
where the A’s and B’ s are dependent on Y,, Y, _,..., or, alternatively, determined from

the initial forecasts Yt(l) Y,(2),..., Y,(13). This result follows from the general the-
ory of difference equations and 1nv01ves the roots of (1 —x)(1 — 12) =

Notice that Equation (10.5.23) reveals that the forecasts are composed of a linear
trend in the lead time plus a sum of periodic components. However, the coefficients A;
and Bj; are more dependent on recent data than on past data and will adapt to changes in
the process as our forecast origin changes and the forecasts are updated. This is in stark
contrast to forecasting with deterministic time trend plus seasonal components, where
the coefficients depend rather equally on both recent and past data and remain the same
for all future forecasts.

Prediction Limits

Prediction limits are obtained precisely as in the nonseasonal case. We illustrate this
with the carbon dioxide time series. Exhibit 10.16 shows the forecasts and 95% forecast
limits for a lead time of two years for the ARIMA(0,1,1)x(0,1,1);, model that we fit.
The last two years of observed data are also shown. The forecasts mimic the stochastic
periodicity in the data quite well, and the forecast limits give a good feeling for the pre-
cision of the forecasts.
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Exhibit 10.16 Forecasts and Forecast Limits for the CO, Model
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> win.graph(width=4.875,height=3,pointsize=8)
> plot (ml.co2,nl=c(2003,1) ,n.ahead=24,xlab="'Year',6 type='0",
ylab='C02 Levels')

Exhibit 10.17 displays the last year of observed data and forecasts out four years.
At this lead time, it is easy to see that the forecast limits are getting wider, as there is
more uncertainty in the forecasts.

Exhibit 10.17 Long-Term Forecasts for the CO, Model
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> plot (ml.co2,nl=c(2004,1),n.ahead=48,xlab="'Year', type="b"',
ylab='C02 Levels')
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10.6 Summary

Multiplicative seasonal ARIMA models provide an economical way to model time
series whose seasonal tendencies are not as regular as we would have with a determinis-
tic seasonal trend model which we covered in Chapter 3. Fortunately, these models are
simply special ARIMA models so that no new theory is needed to investigate their prop-
erties. We illustrated the special nature of these models with a thorough modeling of an
actual time series.

EXERCISES

10.1 Based on quarterly data, a seasonal model of the form
Y, =Y, _4+e-01e,_ -0, 5

has been fit to a certain time series.

(a) Find the first four y-weights for this model.

(b) Suppose that 8; = 0.5, 6, = -0.25, and &, = 1. Find forecasts for the next four
quarters if data for the last four quarters are

Quarter | ] 1 [\
Series 25 20 25 40
Residual 2 1 2 3

(¢) Find 95% prediction intervals for the forecasts in part (b).
10.2 An AR model has AR characteristic polynomial

(1-1.6x+0.7x2)(1-0.8x!2)

(a) Is the model stationary?
(b) Identify the model as a certain seasonal ARIMA model.
10.3 Suppose that {Y,} satisfies

Y, = a+bt+S,+Xt

where S, is deterministic and periodic with period s and {X,} is a seasonal
ARIMA(p,0,9)x(P,1,0Q), series. What is the model for W, =Y, Y, _?
10.4 For the seasonal model Y, = ®Y, , +e,—0e, _ with |®| < 1, find y, and p;.
10.5 Identify the following as certain multiplicative seasonal ARIMA models:
(@)Y, = 05Y,_,+Y,_,-05Y,_s5+e,-03¢,_,.
b)Y, =Y, +Y,_,+Y,_3+e,~-05e,_ | —e,_,+025¢, 5.
10.6 Verify Equations (10.2.11) on page 232.
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10.7

10.8

10.9

Suppose that the process {Y;} develops accordingto ¥, = ¥, ,+e, with ¥, =¢,

fort=1, 2,3, and 4.

(a) Find the variance function for {Y;}.

(b) Find the autocorrelation function for {Y;}.

(c) Identify the model for {Y;} as a certain seasonal ARIMA model.

Consider the Alert, Canada, monthly carbon dioxide time series shown in Exhibit

10.1 on page 227. The data are in the file named co2.

(a) Fit a deterministic seasonal means plus linear time trend model to these data.
Are any of the regression coefficients “statistically significant™?

(b) What is the multiple R-squared for this model?

(¢) Now calculate the sample autocorrelation of the residuals from this model.
Interpret the results.

The monthly airline passenger time series, first investigated in Box and Jenkins

(1976), is considered a classic time series. The data are in the file named airline.

(a) Display the time series plots of both the original series and the logarithms of
the series. Argue that taking logs is an appropriate transformation.

(b) Display and interpret the time series plots of the first difference of the logged
series.

(¢) Display and interpret the time series plot of the seasonal difference of the first
difference of the logged series.

(d) Calculate and interpret the sample ACF of the seasonal difference of the first
difference of the logged series.

(e) Fit the “airline model” (ARIMA(0,1,1)x(0,1,1)1, ) to the logged series.

(f) Investigate diagnostics for this model, including autocorrelation and normality
of the residuals.

(g) Produce forecasts for this series with a lead time of two years. Be sure to
include forecast limits.

10.10 Exhibit 5.8 on page 99 displayed the monthly electricity generated in the United

States. We argued there that taking logarithms was appropriate for modeling.

Exhibit 5.10 on page 100 showed the time series plot of the first differences for

this series. The filename is electricity.

(a) Calculate the sample ACF of the first difference of the logged series. Is the
seasonality visible in this display?

(b) Plot the time series of seasonal difference and first difference of the logged
series. Does a stationary model seem appropriate now?

(¢) Display the sample ACF of the series after a seasonal difference and a first
difference have been taken of the logged series. What model(s) might you
consider for the electricity series?
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10.11 The quarterly earnings per share for 1960—1980 of the U.S. company Johnson &
Johnson, are saved in the file named JJ.

(a) Plot the time series and also the logarithm of the series. Argue that we should
transform by logs to model this series.

(b) The series is clearly not stationary. Take first differences and plot that series.
Does stationarity now seem reasonable?

(¢) Calculate and graph the sample ACF of the first differences. Interpret the
results.

(d) Display the plot of seasonal differences and the first differences. Interpret the
plot. Recall that for quarterly data, a season is of length 4.

(e) Graph and interpret the sample ACF of seasonal differences with the first dif-
ferences.

(f) Fit the model ARIMA(0,1,1)x(0,1,1)4, and assess the significance of the esti-
mated coefficients.

(g) Perform all of the diagnostic tests on the residuals.

(h) Calculate and plot forecasts for the next two years of the series. Be sure to
include forecast limits.

10.12 The file named boardings contains monthly data on the number of people who
boarded transit vehicles (mostly light rail trains and city buses) in the Denver,
Colorado, region for August 2000 through December 2005.

(a) Produce the time series plot for these data. Be sure to use plotting symbols
that will help you assess seasonality. Does a stationary model seem reason-
able?

(b) Calculate and plot the sample ACF for this series. At which lags do you have
significant autocorrelation?

(c¢) Fitan ARMA(0,3)x(1,0);, model to these data. Assess the significance of the
estimated coefficients.

(d) Overfit with an ARMA(0,4)x(1,0);, model. Interpret the results.



CHAPTER 11

TIME SERIES REGRESSION MODELS

In this chapter, we introduce several useful ideas that incorporate external information
into time series modeling. We start with models that include the effects of interventions
on time series’ normal behavior. We also consider models that assimilate the effects of
outliers—observations, either in the observed series or in the error terms, that are highly
unusual relative to normal behavior. Lastly, we develop methods to look for and deal
with spurious correlation—correlation between series that is artificial and will not help
model or understand the time series of interest. We will see that prewhitening of series
helps us find meaningful relationships.

11.1 Intervention Analysis

Exhibit 11.1 shows the time plot of the logarithms of monthly airline passenger-miles in
the United States from January 1996 through May 2005. The time series is highly sea-
sonal, displaying the fact that air traffic is generally higher during the summer months
and the December holidays and lower in the winter months.” Also, air traffic was
increasing somewhat linearly overall until it had a sudden drop in September 2001. The
sudden drop in the number of air passengers in September 2001 and several months
thereafter was triggered by the terrorist acts on September 11, 2001, when four planes
were hijacked, three of which were crashed into the twin towers of the World Trade
Center and the Pentagon and the fourth into a rural field in Pennsylvania. The terrorist
attacks of September 2001 deeply depressed air traffic around that period, but air traffic
gradually regained the losses as time went on. This is an example of an intervention that
results in a change in the trend of a time series.

Intervention analysis, introduced by Box and Tiao (1975), provides a framework
for assessing the effect of an intervention on a time series under study. It is assumed that
the intervention affects the process by changing the mean function or trend of a time
series. Interventions can be natural or man-made. For example, some animal population
levels crashed to a very low level in a particular year because of extreme climate in that
year. The postcrash annual population level may then be expected to be different from
that in the precrash period. Another example is the increase of the speed limit from 65
miles per hour to 70 miles per hour on an interstate highway. This may make driving on

T In the exercises, we ask you to display the time series plot using seasonal plotting symbols
on a full-screen graph, where the seasonality is quite easy to see.

249
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the highway more dangerous. On the other hand, drivers may stay on the highway for a
shorter length of time because of the faster speed, so the net effect of the increased
speed limit change is unclear. The effect of the increase in speed limit may be studied by
analyzing the mean function of some accident time series data; for example, the quar-
terly number of fatal car accidents on some segment of an interstate highway. (Note that
the autocovariance function of the time series might also be changed by the intervention,
but this possibility will not be pursued here.)

Exhibit 11.1 Monthly U.S. Airline Miles: January 1996 through May 2005
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> win.graph(width=4.875,height=2.5,pointsize=8)
> data(airmiles)
> plot (log(airmiles) ,ylab="'Log(airmiles) ', xlab="'Year"')

We first consider the simple case of a single intervention. The general model for the
time series {Y,}, perhaps after suitable transformation, is given by

Y, = m,+N, (11.1.1)

where m;, is the change in the mean function and N, is modeled as some ARIMA pro-
cess, possibly seasonal. The process {N,} represents the underlying time series were
there no intervention. It is referred to as the natural or unperturbed process, and it may
be stationary or nonstationary, seasonal or nonseasonal. Suppose the time series is sub-
ject to an intervention that takes place at time 7. Before 7, m;, is assumed to be identi-
cally zero. The time series {Y,, t < T} is referred to as the preintervention data and can
be used to specify the model for the unperturbed process N,.

Based on subject matter considerations, the effect of the intervention on the mean
function can often be specified up to some parameters. A useful function in this specifi-
cation is the step function

(T) 1,if t>T
S = ] (11.1.2)
0, otherwise
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that is O during the preintervention period and 1 throughout the postintervention period.
The pulse function

(1) _ (1) _ (D)
e (11.1.3)

. . T) . - .
equals 1 at 7 =T and O otherwise. That is, PE ) is the indicator or dummy variable flag-
ging the time that the intervention takes place. If the intervention results in an immedi-
ate and permanent shift in the mean function, the shift can be modeled as

m, = oS (11.1.4)

where o is the unknown permanent change in the mean due to the intervention. Testing
whether ® = 0 or not is similar to testing whether the population means are the same
with data in the form of two independent random samples from the two populations.
However, the major difference here is that the pre- and postintervention data cannot gen-
erally be assumed to be independent and identically distributed. The inherent serial cor-
relation in the data makes the problem more interesting but at the same time more
difficult. If there is a delay of d time units before the intervention takes effect and d is
known, then we can specify

m, = os", (11.1.5)

In practice, the intervention may affect the mean function gradually, with its full force
reflected only in the long run. This can be modeled by specifying m, as an AR(1)-type
model with the error term replaced by a multiple of the lag 1 of SgT) :

m, = dm,_ +oS") (11.1.6)
with the initial condition mg = 0. After some algebra, it can be shown that
t—-T

1-38

m, = 5 ,fort>T

(11.1.7)

0, otherwise

Often 3 is selected in the range 1 > 6 > 0. In that case, m; approaches /(1 — §) for
large ¢, which is the ultimate change (gain or loss) for the mean function. Half of the
ultimate change is attained when 1 — 8'-T=0.5; that is, when 7 = T + log(0.5)/10g(5).
The duration log(0.5)/10g(5) is called the half-life of the intervention effect, and the
shorter it is, the quicker the ultimate change is felt by the system. Exhibit 11.2 displays
the half-life as a function of &, which shows that the half-life increases with d. Indeed,
the half-life becomes infinitely large when & approaches 1.

Exhibit 11.2 Half-life based on an AR(1) Process with Step Function Input

) 0.2 0.4 0.6 0.8 0.9 1
Half-life 0.43 0.76 1.46 3.11 6.58 ©
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It is interesting to note the limiting case when & = 1. Then m, = (7T —¢) for > T and
0 otherwise. The time sequence plot of m, displays the shape of a ramp with slope .
This specification implies that the intervention changes the mean function linearly in the
postintervention period. This ramp effect (with a one time unit delay) is shown in
Exhibit 11.3 (c).

Short-lived intervention effects may be specified using the pulse dummy variable

(T) 1,ift = T
P = ] (11.1.8)
0, otherwise

For example, if the intervention impacts the mean function only at = 7, then
m, = P (11.1.9)

Intervention effects that die out gradually may be specified via the AR(1)-type specifi-
cation

m, = dm,_, +oP\” (11.1.10)

That is, m; = ©d T=1for t > T so that the mean changes immediately by an amount ®» and
subsequently the change in the mean decreases geometrically by the common factor of
3; see Exhibit 11.4 (a). Delayed changes can be incorporated by lagging the pulse func-
tion. For example, if the change in the mean takes place after a delay of one time unit
and the effect dies out gradually, we can specity

m, = om,_, +oP\”, (IL1L11)

Again, we assume the initial condition m = 0.
It is useful to write" the preceding model in terms of the backshift operator B,

where Bm,=m,_ | and BPET) = Pg)l. Then (1 -06B)m, = mBPiT) . Or, we can write

®B (1)
mt = mPt (11112)
Recall (1 —B)SET) = PET) , which can be rewritten as SET) = ﬁPgT).

T The remainder of this chapter makes use of the backshift operator introduced in Appendix
D on page 106. You may want to review that appendix before proceeding further.
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Exhibit 11.3 Some Common Models for Step Response Interventions
(All are shown with a delay of 1 time unit)
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Several specifications can be combined to model more sophisticated intervention
effects.

For example,

[0 B w,B
m. = (T) 2 P(T)

. 1_63t o (11.1.13)

depicts the situation displayed in Exhibit 11.4 (b) where »; and », are both greater than
zero, and

® o,B
m, = wgP} )+ 53P§T) =P (11.1.14)
may model situations like Exhibit 11.4 (c) with @, and ®, both negative. This last case
may model the interesting situation where a special sale may cause strong rush buying,
initially so much so that the sale is followed by depressed demand. More generally, we
can model the change in the mean function by an ARMA-type specification

- oB)p (T)
! 5(3)

where ©(B) and 8(B) are some polynomials in B. Because (1 —B)SET) = PET), the
model for m, can be specified in terms of either the pulse or step dummy variable.

(11.1.15)
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Exhibit 11.4 Some Common Models for Pulse Response Interventions
(All are shown with a delay of 1 time unit)
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Estimation of the parameters of an intervention model may be carried out by the
method of maximum likelihood estimation. Indeed, Y; — m;, is a seasonal ARIMA pro-
cess so that the likelihood function equals the joint pdf of Y, —m,, t =1, 2,..., n, which
can be computed by methods studied in Chapter 7 or else by the state space modeling
methods of Appendix H on page 222.

We now revisit the monthly passenger-airmiles data. Recall that the terrorist acts in
September 2001 had lingering depressing effects on air traffic. The intervention may be
specified as an AR(1) process with the pulse input at September 2001. But the unex-
pected turn of events in September 2001 had a strong instantaneous chilling effect on air
traffic. Thus, we model the intervention effect (the 9/11 effect) as

®
(1), _®1_ M

me = oo T Bl

t
where T denotes September 2001. In this specification, g + ®; represents the instanta-
neous 9/11 effect, and, for k > 1, 0)1((92)" gives the 9/11 effect k months afterward. It
remains to specify the seasonal ARIMA structure of the underlying unperturbed pro-
cess. Based on the preintervention data, an ARIMA(0,1,1)x(0,1,0);, model was tenta-
tively specified for the unperturbed process; see Exhibit 11.5.
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Exhibit 11.5 Sample ACF for (1-B)(1-B'?) Log(Air Passenger Miles) Over
the Preintervention Period

0.1
] ]

ACF
-0.1
|

-0.3
]

Lag

> acf (as.vector (diff (diff (window(log(airmiles) ,h end=c(2001,8)),
12))),lag.max=48)

Model diagnostics of the fitted model suggested that a seasonal MA(1) coefficient
was needed and the existence of some additive outliers occurring in December 1996,
January 1997, and December 2002. (Outliers will be discussed in more detail later; here
additive outliers may be regarded as interventions of unknown nature that have a pulse
response function.) Hence, the model is specified as an ARIMA(0,1,1)x(0,1,1), plus
the 9/11 intervention and three additive outliers. The fitted model is summarized in
Exhibit 11.6.

Exhibit 11.6 Estimation of Intervention Model for Logarithms of Air Miles
(Standard errors are shown below the estimates)

0 ® Dec96 Jan97 Dec02 ®) oy @y
0.383 0.650 0.099 —0.069 0.081 —0.095 —0.27 0.814
(0.093)  (0.119) (0.023) (0.022) (0.020) (0.046) (0.044) (0.098)
o2 estimated as 0.000672: log-likelihood = 219.99, AIC=—423.98

> air.ml=arimax(log(airmiles), order=c(0,1,1),
seasonal=1list (order=c(0,1,1),period=12),
xtransf=data.frame (I911=1* (seq(airmiles)==69),
I911=1* (seq(airmiles)==69)),transfer=1ist(c(0,0),c(1,0)),
xreg=data.frame (Dec96=1* (seg(airmiles)==12),
Jan97=1* (seqg(airmiles)==13) ,Dec02=1* (seq(airmiles)==84)),
method="'ML")

> air.ml
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Model diagnostics suggested that the fitted model above provides a good fit to the
data. The open circles in the time series plot shown in Exhibit 11.7 represent the fitted
values from the final estimated model. They indicate generally good agreement between
the model and the data.

Exhibit 11.7 Logs of Air Passenger Miles and Fitted Values
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> plot (log(airmiles) ,ylab="'Log(airmiles) ')
> points(fitted(air.ml))

The fitted model estimates that the 9/11 intervention reduced air traffic by 31% =
{1 — exp(—0.0949-0.2715)} x100% in September 2001, and air traffic ¥ months later
was lowered by {1 —exp(—0.2715 x0.8139% )}x100%. Exhibit 11.8 graphs the estimated
9/11 effects on air traffic, which indicate that air traffic regained its losses toward the
end of 2003.

Exhibit 11.8 The Estimated 9/11 Effects for the Air Passenger Series
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> Ninellp=1*(seqg(airmiles)==69)
> plot (ts (Ninellp* (-0.0949) +
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filter (Ninellp, filter=.8139,method="'recursive', side=1)*
(-0.2715) , frequency=12, start=1996) ,ylab='9/11 Effects',
type='h'); abline (h=0)

11.2 Outliers

Outliers refer to atypical observations that may arise because of measurement and/or
copying errors or because of abrupt, short-term changes in the underlying process. For
time series, two kinds of outliers can be distinguished, namely additive outliers and
innovative outliers. These two kinds of outliers are often abbreviated as AO and IO,
respectively. An additive outlier occurs at time 7 if the underlying process is perturbed
additively at time 7 so that the data equal

' (1)
Y, =Y, +0,P (11.2.1)

where {Y,} is the unperturbed process. Henceforth in this section, ¥’ denotes the
observed process that may be affected by some outliers and Y the unperturbed process
should there be no outliers. Thus, Y'T = Y+ o, but Y; =Y, otherwise, so the time
series is only affected at time T if it has an additive outlier at 7. An additive outlier can
also be treated as an intervention that has a pulse response at 7' so that m, = ® API(T).

On the other hand, an innovative outlier occurs at time ¢ if the error (also known as
an innovation) at time ¢ is perturbed (that is, the errors equal ¢; = ¢, + ® ,PgT) , where ¢,
is a zero-mean white noise process). So, ey = e+ w; but ¢; = ¢, otherwise. Suppose
that the unperturbed process is stationary and admits an MA(0) representation

Yi=etvie_1+tVe ot
Consequently, the perturbed process can be written

’

Yy = ety +Vye o+

le,+vie,_ | +Vye, r+ ]1+y,_po;

or
Y, =Y, +vy, ro; (11.2.2)

where y( =1 and y; = 0 for negative j. Thus, an innovative outlier at T perturbs all
observations on and after 7, although with diminishing effect, as the observation is fur-
ther away from the origin of the outlier.

To detect whether an observation is an AO or IO, we use the AR(0) representation
of the unperturbed process to define the residuals:

a,=Y,-m Y, | —m,Y, ,— - (11.2.3)

For simplicity, we assume the process has zero mean and that the parameters are known.
In practice, the unknown parameter values are replaced by their estimates from the pos-
sibly perturbed data. Under the null hypothesis of no outliers and for large samples, this
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has a negligible effect on the properties of the test procedures described below. If the
series has exactly one IO at time 7, then the residual a;= ®; + ey but a, = e, otherwise.
So ®; can be estimated by ®; = a, with variance equal to 2. Thus, a test statistic for
testing for an IO at T'is

A ar 11.2.4

= (11.24)

which has (approximately) a standard normal distribution under the null hypothesis that

there are no outliers in the time series. When T is known beforehand, the observation in

question is declared an outlier if the corresponding standardized residual exceeds 1.96

in magnitude at the 5% significance level. In practice, there is often no prior knowledge

about 7, and the test is applied to all observations. In addition, ¢ will need to be esti-

mated. A simple conservative procedure is to use the Bonferroni rule for controlling the
overall error rate of multiple tests. Let

Ay =max|<icplhy] (11.2.5)

be attained at ¢ = 7. Then the T'th observation is deemed an IO if A exceeds the upper
0.025/nx 100 percentile of the standard normal distribution. This procedure guarantees
that there is at most a 5% probability of a false detection of an IO. Note that an outlier
will inflate the maximum likelihood estimate of o, so if there is no adjustment for outli-
ers, the power of most tests is usually reduced. A robust estimate of the noise standard
deviation may be used in lieu of the maximum likelihood estimate to increase the power
of the test. For example, 6 can be more robustly estimated by the mean absolute residual
times ~2/7.

The detection of an AO is more complex. Suppose that the process admits an AO at
T and is otherwise free of outliers. Then it can be shown that

a, = —0,m,_rte, (11.2.6)

where my = -1 and mj = 0 for negative j. Hence, a, = e, fort < T, ap = 0, + ep,
ATy = —OAT + €741, AT4n = —WTH + €749, and so forth. A least squares estimator of my4
is

- 2 &
‘DT,A:_p z T,_r4 (1127)

t=1

where p2 = (1+ n? + n§ + o+ TEi_T)_l , with the variance of the estimate being
equal to pzcz. We can then define

Ay g = =LA (11.2.8)

) PG

as the test statistic for testing the null hypothesis that the time series has no outliers ver-
sus the alternative hypothesis of an AO at 7. As before, p and ¢ will need to be esti-
mated. The test statistic A, 7 is approximately distributed as N(0,1) under the null
hypothesis. Again, T is often unknown, and the test is applied repeatedly to each time
point. The Bonferroni rule may again be applied to control the overall error rate. Fur-
thermore, the nature of an outlier is not known beforehand. In the case where an outlier
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is detected at 7, it may be classified to be an 10 if [ 7] > | A, 7| and an AO otherwise.
See Chang et al. (1988) for another approach to classifying the nature of an outlier.
When an outlier is found, it can be incorporated into the model, and the outlier-detection
procedure can then be repeated with the refined model until no more outliers are found.

As a first example, we simulated a time series of length n = 100 from the
ARIMA(1,0,1) model with ¢ = 0.8 and 6 = —0.5. We then changed the 10th observation
from —2.13 to 10 (that is, @4 = 12.13); see Exhibit 11.9. Based on the sample ACF,
PACF and EACF, an AR(1) model was tentatively identified. Based on the Bonferroni
rule, the 9th, 10th, and 11th observations were found to be possible additive outliers
with the corresponding robustified test statistics being —3.54, 9.55, and —5.20. The test
for 10 revealed that the 10th and 11th observations may be 10, with the corresponding
robustified test statistics being 7.11 and —6.64. Because among the tests for AO and 1O
the largest magnitude occurs for the test for AO at 7'= 10, the 10th observation was ten-
tatively marked as an AO. Note that the nonrobustified test statistic for AO at T = 10
equals 7.49, which is substantially less than the more robust test value of 9.55, showing
that robustifying the estimate of the noise standard deviation does increase the power of
the test. After incorporating the AO in the model, no more outliers were found. How-
ever, the lag 1 residual ACF was significant, suggesting the need for an MA(1) compo-
nent. Hence, an ARIMA(1,0,1) + AO at T = 10 model was fitted to the data. This model
was found to have no additional outliers and passed all model diagnostic checks.

Exhibit 11.9 Simulated ARIMA(1,0,1) Process with an Additive Outlier

10
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|

Time

> The extensive R code for the simulation and analysis of this
example may be found in the R code script file for Chapter 11.

For a real example, we return to the seasonal ARIMA(0,1,1)x(0,1,1);, model that
we fitted to the carbon dioxide time series in Chapter 10. The time series plot of the
standardized residuals from this model, shown in Exhibit 10.11 on page 238, showed a
suspiciously large standardized residual in September 1998. Calculation shows that
there is no evidence of an additive outlier, as Ay , is not significantly large for any 1.
However, the robustified A; = max; <,<,|\; ;|=3.7527, which is attained at 7 = 57, cor-



260 Time Series Regression Models

responding to September 1998. The Bonferroni critical value with o = 5% and n = 132
is 3.5544. So our observed A is large enough to claim significance for an innovation
outlier in September 1998. Exhibit 11.10 shows the results of fitting the ARIMA(O0,1,1)
x(0,1,1);, model with an IO at t = 57 to the CO, time series. These results should be
compared with the earlier results shown in Exhibit 10.10 on page 237, where the outlier
was not taken into account. Notice that the estimates of 6 and ® have not changed very
much, the AIC is better (that is, smaller), and the IO effect is highly significant. Diag-
nostics based on this model turn out to be excellent, no further outliers are detected, and
we have a very adequate model for this seasonal time series.

Exhibit 11.10 ARIMA(0,1,1)x(0,1,1); Model with 10 at = 57 for CO, Series

Coefficient 0 (©) 10-57
Estimate 0.5925 0.8274 2.6770
Standard Error 0.0775 0.1016 0.7246

82 = 0.4869: log-likelihood = —133.08, AIC = 272.16

> ml.co2=arima (co2,order=c(0,1,1),seasonal=1ist (order=c(0,1,1),
period=12)); ml.co2

> detectAO(ml.co2); detectIO(ml.co2)

> m4.co2=arimax (co2,order=c(0,1,1),seasonal=1ist (order=c(0,1,1),
period=12) ,i0=c(57)); m4.co2

11.3 Spurious Correlation

A main purpose of building a time series model is for forecasting, and the ARIMA
model does this by exploiting the autocorrelation pattern in the data. Often, the time
series under study may be related to, or led by, some other covariate time series. For
example, Stige et al. (2006) found that pasture production in Africa is generally related
to some climatic indices. In such cases, better understanding of the underlying process
and/or more accurate forecasts may be achieved by incorporating relevant covariates
into the time series model.

Let Y = {Y;} be the time series of the response variable and X = {X,} be a covariate
time series that we hope will help explain or forecast Y. To explore the correlation struc-
ture between X and Y and their lead-led relationship, we define the cross-covariance
function y, (X,¥) = Cov(X,,Y) for each pair of integers 7 and s. Stationarity of a univari-
ate time series can be easily extended to the case of multivariate time series. For exam-
ple, X and Y are jointly (weakly) stationary if their means are constant and the
covariance v, (X,Y) is a function of the time difference 7 - s. For jointly stationary pro-
cesses, the cross-correlation function between X and Y at lag k can then be defined by
puX.Y) = Corr(X,.Y,_) = Corr(X;, \,Y,). Note that if ¥ = X, the cross-correlation
becomes the autocorrelation of Y at lag k. The coefficient py(Y,X) measures the contem-
poraneous linear association between X and Y, whereas py(X,Y) measures the linear
association between X, and that of ¥, _ ;. Recall that the autocorrelation function is an
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even function, that is, py(Y,Y) = p_y(Y.Y). (This is because Corr(Y,Y;_;) =
Corr(Y, _,Y;) = Corr(Y,.Y, . ;). by stationarity.) However, the cross-correlation function
is generally not an even function since Corr(X,,Y; _ ;) need not equal Corr(X,,Y, , ;).

As an illustration, consider the regression model

Y, = Bo+ B X, +e, (11.3.1)

where the X’s are independent, identically distributed random variables with variance
ci, and the e’s are also white noise with variance cg and are independent of the X’s. It
can be checked that the cross-correlation function (CCF) p;(X,Y) is identically zero
except for lag k = —d, where

Bioy

2 2 2
NPiox+0o,

In this case, the theoretical CCF is nonzero only at lag —d, reflecting the fact that X is
“leading” Y by d units of time. The CCF can be estimated by the sample cross-correla-
tion function (sample CCF) defined by

p_g(X, Y) = (11.3.2)

r(X,Y) = 200 -1 (11.3.3)

JZx -0 S, -v

where the summations are done over all data where the summands are available. The
sample CCF becomes the sample ACF when Y = X. The covariate X is independent of Y
if and only if B; = 0, in which case the sample autocorrelation r,(X,Y) is approximately
normally distributed with zero mean and variance 1/n, where n is the sample size—the
number of pairs of (X,,Y;) available. Sample cross-correlations that are larger than
1.96/ J/n in magnitude are then deemed significantly different from zero.

We have simulated 100 pairs of (X,,Y;) from the model of Equation (11.3.1) with d
=2,P9=0, and B; = 1. The X’s and e’s are generated as normal random variables dis-
tributed as N(0,1) and N(0,0.25), respectively. Theoretically, the CCF should then be
zero except at lag —2, where it equals p_,(X, ¥Y) = 1/41+0.25 = 0.8944. Exhibit
11.11 shows the sample CCF of the simulated data, which is significant at lags —2 and 3.
But the sample CCF at lag 3 is quite small and only marginally significant. Such a false
alarm is not unexpected as the exhibit displays a total of 33 sample CCF values out of
which we may expect 33x0.05 = 1.65 false alarms on average.
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Exhibit 11.11 Sample Cross-Correlation from Equation (11.3.1) with d =2
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> win.graph(width=4.875,height=2.5,pointsize=8)
> set.seed(12345); X=rnorm(1l05); Y=zlag(X,2)+.5*rnorm(105)
> X=ts(X[-(1:5)],start=1,freqg=1); Y=ts(Y[-(1:5)],start=1,freqg=1)
> ccf (X,Y,ylab="CCF"'")

Even though X, _, correlates with Y;, the regression model considered above is
rather restrictive, as X and Y are each white noise series. For stationary time series, the
response variable and the covariate are each generally autocorrelated, and the error term
of the regression model is also generally autocorrelated. Hence a more useful regression
model is given by

Y, = By+BX,_4+Z, (11.3.4)

where Z, may follow some ARIMA(p,d,q) model. Even if the processes X and Y are
independent of each other (B; = 0), the autocorrelations in Y and X have the unfortunate
consequence of implying that the sample CCF is no longer approximately N(0,1/n).
Under the assumption that both X and Y are stationary and that they are independent of
each other, it turns out that the sample variance tends to be different from 1/n. Indeed, it
may be shown that the variance of J;zrk(X, Y) is approximately

1+2 i P (X)pi(Y) (11.3.5)
k=1

where py(X) is the autocorrelation of X at lag k and p;(Y) is similarly defined for the
Y-process. For refinement of this asymptotic result, see Box et al. (1994, p. 413). Sup-
pose X and Y are both AR(1) processes with AR(1) coefficients ¢y and ¢y, respectively.
Then r(X.Y) is approximately normally distributed with zero mean, but the variance is
now approximately equal to

1+ 0y0y

n—(l “hcby) (11.3.6)
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When both AR(1) coefficients are close to 1, the ratio of the sampling variance of
ri(X,Y) to the nominal value of 1/n approaches infinity. Thus, the unquestioned use of
the 1/n rule in deciding the significance of the sample CCF may lead to many more false
positives than the nominal 5% error rate, even though the response and covariate time
series are independent of each other. Exhibit 11.12 shows some numerical results for the
case where ¢y = ¢y = 0.

Exhibit 11.12 Asymptotic Error Rates of a Nominal 5% Test of
Independence for a Pair of AR(1) Processes

O =dy=0dy 0.00 0.15 0.30 0.45 0.60 0.75 0.90
Error Rate 5% 6% 7% 11% 18% 30% 53%

phi=seqg(0, .95, .15)

rejection=2* (1-pnorm(1.96*sqrt ( (1-phi®2)/(1+phi®2))))
M=signif (rbind (phi, rejection), 2)

rownames (M) =c ('phi', 'Error Rate')

M

vV V.V V V

The problem of inflated variance of the sample cross-correlation coefficients
becomes more acute for nonstationary data. In fact, the sample cross-correlation coeffi-
cients may no longer be approximately normally distributed even with a large sample
size. Exhibit 11.13 displays the histogram of 1000 simulated lag zero cross-correlations
between two independent IMA(1,1) processes each of size 500. An MA(1) coefficient
of 8 = 0.8 was used for both simulated processes. Note that the distribution of ry(X,Y) is
far from normal and widely dispersed between —1 and 1. See Phillips (1998) for a rele-
vant theoretical discussion.

Exhibit 11.13 Histogram of 1000 Sample Lag Zero Cross-Correlations of
Two Independent IMA(1,1) Processes Each of Size 500
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set.seed (23457)
correlation.v=NULL; B=1000; n=500
for (i in 1:B) {x:cumsum(arima.sim(model:list(ma:.8),n:n))
y=cumsum (arima.sim(model=1ist (ma=.8) ,n=n))
correlation.v=c(correlation.v,ccf (x,y,lag.max=1,

plot=F) $acf[2]) }
> hist (correlation.v,prob=T,xlab=expression(r[0] (X,Y)))

V V. V V V

These results provide insight into why we sometimes obtain nonsense (spurious)
correlation between time series variables. The phenomenon of spurious correlation was
first studied systematically by Yule (1926).

As an example, the monthly milk production and the logarithms of monthly elec-
tricity production in the United States from January 1994 to December 2005 are shown
in Exhibit 11.14. Both series have an upward trend and are highly seasonal.

Exhibit 11.14 Monthly Milk Production and Logarithms of Monthly
Electricity Production in the U.S.
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> data (milk); data(electricity)
> milk.electricity=ts.intersect (milk, log(electricity))
> plot (milk.electricity,yax.flip=T)

Calculation shows that these series have a cross-correlation coefficient at lag zero
of 0.54, which is “statistically significantly different from zero” as judged against the
standard error criterion of 1.96/./n = 0.16 . Exhibit 11.15 displays the strong cross-
correlations between these two variables at a large number of lags.

Needless to say, it is difficult to come up with a plausible reason for the relationship
between monthly electricity production and monthly milk production. The nonstationar-
ity in the milk production series and in the electricity series is more likely the cause of
the spurious correlations found between the two series. The following section contains
further discussion of this example.
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Exhibit 11.15 Sample Cross-Correlation Between Monthly Milk Production
and Logarithm of Monthly Electricity Production in the U.S.
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> ccf (as.vector (milk.electricity[,1]),
as.vector (milk.electricity[,2]),ylab="CCF")

11.4 Prewhitening and Stochastic Regression

In the preceding section, we found that with strongly autocorrelated data it is difficult to
assess the dependence between the two processes. Thus, it is pertinent to disentangle the
linear association between X and Y, say, from their autocorrelation. A useful device for
doing this is prewhitening. Recall that, for the case of stationary X and Y that are inde-
pendent of each other, the variance of r, (X, ¥) is approximately

711 1423 p(X)py(Y) (11.4.1)
k

=1

An examination of this formula reveals that the approximate variance is 1/n if either one
(or both) of X or Y is a white noise process. In practice, the data may be nonstationary,
but they may be transformed to approximately white noise by replacing the data by the
residuals from a fitted ARIMA model. For example, if X follows an ARIMA(1,1,0)
model with no intercept term, then

X, = X,-X,_ | —0(X,_-X,_y) = 1-(1+0B)+B’]X, (11.4.2)

is white noise. More generally, if X, follows some invertible ARIMA(p,d,q) model, then
it admits an AR(e0) representation

X, = (1-m,B-m,B )X, = n(B)X,

where the X ’s are white noise. The process of transforming the X’s to the X’s via the fil-
tern(B)=1—-mB - n232 —-+- is known as whitening or prewhitening. We now can
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study the CCF between X and Y by prewhitening the Y and X using the same filter based
on the X process and then computing the CCF of Y and X ; that is, the prewhitened Y
and X. Since prewhitening is a linear operation, any linear relationships between the
original series will be preserved after prewhitening. Note that we have abused the termi-
nology, as Y need not be white noise because the filter n(B) is tailor-made only to trans-
form X to a white noise process—not Y. We assume, furthermore, that Y is stationary.
This approach has two advantages: (i) the statistical significance of the sample CCF of
the prewhitened data can be assessed using the cutoff 1.96/A/;1, and (ii) the theoretical
counterpart of the CCF so estimated is proportional to certain regression coefficients.

To see (ii), consider a more general regression model relating X to Y and, without
loss of generality, assume both processes have zero mean:

Y, = Z X, i+ (11.4.3)

j=-©

where X is independent of Z and the coefficients [ are such that the process is
well-defined. In this model, the coefficients 3; could be nonzero for any integer k. How-
ever, in real applications, the doubly infinite sum is often a finite sum so that the model
simplifies to

Y, = Z i+ (11.4.4)

]—m1

which will be assumed below even though we retain the doubly infinite summation
notation for ease of exposition. If the summation ranges only over a finite set of positive
indices, then X leads Y and the covariate X serves as a useful leading indicator for
future Y’s. Applying the filter n(B) to both sides of this model, we get

~ o0 ~ ~

Y, = Z BeXi—k+2Z; (11.4.5)

k = —

where Z; = Z,~mZ, | —7n,yZ, 5~ ---.The prewhitening procedure thus orthogonal-
izes the various lags of X in the original regression model. Because X is a white noise
sequence and X is independent of Z, the theoretical cross-correlation coefficient
between X and Y at lag k equals B,/{(G)}/ G%) . In other words, the theoretical cross-
correlation of the prewhitened processes at lag k is proportional to the regression coeffi-
cient B_y.

For a quick preliminary analysis, an approximate prewhitening can be done easily
by first differencing the data (if needed) and then fitting an approximate AR model with
the order determined by minimizing the AIC. For example, for the milk production and
electricity consumption data, both are highly seasonal and contain trends. Consequently,
they can be differenced with both regular differencing and seasonal differencing, and
then the prewhitening can be carried out by filtering both differenced series by an AR
model fitted to the differenced milk data. Exhibit 11.16 shows the sample CCF between
the prewhitened series. None of the cross-correlations are now significant except for lag
-3, which is just marginally significant. The lone significant cross-correlation is likely a
false alarm since we expect about 1.75 false alarms out of the 35 sample cross-correla-
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tions examined. Thus, it seems that milk production and electricity consumption are in
fact largely uncorrelated, and the strong cross-correlation pattern found between the raw
data series is indeed spurious.

Exhibit 11.16 Sample CCF of Prewhitened Milk and Electricity Production

N
e Y S

0.1

CCF
0.0

Lag

> me.dif=ts.intersect (diff (diff (milk,12)),
diff (diff (log(electricity),12)))

> prewhiten(as.vector (me.dif [,1]),as.vector (me.dif[,2]),
ylab="'CCF")

The model defined by Equation (11.3.4) on page 262 is known variously as the
transfer-function model, the distributed-lag model, or the dynamic regression model.
The specification of which lags of the covariate enter into the model is often done by
inspecting the sample cross-correlation function based on the prewhitened data. When
the model appears to require a fair number of lags of the covariate, the regression coeffi-
cients may be parsimoniously specified via an ARMA specification similar to the case
of intervention analysis; see Box et al. (1994, Chapter 11) for some details. We illustrate
the method below with two examples where only one lag of the covariate appears to be
needed. The specification of the stochastic noise process Z; can be done by examining
the residuals from an ordinary least squares (OLS) fit of Y on X using the techniques
learned in earlier chapters.

Our first example of this section is a sales and price dataset of a certain potato chip
from Bluebird Foods Ltd., New Zealand. The data consist of the log-transformed
weekly unit sales of large packages of standard potato chips sold and the weekly aver-
age price over a period of 104 weeks from September 20, 1998 through September 10,
2000; see Exhibit 11.17. The logarithmic transformation is needed because the sales
data are highly skewed to the right. These data are clearly nonstationary. Exhibit 11.18
shows that, after differencing and using prewhitened data, the CCF is significant only at
lag 0, suggesting a strong contemporaneous negative relationship between lag 1 of price
and sales. Higher prices are associated with lower sales.
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Exhibit 11.17 Weekly Log(Sales) and Price for Bluebird Potato Chips

Sales
100 300

1.6 2.0

Price

1.2

0 20 40 60 80 100

Time

> data (bluebird)
> plot (bluebird,yax.f1lip=T)

Exhibit 11.18 Sample Cross Correlation Between Prewhitened Differenced
Log(Sales) and Price of Bluebird Potato Chips
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> prewhiten (y=diff (bluebird) [, 1] ,x=diff (bluebird) [,2],ylab="'CCF"')

Exhibit 11.19 reports the estimates from the OLS regression of log(sales) on price.
The residuals are, however, autocorrelated, as can be seen from their sample ACF and
PACEF displayed in Exhibits 11.20 and 11.21, respectively. Indeed, the sample autocor-
relations of the residuals are significant for the first four lags, whereas the sample partial
autocorrelations are significant at lags 1, 2, 4, and 14.
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Exhibit 11.19 OLS Regression Estimates of Log(Sales) on Price

Estimate Std. Error tvalue Pr(>)
Intercept 15.90 0.2170 73.22 <0.0001
Price —2.489 0.1260 -19.75 <0.0001

> sales=bluebird[,1]; price=bluebirdl[, 2]
> chip.ml=1m(sales~price,data=bluebird)
> summary (chip.ml)

Exhibit 11.20 Sample ACF of Residuals from OLS Regression of
Log(Sales) on Price
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> acf (residuals(chip.ml),ci.type='ma')

Exhibit 11.21 Sample PACF of Residuals from OLS Regression of
Log(Sales) on Price
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> pacf (residuals (chip.ml))
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The sample EACF of the residuals, shown in Exhibit 11.22, contains a triangle of
zeros with a vertex at (1,4), thereby suggesting an ARMA(1,4) model. Hence, we fit a
regression model of log(sales) on price with an ARMA(1,4) error.

Exhibit 11.22 The Sample EACF of the Residuals from the OLS
Regression of Log(Sales) on Price
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X 0 X 0

> eacf (residuals (chip.ml))

It turns out that the estimates of the AR(1) coefficient and the MA coefficients 0
and 05 are not significant, and hence a model fixing these coefficients to be zero was
subsequently fitted and reported in Exhibit 11.23.

Exhibit 11.23 Maximum Likelihood Estimates of a Regression Model of
Log(sales) on Price with a Subset MA(4) for the Errors

Parameter 0, 0, 03 0,4 Intercept Price
Estimate 0 —0.2884 0 —0.5416 15.86 —2.468
Standard Error 0 0.0794 0 00.1167 0.1909 0.1100

o2 estimated as 0.02623: log likelihood = 41.02, AIC = —70.05

> chip.m2=arima(sales,order=c(1,0,4),xreg=data.frame (price))

> chip.m2

> chip.m3=arima(sales,order=c(1,0,4),xreg=data.frame (price),
fixed=c(NA,0,NA,0,NA,NA,NA)); chip.m3

> chip.mé4=arima(sales,order=c(0,0,4),xreg=data.frame (price),
fixed=c(0,NA,0,NA,NA,NA)); chip.m4

Note that the regression coefficient estimate on Price is similar to that from the OLS
regression fit earlier, but the standard error of the estimate is about 10% lower than that
from the simple OLS regression. This illustrates the general result that the simple OLS
estimator is consistent but the associated standard error is generally not trustworthy.
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The residuals from this fitted model by and large pass various model diagnostic
tests except that the residual ACF is significant at lag 14. As a result, some Box-Ljung
test statistics have p-values bordering on 0.05 when 14 or more lags of the residual auto-
correlations are included in the test. Even though the significant ACF at lag 14 may sug-
gest a quarterly effect, we do not report a more complex model including lag 14 because
(1) 14 weeks do not exactly make a quarter and (2) adding a seasonal MA(1) component
of period 14 only results in marginal improvement in terms of model diagnostics.

For a second example, we study the impact of higher gasoline price on public trans-
portation usage. The dataset consists of the monthly number of boardings on public
transportation in the Denver, Colorado, region together with the average monthly gaso-
line prices in Denver from August 2000 through March 2006. Both variables are skewed
to the right and hence are log-transformed. As we shall see below, the logarithmic trans-
formation also makes the final fitted model more interpretable. The time series plots,
shown in Exhibit 11.24, display the increasing trends for both variables and the seasonal
fluctuation in the number of boardings. Based on the sample ACF and PACF, an
ARIMA(2,1,0) model was fitted to the gasoline price data. This fitted model was then
used to filter the boardings data before computing their sample CCF which is shown in
Exhibit 11.25. The sample CCF is significant at lags 0 and 15, suggesting positive con-
temporaneous correlation between gasoline price and public transportation usage. The
significant CCF at lag 15, however, is unlikely to be real, as it is hard to imagine why the
number of boardings might lead the gasoline price with a lag of 15 months. In this case,
the quick preliminary approach of prewhitening the series by fitting a long AR model,
however, showed that none of the CCFs are significant. It turns out that even after differ-
encing the data, the AIC selects an AR(16) model. The higher order selected coupled
with the relatively short time span may substantially weaken the power to detect correla-
tions between the two variables. Incidentally, this example warns against simply relying
on the AIC to select a high-order AR model to do prewhitening, especially with rela-
tively short time series data.

Exhibit 11.24 Logarithms of Monthly Public Transit Boardings and
Gasoline Prices in Denver, August 2000 through March 2006
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> data (boardings)
> plot (boardings,yax.flip=T)
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Exhibit 11.25 Sample CCF of Prewhitened Log(Boardings) and Log(Price)
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0.0 0.1
|
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> ml=arima (boardings [, 2] ,order=c(2,1,0))
> prewhiten (x=boardings [, 2],y=boardings[,1],x.model=ml)

Based on the sample ACF, PACF, and EACEF of the residuals from a linear model of
boardings on gasoline price, a seasonal ARIMA(2,0,0)x(1,0,0);, model was tentatively
specified for the error process in the regression model. However, the ¢, coefficient esti-
mate was not significant, and hence the AR order was reduced to p = 1. Using the outlier
detection techniques discussed in Section 11.2, we found an additive outlier for March
2003 and an innovative outlier for March 2004. Because the test statistic for the additive
outlier had a larger magnitude than that of the innovative outlier (—4.09 vs. 3.65), we
incorporated the additive outlier in the model. Diagnostics of the subsequent fitted
model reveals that the residual ACF was significant at lag 3, which suggests the error
process is a seasonal ARIMA(1,0,3)x(1,0,0);, + outlier process. As the estimates of
the coefficients 0, and 6, were found to be insignificant, they were suppressed from the
final fitted model that is reported in Exhibit 11.26.

Diagnostics of the final fitted model suggest a good fit to the data. Also, no further
outliers were detected. A 95% confidence interval for the regression coefficient on
Log(Price) is (0.0249, 0.139). Note the interpretation of the fitted model: a 100%
increase in the price of gasoline will lead to about an 8.2% increase in public transporta-
tion usage.

i Subsequent investigation revealed that a 30 inch snowstorm in March 2003 completely shut
down Denver for one full day. It remained partially shut down for a few more days.
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Exhibit 11.26 Maximum Likelihood Estimates of the Regression Model of
Log(Boardings) on Log(Price) with ARMA Errors

Parameter o 05 D, Intercept  Log(Price) Outlier
Estimate 0.8782 0.3836 0.8987 12.12 0.0819 —0.0643
Standard Error 0.0645 0.1475 0.0395 0.1638 0.0291 0.0109

o2 estimated as 0.0004094: log-likelihood = 158.02, AIC = —304.05

> log.boardings=boardings[, 1]

> log.price=boardings/|[, 2]

> boardings.ml=arima (log.boardings, order=c(1,0,0),
seasonal=1list (order=c(1,0,0),period=12),
xreg=data.frame (log.price))

> boardings.ml

> detectAO (boardings.ml); detectIO(boardings.ml)

> boardings.m2=arima (log.boardings, order=c(1,0,3),
seasonal=1list (order=c(1,0,0),period=12),
xreg=data.frame (log.price,outlier=c(rep(0,31),1,rep(0,36))),
fixed=c(NA,0,0,rep (NA,5)))

> boardings.m2

> detectAO (boardings.m2) ; detectIO (boardings.m2)

> tsdiag(boardings.m2,tol=.15,gof.lag=24)

It is also of interest to note that dropping the outlier term from the model results in
a new regression estimate on Log(Price) of 0.0619 with a standard error of 0.0372.
Thus, when the outlier is not properly modeled, the regression coefficient ceases to be
significant at the 5% level. As demonstrated by this example, the presence of an outlier
can adversely affect inference in time series modeling.

11.5 Summary

In this chapter, we used information from other events or other time series to help model
the time series of main interest. We began with the so-called intervention models, which
attempt to incorporate known external events that we believe have a significant effect on
the time series of interest. Various simple but useful ways of modeling the effects of
these interventions were discussed. Outliers are observations that deviate rather substan-
tially from the general pattern of the data. Models were developed to detect and incorpo-
rate outliers in time series. The material in the section on spurious correlation illustrates
how difficult it is to assess relationships between two time series, but methods involving
prewhitening were shown to help in this regard. Several substantial examples were used
to illustrate the methods and techniques discussed.
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EXERCISES

11.1 Produce a time series plot of the air passenger miles over the period January 1996
through May 2005 using seasonal plotting symbols. Display the graph full-screen
and discuss the seasonality that is displayed. The data are in the file named
airmiles.

11.2 Show that the expression given for m, in Equation (11.1.7) on page 251 satisfies
the “AR(1)” recursion given in Equation (11.1.6) with the initial condition mg= 0.

11.3 Find the “half-life” for the intervention effect specified in Equation (11.1.6) on
page 251 when 6 =0.7.

11.4 Show that the “half-life” for the intervention effect specified in Equation (11.1.6)
on page 251 increases without bound as 6 increases to 1.

11.5 Show that for the intervention effect specified by Equation (11.1.6) on page 251

. o(T-t),fort>T
lim m, = .
0, otherwise

11.6 Consider the intervention effect displayed in Exhibit 11.3, (b), page 253.
(a) Show that the jump at time 7 + 1 is of height ® as displayed.
(b) Show that, as displayed, the intervention effect tends to w/(1 — J) as ¢
increases without bound.

11.7 Consider the intervention effect displayed in Exhibit 11.3, (c), page 253. Show
that the effect increases linearly starting at time 7'+ 1 with slope ® as displayed.

11.8 Consider the intervention effect displayed in Exhibit 11.4, (a), page 254.

(a) Show that the jump at time 7 + 1 is of height ® as displayed.
(b) Show that, as displayed, the intervention effect tends to go back to 0 as ¢
increases without bound.

11.9 Consider the intervention effect displayed in Exhibit 11.4, (b), page 254.

(a) Show that the jump at time 7' + 1 is of height ®; + ®, as displayed.
(b) Show that, as displayed, the intervention effect tends to ®, as ¢ increases with-
out bound.

11.10 Consider the intervention effect displayed in Exhibit 11.4, (c), page 254.

(a) Show that the jump at time 7 is of height o as displayed.

(a) Show that the jump at time 7' + 1 is of height ®; + ®, as displayed.

(b) Show that, as displayed, the intervention effect tends to ®, as ¢ increases with-
out bound.

11.11 Simulate 100 pairs of (X,.Y;) from the model of Equation (11.3.1) on page 261
with d =3, By=0, and B; = 1. Use 6y =2 and &, = 1. Display and interpret the
sample CCF between these two series.

11.12 Show that when the X and Y are independent AR(1) time series with parameters
¢y and ¢y respectively, Equation (11.3.5) on page 262 reduces to give Equation
(11.3.6).

11.13 Show that for the process defined by Equation (11.4.5) on page 266, the
cross-correlation between X and Y at lag k is given by Bik(c)}/ Gi/) .
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11.14 Simulate an AR time series with ¢ = 0.7, u =0, c,= 1, and of length n = 48. Plot
the time series, and inspect the sample ACF and PACF of the series.

(a) Now add a step function response of ® = 1 unit height at time 7 = 36 to the
simulated series. The series now has a theoretical mean of zero from ¢t =1 to
35 and a mean of 1 from ¢ = 36 on. Plot the new time series and calculate the
sample ACF and PACF for the new series. Compare these with the results for
the original series.

(b) Repeat part (a) but with an impulse response at time ¢ = 36 of unit height, ® =
1. Plot the new time series, and calculate the sample ACF and PACF for the
new series. Compare these with the results for the original series. See if you
can detect the additive outlier at time # = 36 assuming that you do not know
where the outlier might occur.

11.15 Consider the air passenger miles time series discussed in this chapter. The file is
named airmiles. Use only the preintervention data (that is, data prior to September
2001) for this exercise.

(a) Verify that the sample ACF for the twice differenced series of the logarithms
of the preintervention data is as shown in Exhibit 11.5 on page 255.

(b) The plot created in part (a) suggests an ARIMA(0,1,1)x(0,1,0)1,. Fit this
model and assess its adequacy. In particular, verify that additive outliers are
detected in December 1996, January 1997, and December 2002.

(c) Now fit an ARIMA(O0,1,1)x(0,1,0), + three outliers model and assess its ade-
quacy.

(d) Finally, fit an ARIMA(0,1,1)x(0,1,1);, + three outliers model and assess its
adequacy.

11.16 Use the logarithms of the Denver region public transportation boardings and Den-
ver gasoline price series. The data are in the file named boardings.

(a) Display the time series plot of the monthly boardings using seasonal plotting
symbols. Interpret the plot.

(b) Display the time series plot of the monthly average gasoline prices using sea-
sonal plotting symbols. Interpret the plot.

11.17 The data file named deere1 contains 82 consecutive values for the amount of
deviation (in 0.000025 inch units) from a specified target value that an industrial
machining process at Deere & Co. produced under certain specified operating
conditions. These data were first used in Exercise 6.33, page 146, where we
observed an obvious outlier at time ¢ = 27.

(a) Fit an AR(2) model using the original data including the outlier.

(b) Test the fitted AR(2) model of part (a) for both AO and IO outliers.

(¢) Now fit the AR(2) model incorporating a term in the model for the outlier.

(d) Assess the fit of the model in part (c) using all of our diagnostic tools. In par-
ticular, compare the properties of this model with the one obtained in part (a).
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11.18 The data file named days contains accounting data from the Winegard Co. of Bur-
lington, Iowa. The data are the number of days until Winegard receives payment
for 130 consecutive orders from a particular distributor of Winegard products.
(The name of the distributor must remain anonymous for confidentiality reasons.)
These data were first investigated in Exercise 6.39, page 147, but several outliers
were observed. When the observed outliers were replaced by more typical values,
an MA(2) model was suggested.

(a) Fit an MA(2) model to the original data, and test the fitted model for both AO
and IO outliers.

(b) Now fit the MA(2) model incorporating the outliers into the model.

(c) Assess the fit of the model obtained in part (b). In particular, are any more out-
liers indicated?

(d) Fit another MA(2) model incorporating any additional outliers found in part
(c), and assess the fit of this model.

11.19 The data file named bluebirdlite contains weekly sales and price data for Bluebird
Lite potato chips. Carry out an analysis similar to that for Bluebird Standard
potato chips that was begun on page 267.

11.20 The file named units contains annual unit sales of a certain product from a widely
known international company over the years 1983 through 2005. (The name of
the company must remain anonymous for proprietary reasons.)

(a) Plot the time series of units and describe the general features of the plot.

(b) Use ordinary least squares regression to fit a straight line in time to the series.

(c) Display the sample PACF of the residuals from this model, and specify an
ARIMA model for the residuals.

(d) Now fit the model unit sales = AR(2) + time. Interpret the output. In particu-
lar, compare the estimated regression coefficient on the time variable obtained
here with the one you obtained in part (b).

(e) Perform a thorough analysis of the residuals from this last model.

(f) Repeat parts (d) and (e) using the logarithms of unit sales as the response vari-
able. Compare these results witjh those obtained in parts (d) and (e).

11.21 In Chapters 5-8, we investigated an IMA(1,1) model for the logarithms of
monthly oil prices. Exhibit 8.3 on page 178 suggested that there may be several
outliers in this series. Investigate the IMA(1,1) model for this series for outliers
using the techniques developed in this chapter. Be sure to compare your results
with those obtained earlier that ignored the outliers. The data are in the file named
oil.



CHAPTER 12

TIME SERIES MODELS OF
HETEROSCEDASTICITY

The models discussed so far concern the conditional mean structure of time series data.
However, more recently, there has been much work on modeling the conditional vari-
ance structure of time series data—mainly motivated by the needs for financial model-
ing. Let {Y,} be a time series of interest. The conditional variance of Y, given the past Y
values, Y, _{,Y,_,,..., measures the uncertainty in the deviation of Y, from its condi-
tional mean E(Y|Y,_ 1,Y;_,,...). If {¥,} follows some ARIMA model, the (one-step-
ahead) conditional variance is always equal to the noise variance for any present and
past values of the process. Indeed, the constancy of the conditional variance is true for
predictions of any fixed number of steps ahead for an ARIMA process. In practice, the
(one-step-ahead) conditional variance may vary with the current and past values of the
process, and, as such, the conditional variance is itself a random process, often referred
to as the conditional variance process. For example, daily returns of stocks are often
observed to have larger conditional variance following a period of violent price move-
ment than a relatively stable period. The development of models for the conditional
variance process with which we can predict the variability of future values based on cur-
rent and past data is the main concern of the present chapter. In contrast, the ARIMA
models studied in earlier chapters focus on how to predict the conditional mean of future
values based on current and past data.

In finance, the conditional variance of the return of a financial asset is often adopted
as a measure of the risk of the asset. This is a key component in the mathematical theory
of pricing a financial asset and the VaR (Value at Risk) calculations; see, for example,
Tsay (2005). In an efficient market, the expected return (conditional mean) should be
zero, and hence the return series should be white noise. Such series have the simplest
autocorrelation structure. Thus, for ease of exposition, we shall assume in the first few
sections of this chapter that the data are returns of some financial asset and are white
noise; that is, serially uncorrelated data. By doing so, we can concentrate initially on
studying how to model the conditional variance structure of a time series. By the end of
the chapter, we discuss some simple schemes for simultaneously modeling the condi-
tional mean and conditional variance structure by combining an ARIMA model with a
model of conditional heteroscedasticity.
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12.1 Some Common Features of Financial Time Series

As an example of financial time series, we consider the daily values of a unit of the
CREEF stock fund over the period from August 26, 2004 to August 15, 2006. The CREF
stock fund is a fund of several thousand stocks and is not openly traded in the stock mar-
ket.” Since stocks are not traded over weekends or on holidays, only on so-called trad-
ing days, the CREF data do not change over weekends and holidays. For simplicity, we
will analyze the data as if they were equally spaced. Exhibit 12.1 shows the time series
plot of the CREF data. It shows a generally increasing trend with a hint of higher vari-
ability with higher level of the stock value. Let {p;} be the time series of, say, the daily
price of some financial asset. The (continuously compounded) return on the rth day is
defined as

r, = log(p,) —log(p,_) (12.1.1)

Sometimes the returns are then multiplied by 100 so that they can be interpreted as per-
centage changes in the price. The multiplication may also reduce numerical errors as the
raw returns could be very small numbers and render large rounding errors in some cal-
culations.

Exhibit 12.1 Daily CREF Stock Values: August 26, 2004 to August 15,
2006
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> win.graph(width=4.875,height=2.5,pointsize=8)
> data (CREF); plot (CREF)

Exhibit 12.2 plots the CREF return series (sample size = 500). The plot shows that
the returns were more volatile over some time periods and became very volatile toward
the end of the study period. This observation may be more clearly seen by plotting the
time sequence plot of the absolute or squared returns; see Exercise 12.1, page 316.

T CREF stands for College Retirement Equities Fund—a group of stock and bond funds cru-
cial to many college faculty retirement plans.
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These results might be triggered by the instability in the Middle East due to a war in
southern Lebanon from July 12 to August 14, 2006, the period that is shaded in gray in
Exhibits 12.1 and 12.2. This pattern of alternating quiet and volatile periods of substan-
tial duration is referred to as volatility clustering in the literature. Volatility in a time
series refers to the phenomenon where the conditional variance of the time series varies
over time. The study of the dynamical pattern in the volatility of a time series (that is,
the conditional variance process of the time series) constitutes the main subject of this
chapter.

Exhibit 12.2 Daily CREF Stock Returns: August 26, 2004 to August 15,
2006
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> r.cref=diff (log (CREF))*100
> plot (r.cref); abline (h=0)

The sample ACF and PACF of the daily CREF returns (multiplied by 100), shown
in Exhibits 12.3 and 12.4, suggest that the returns have little serial correlation at all. The
sample EACF (not shown) also suggests that a white noise model is appropriate for
these data. The average CREF return equals 0.0493 with a standard error of 0.02885.
Thus the mean of the return process is not statistically significantly different from zero.
This is expected based on the efficient-market hypothesis alluded to in the introduction
to this chapter.



280

Time Series Models of Heteroscedasticity

Exhibit 12.3 Sample ACF of Daily CREF Returns: 8/26/04 to 8/15/06
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> acf (r.cref)

Exhibit 12.4 Sample PACF of Daily CREF Returns: 8/26/04 to 8/15/06
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> pacf (r.cref)

However, the volatility clustering observed in the CREF return data gives us a hint

that they may not be independently and identically distributed—otherwise the variance
would be constant over time. This is the first occasion in our study of time series models
where we need to distinguish between series values being uncorrelated and series values
being independent. If series values are truly independent, then nonlinear instantaneous
transformations such as taking logarithms, absolute values, or squaring preserves inde-
pendence. However, the same is not true of correlation, as correlation is only a measure
of linear dependence. Higher-order serial dependence structure in data can be explored
by studying the autocorrelation structure of the absolute returns (of lesser sampling vari-
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ability with less mathematical tractability) or that of the squared returns (of greater sam-
pling variability but with more manageability in terms of statistical theory). If the
returns are independently and identically distributed, then so are the absolute returns (as
are the squared returns), and hence they will be white noise as well. Hence, if the abso-
lute or squared returns admit some significant autocorrelations, then these autocorrela-
tions furnish some evidence against the hypothesis that the returns are independently
and identically distributed. Indeed, the sample ACF and PACF of the absolute returns
and those of the squared returns in Exhibits 12.5 through 12.8 display some significant
autocorrelations and hence provide some evidence that the daily CREF returns are not
independently and identically distributed.

Exhibit 12.5 Sample ACF of the Absolute Daily CREF Returns
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Exhibit 12.6 Sample PACF of the Absolute Daily CREF Returns
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Exhibit 12.7 Sample ACF of the Squared Daily CREF Returns
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Exhibit 12.8 Sample PACF of the Squared Daily CREF Returns
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These visual tools are often supplemented by formally testing whether the squared
data are autocorrelated using the Box-Ljung test. Because no model fitting is required,
the degrees of freedom of the approximating chi-square distribution for the Box-Ljung
statistic equals the number of correlations used in the test. Hence, if we use m autocorre-
lations of the squared data in the test, the test statistic is approximately chi-square dis-
tributed with m degrees of freedom, if there is no ARCH. This approach can be extended
to the case when the conditional mean of the process is non-zero and if an ARMA
model is adequate in describing the autocorrelation structure of the data. In which case,
the first m autocorrelations of the squared residuals from this model can be used to test
for the presence of ARCH. The corresponding Box-Ljung statistic will have a
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chi-square distribution with m degrees of freedom under the assumption of no ARCH
effect, see McLeod and Li (1983) and Li(2004). Below, we shall refer to the test for
ARCH effects using the Box-Ljung statistic with the squared residuals or data as the
McLeod- Li test.

In practice, it is useful to apply the McLeod-Li test for ARCH using a number of
lags and plot the p-values of the test. Exhibit 12.9 shows that the McLeod-Li tests are all
significant at the 5% significance level when more than 3 lags are included in the test.
This is broadly consistent with the visual pattern in Exhibit 12.7 and formally shows
strong evidence for ARCH in this data.

Exhibit 12.9 McLeod-Li Test Statistics for Daily CREF Returns
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> win.graph(width=4.875, height=3,pointsize=8)
> McLeod.Li.test (y=r.cref)

The distributional shape of the CREF returns can be explored by constructing a QQ
normal scores plot—see Exhibit 12.10. The QQ plot suggests that the distribution of
returns may have a tail thicker than that of a normal distribution and may be somewhat
skewed to the right. Indeed, the Shapiro-Wilk test statistic for testing normality equals
0.9932 with p-value equal to 0.024, and hence we reject the normality hypothesis at the
usual significance levels.
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Exhibit 12.10 QQ Normal Plot of Daily CREF Returns
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Theoretical Quantiles

> win.graph(width=2.5,height=2.5,pointsize=8)
> gqgnorm(r.cref); ggline(r.cref)

The skewness of a random variable, say Y, is defined by E(Y—;,L)3/cs3 , where p and 6
are the mean and standard deviation of ¥, respectively. It can be estimated by the sample
skewness

g= 3 (-1 /nd) (12.12)

i=1

where &% = 2(Y; - 1_/)2/ n is the sample variance. The sample skewness of the CREF
returns equals 0.116. The thickness of the tail of a distribution relative to that of a nor-
mal distribution is often measured by the (excess) kurtosis, defined as E(Y — u)4/c54 -3.
For normal distributions, the kurtosis is always equal to zero. A distribution with posi-
tive kurtosis is called a heavy-tailed distribution, whereas it is called light-tailed if its
kurtosis is negative. The kurtosis can be estimated by the sample kurtosis

L S.4 A4
8= > (¥;=Y) /(n6)-3 (12.1.3)
i=1
The sample kurtosis of the CREF returns equals 0.6274. An alternative definition of
kurtosis modifies the formula and uses E(r, — ].1)4/64; that is, it does not subtract three
from the ratio. We shall always use the former definition for kurtosis.
Another test for normality is the Jarque-Bera test, which is based on the fact that a
normal distribution has zero skewness and zero kurtosis. Assuming independently and
identically distributed data Y1,Y>,...,Y,, the Jarque-Bera test statistic is defined as

2 2
_ngy  ng

JB + (12.1.4)
6 24
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where g is the sample skewness and g, is the sample kurtosis. Under the null hypothe-
sis of normality, the Jarque-Bera test statistic is approximately distributed as x2 with
two degrees of freedom. In fact, under the normality assumption, each summand defin-
ing the Jarque-Bera statistic is approximately x2 with 1 degree of freedom. The
Jarque-Bera test rejects the normality assumption if the test statistic is too large. For the
CREF returns, JB = 500x0.1162%/6 + 500x0.6274%/24 = 1.12 + 8.20 = 9.32 with a
p-value equal to 0.011. Recall that the upper 5 percentage point of a x2 distribution with
unit degree of freedom equals 3.84. Hence, the data appear not to be skewed but do have
a relatively heavy tail. In particular, the normality assumption is inconsistent with the
CREF return data—a conclusion that is also consistent with the finding of the Sha-
piro-Wilk test.

In summary, the CREF return data are found to be serially uncorrelated but admit a
higher-order dependence structure, namely volatility clustering, and a heavy-tailed dis-
tribution. It is commonly observed that such characteristics are rather prevalent among
financial time series data. The GARCH models introduced in the next sections attempt
to provide a framework for modeling and analyzing time series that display some of
these characteristics.

12.2 The ARCH(1) Model

Engle (1982) first proposed the autoregressive conditional heteroscedasticity (ARCH)
model for modeling the changing variance of a time series. As discussed in the previous
section, the return series of a financial asset, say {r,}, is often a serially uncorrelated
sequence with zero mean, even as it exhibits volatility clustering. This suggests that the
conditional variance of r, given past returns is not constant. The conditional variance,
also referred to as the conditional volatility, of r, will be denoted by Glzt_ 15 with the
subscript ¢ — 1 signifying that the conditioning is upon returns through time # — 1. When
r, is available, the squared return rt2 provides an unbiased estimator of c,2| +—1- A series
of large squared returns may foretell a relatively volatile period. Conversely, a series of
small squared returns may foretell a relatively quiet period. The ARCH model is for-
mally a regression model with the conditional volatility as the response variable and the
past lags of the squared return as the covariates. For example, the ARCH(1) model
assumes that the return series {r;} is generated as follows:

r= Oy (12.2.1)

cfh_l = o+ar_, (12.2.2)

where o and « are unknown parameters, {¢,} is a sequence of independently and identi-
cally distributed random variables each with zero mean and unit variance (also known
as the innovations), and g, is independent of r, _ j» j=1,2,.... The innovation g, is pre-
sumed to have unit variance so that the conditional variance of r, equals Gtz| _1- This
follows from

t
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2 . 2 2 .
E(rtlr’_j’] =L2..)= E(Gt|t—18t|rt—j’] =1,2..)
2 2 .
= Gl'l—lE(atlrl_jaJ = 1, 2, )
2 2
= 6t|t—1E(81)
2 (12.2.3)

Oylr-1

The second equality follows because o], _ | is known given the past returns, the third
equality holds because g, is independent of past returns, and the last equality results
from the assumption that the variance of ¢, equals 1.

Exhibit 12.11 shows the time series plot of a simulated series of size 500 from an
ARCH(1) model with ® = 0.01 and o = 0.9. Volatility clustering is evident in the data as
larger fluctuations cluster together, although the series is able to recover from large fluc-
tuations quickly because of the very short memory in the conditional variance process.Jr

Exhibit 12.11 Simulated ARCH(1) Model with ® = 0.01 and o; = 0.9

0.5

0.0

0 100 200 300 400 500

t

> set.seed(1235678); library(tseries)
> garch0l.sim=garch.sim(alpha=c(.01,.9),n=500)
> plot (garchOl.sim,type="'1"',ylab=expression(r[t]), xlab='t")

While the ARCH model resembles a regression model, the fact that the conditional
variance is not directly observable (and hence is called a latent variable) introduces
some subtlety in the use of ARCH models in data analysis. For example, it is not obvi-
ous how to explore the regression relationship graphically. To do so, it is pertinent to
replace the conditional variance by some observable in Equation (12.2.2). Let

TThe R package named tseries is reqired for this chapter. We assume that the reader has
downloaded and installed it.
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2 2
N, =7 =Gy (12.2.4)

It can be verified that {n,} is a serially uncorrelated series with zero mean. Moreover, 1,
is uncorrelated with past returns. Substituting Gt2| (1 = rt2 -1, into Equation (12.2.2)
it is obvious that

o= otar 4, (12.2.5)

Thus, the squared return series satisfies an AR(1) model under the assumption of an
ARCH(1) model for the return series! Based on this useful observation, an ARCH(1)
model may be specified if an AR(1) specification for the squared returns is warranted by
techniques learned from earlier chapters.

Besides its value in terms of data analysis, the deduced AR(1) model for the
squared returns can be exploited to gain theoretical insights on the parameterization of
the ARCH model. For example, because the squared returns must be nonnegative, it
makes sense to always restrict the parameters ® and a to be nonnegative. Also, if the
return series is stationary with variance o2, then taking expectation on both sides of
Equation (12.2.5) yields

62 = ®+00° (12.2.6)

That is, o = ®/(1 —a) and hence 0 < a < 1. Indeed, it can be shown (Ling and
McAleer, 2002) that the condition 0 < o < 1 is necessary and sufficient for the (weak)
stationarity of the ARCH(1) model. At first sight, it seems that the concepts of stationar-
ity and conditional heteroscedasticity may be incompatible. However, recall that weak
stationarity of a process requires that the mean of the process be constant and the covari-
ance of the process at any two epochs be finite and identical whenever the lags of the
two epochs are the same. In particular, the variance is constant for a weakly stationary
process. The condition O < a < 1 implies that there exists an initial distribution for r(
such that r, defined by Equations (12.2.1) and (12.2.2) for ¢ > 1 is weakly stationary in
the sense above. It is interesting to observe that weak stationarity does not preclude the
possibility of a nonconstant conditional variance process, as is the case for the ARCH(1)
model! It can be checked that the ARCH(1) process is white noise. Hence, it is an exam-
ple of a white noise that admits a nonconstant conditional variance process as defined
by Equation (12.2.2) that varies with the lag one of the squared process.

A satisfying feature of the ARCH(1) model is that, even if the innovation n, has a
normal distribution, the stationary distribution of an ARCH(1) model with 1 > o > 0 has
fat tails; that is, its kurtosis, E(r?)/ ot - 3, is greater than zero. (Recall that the kurtosis
of a normal distribution is always equal to 0, and a distribution with positive kurtosis is
said to be fat-tailed, while one with a negative kurtosis is called a light-tailed distribu-
tion.) To see the validity of this claim, consider the case where the {¢,} are indepen-
dently and identically distributed as standard normal variables. Raising both sides of
Equation (12.2.1) on page 285 to the fourth power and taking expectations gives
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4 4 4 .
E(r,) = E[E(tht_lat|rt_j,] =1,2,3,...)]
4 4 .
= E[tht_lE(Stlrt_j,j =1,2,3,...)]

) ) (12.2.7)
E[o,_ E(,)]

4
3E(Gl‘|l‘f 1)

The first equality follows from the iterated-expectation formula, which, in the simple
case of two random variables X, Y, states that E[E(X]|Y)] = E(X). [See Equation (9.E.5)
on page 218 for a review.] The second equality results from the fact that 6, _ | is known
given past returns. The third equality is a result of the independence between ¢; and past
returns, and the final equality follows from the normality assumption. It remains to cal-
culate £ (G?h— 1) - Now, it is unclear whether the preceding expectation exists as a finite
number. For the moment, assume it does and, assuming stationarity, let it be denoted by
7. Below, we shall derive a condition for this assumption to be valid. Raising both sides
of Equation (12.2.2) to the second power and taking expectation yields

T = 032 + 20)(102 + oc23r (12.2.8)
which implies
2.5 2
1= @ F-000 (12.2.9)
2
1-3a

This equality shows that a necessary (and, in fact, also sufficient) condition for the
finiteness of T is that 0 <a < l/ﬁ, in which case the ARCH(1) process has finite
fourth moment. Incidentally, this shows that a stationary ARCH(1) model need not have
finite fourth moments. The existence of finite higher moments will further restrict the
parameter range—a feature also shared by higher-order analogues of the ARCH model
and its variants. Returning to the calculation of the kurtosis of an ARCH(1) process, it
can be shown by tedious algebra that Equation (12.2.1) implies that T > o* and hence
E( r?) >36*. Thus the kurtosis of a stationary ARCH(1) process is greater than zero.
This verifies our earlier statement that an ARCH(1) process has fat tails even with nor-
mal innovations. In other words, the fat tail is a result of the volatility clustering as spec-
ified by Equation (12.2.2).

A main use of the ARCH model is to predict the future conditional variances. For
example, one might be interested in forecasting the i-step-ahead conditional variance

2 2
Gl‘+h|l‘ = E(r[+h|rp rl‘*l"") (12210)
For h =1, the ARCH(1) model implies that
2 2 2
=o+ar, = (1-a)o +ar, (12.2.11)

which is a weighted average of the long-run variance and the current squared return.
Similarly, using the iterated expectation formula, we have
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2

OStanlt = E(rt+h|rt, Fe_qs )
- E[E 2 2
= [(Gz+h|t+h—181+h|rt+h—1’rt+h—2’”')lrz’rt—l""]

2 2
= E[c E(e;, )|r.r ]

t+hlit+h-1 t+h/1p -1

; | (12.2.12)
= E(Gt+h|t+h—1|rt’ Fe_qs )

2

= 0+oE(r,, , lrpr,_q )
_ 2
- (D+0°Gt+h—1|t

. 2 2
where we adopt the convention that o, A for h < 0. The formula above pro-

vides a recursive recipe for computing the h-step-ahead conditional variance.

12.3 GARCH Models

The forecasting formulas derived in the previous section show both the strengths and
weaknesses of an ARCH(1) model, as the forecasting of the future conditional variances
only involves the most recent squared return. In practice, one may expect that the accu-
racy of forecasting may improve by including all past squared returns with lesser weight
for more distant volatilities. One approach is to include further lagged squared returns in
the model. The ARCH(g) model, proposed by Engle (1982), generalizes Equation
(12.2.2) on page 285, by specifying that

61‘2|t—1 = o)+0c1rt2_1+0c2rt2_2+--~+ocqrt_q (12.3.1)
Here, g is referred to as the ARCH order. Another approach, proposed by Bollerslev
(1986) and Taylor (1986), introduces p lags of the conditional variance in the model,
where p is referred to as the GARCH order. The combined model is called the general-
ized autoregressive conditional heteroscedasticity, GARCH(p,q), model.

2 2 2 2
Oiim1 = OF+PB 1O,y at+BO iy T T

5 5 (12.3.2)
O gt A,
In terms of the backshift B notation, the model can be expressed as
2 2
(1-BB—--=B,B oy, = 0+(a;B+-+a,B)r (12.3.3)

We note that in some of the literature, the notation GARCH(p, q) is written as
GARCH(q,p); that is, the orders are switched. It can be rather confusing but true that the
two different sets of conventions are used in different software! A reader must find out
which convention is used by the software on hand before fitting or interpreting a
GARCH model.
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Because conditional variances must be nonnegative, the coefficients in a GARCH
model are often constrained to be nonnegative. However, the nonnegative parameter
constraints are not necessary for a GARCH model to have nonnegative conditional vari-
ances with probability 1; see Nelson and Cao (1992) and Tsai and Chan (2006). Allow-
ing the parameter values to be negative may increase the dynamical patterns that can be
captured by the GARCH model. We shall return to this issue later. Henceforth, within
this section, we shall assume the nonnegative constraint for the GARCH parameters.

Exhibit 12.12 shows the time series plot of a time series, of size 500, simulated
from a GARCH(1,1) model with standard normal innovations and parameter values
® =0.02, a = 0.05, and B = 0.9. Volatility clustering is evident in the plot, as large
(small) fluctuations are usually succeeded by large (small) fluctuations. Moreover, the
inclusion of the lag 1 of the conditional variance in the model successfully enhances the
memory in the volatility.

Exhibit 12.12 Simulated GARCH(1,1) Process
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> set.seed(1234567)
> garchll.sim=garch.sim(alpha=c(0.02,0.05),beta=.9,n=500)
> plot (garchll.sim,type='1l"',ylab=expression(r[t]), xlab='t")

Except for lags 3 and 20, which are mildly significant, the sample ACF and PACF
of the simulated data, shown in Exhibits 12.13 and 12.14, do not show significant corre-
lations. Hence, the simulated process seems to be basically serially uncorrelated as it is.
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Exhibit 12.13 Sample ACF of Simulated GARCH(1,1) Process
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> acf (garchll.sim)

Exhibit 12.14 Sample PACF of Simulated GARCH(1,1) Process
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Lag

> pacf (garchll.sim)

Exhibits 12.15 through 12.18 show the sample ACF and PACF of the absolute val-
ues and the squares of the simulated data.
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Exhibit 12.15 Sample ACF of the Absolute Values of the Simulated
GARCH(1,1) Process
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> acf (abs (garchll.sim))

Exhibit 12.16 Sample PACF of the Absolute Values of the Simulated
GARCH(1,1) Process
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Partial ACF

-0.05

Lag

> pacf (abs(garchll.sim))

These plots indicate the existence of significant autocorrelation patterns in the
absolute and squared data and indicate that the simulated process is in fact serially
dependent. Interestingly, the lag 1 autocorrelations are not significant in any of these last
four plots.
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Exhibit 12.17 Sample ACF of the Squared Values of the Simulated
GARCH(1,1) Process
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> acf (garchll.sim”*2)

Exhibit 12.18 Sample PACF of the Squared Values of the Simulated
GARCH(1,1) Process
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> pacf (garchll.sim”*2)

For model identification of the GARCH orders, it is again advantageous to express
the model for the conditional variances in terms of the squared returns. Recall the defi-
nition n, = rt2 - ctz|,_1 . Similar to the ARCH(1) model, we can show that {n,} is a
serially uncorrelated sequence. Moreover, 1, is uncorrelated with past squared returns.
Substituting the expression Gz2|z— | = r?—n, into Equation (12.3.2) yields
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2 2 2
I, = 0+ (Bl + 0Ll)rt—l oot (Bmax(p, q)+ 0Lma)c(p, q))rt—max(p, q)
+M =B, _Bpnt—p

where B3; = 0 for all integers k > p and o, = 0 for k > g. This shows that the GARCH(p, q)
model for the return series implies that the model for the squared returns is an
ARMA (max(p, q),p) model. Thus, we can apply the model identification techniques for
ARMA models to the squared return series to identify p and max(p,q). Notice that if g is
smaller than p, it will be masked in the model identification. In such cases, we can first
fit a GARCH(p,p) model and then estimate ¢ by examining the significance of the
resulting ARCH coefficient estimates.

As an illustration, Exhibit 12.19 shows the sample EACF of the squared values
from the simulated GARCH(1,1) series.

(12.3.4)

Exhibit 12.19 Sample EACF for the Squared Simulated GARCH(1,1) Series

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0O O X X o o X o o o o o o o
1 X o] 0 o] X o] X X o] 0 o] o] o] o]
2 X o o o o O X o o o o o0 o o
3 X X X o] o] X o o] o] o] o o) o] o}
4 X X 0 X X o] o) o] o] o] o) o] o] o)
5 X O X X o o o o o o o o0 o o
6 X O X X o X o o o o o o o0 o
7 X X X X X X o) o] o] o) o) o] o] o)
> eacf ((garchll.sim)*2)

The pattern in the EACF table is not very clear, although an ARMA(2,2) model
seems to be suggested. The fuzziness of the signal in the EACF table is likely caused by
the larger sampling variability when we deal with higher moments. Shin and Kang
(2001) argued that, to a first-order approximation, a power transformation preserves the
theoretical autocorrelation function and hence the order of a stationary ARMA process.
Their result suggests that the GARCH order may also be identified by studying the
absolute returns. Indeed, the sample EACF table for the absolute returns, shown in
Exhibit 12.20, more convincingly suggests an ARMA(1,1) model, and therefore a
GARCH(1,1) model for the original data, although there is also a hint of a GARCH(2,2)
model.
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Exhibit 12.20 Sample EACF for Absolute Simulated GARCH(1,1) Series

ARMA | 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0O O X X o o X o o o o O o o
1 X O O O X o o o o o o o o o
2 X X o o o o o o o o O O o o
3 X X o o o X o o o o O O o o
4 X X O X o0 X o o o o o o o o
5 X o) X X X o) o] o] o) o] o] o] o) o]
6 X o} X X X X o] o] o o] o] o] o o]
7 X X X X X 0O X o o o o o o o

> eacf (abs (garchll.sim))

For the absolute CREF daily return data, the sample EACEF table is reported in
Exhibit 12.21, which suggests a GARCH(1,1) model. The corresponding EACF table
for the squared CREF returns (not shown) is, however, less clear and may suggest a
GARCH(2,2) model.

Exhibit 12.21 Sample EACF for the Absolute Daily CREF Returns

AR/MA | 0 1 2 3 4 5 6 7 8 9 10 11 12 13
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> eacf (abs(r.cref))

Furthermore, the parameter estimates of the fitted ARMA model for the absolute
data may yield initial estimates for maximum likelihood estimation of the GARCH
model. For example, Exhibit 12.22 reports the estimated parameters of the fitted
ARMA(1,1) model for the absolute simulated GARCH(1,1) process.
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Exhibit 12.22 Parameter Estimates with ARMA(1,1) Model for the Absolute
Simulated GARCH(1,1) Series

Coefficient arl mai Intercept
Estimate 0.9821 —0.9445 0.5077
s.e. 0.0134 0.0220 0.0499

> arima (abs(garchll.sim) ,order=c(1,0,1))

Using Equation (12.3.4), it can be seen that f3 is estimated by 0.9445, o is estimated
by 0.9821 — 0.9445 = 0.03763, and ® can be estimated as the variance of the original
data times the estimate of 1 — oo — 3, which equals 0.0073. Amazingly, these estimates
turn out to be quite close to the maximum likelihood estimates reported in the next sec-
tion!

We now derive the condition for a GARCH model to be weakly stationary. Assume
for the moment that the return process is weakly stationary. Taking expectations on both
sides of Equation (12.3.4) gives an equation for the unconditional variance o2

’ max(p, q)
c =m+0 Z B;+ ;) (12.3.5)
i=1
so that
2 [0
= 12.3.6
° max(p, q) ( )
- B;+a;)
i=1
which is finite if
max(p, q)
Z (Bi+(xi)< 1 (12.3.7)

i=1

This condition can be shown to be necessary and sufficient for the weak stationarity of a
GARCH(p,q) model. (Recall that we have implicitly assumed that o; > 0,..., oy, = 0,
and B; 20,..., B, 2 0.) Henceforth, we assume p = g for ease of notation.

As in the case of an ARCH(1) model, finiteness of higher moments of the GARCH
model requires further stringent conditions on the coefficients; see Ling and McAleer
(2002). Also, the stationary distribution of a GARCH model is generally fat-tailed even
if the innovations are normal.

In terms of forecasting the i-step-ahead conditional variance 0,2+ hl|t» We can repeat
the arguments used in the preceding section to derive the recursive formula that for > p

2 p 2
Sippe =0+ Y (4 +B)o, (12.3.8)
i=1

More generally, for arbitrary i > 1, the formula is more complex, as
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2 2
f+h|t_m+ zatGHh thGt+h—l|t+h—l—l (12.3.9)
i=1
where
2 2
Stanlt = Iy for h <0 (12.3.10)
and
o for h 1>0
A2 t+h—i|t orh—i—1>
Steh—ilt+h-i-1 =7 , (12.3.11)
Stvh—ilt+h—i-1 otherwise

The computation of the conditional variances may be best illustrated using the
GARCH(1,1) model. Suppose that there are n observations ry, r,..., 1, and

2 2 2
Oyr—1 = O+ 07, 1 +Bo,_ -2 (12.3.12)

To compute the conditional variances for 2 <t <n, we need to set the initial value 01 0-
This may be set to the stationary uncondmonal variance o2 = = /(1 — ay — B) under the
stationarity assumption or simply as r1 Thereafter, we can compute Gtzl ;_ 1 by the for-
mula defining the GARCH model. It is interesting to observe that

2 2 2 2

Sye—1 = (I-a;=B))o +or,_;+Bo,_ -2 (12.3.13)
so that the estimate of the one-step-ahead conditional volatility is a weighted average of
the long-run variance, the current squared return, and the current estimate of the condi-
tional volatility. Further, the MA(o) representation of the conditional variance implies
that

2 2 2 2 22 3
Syi—1 = O +0L1(rt_1+B1rt_2+B1rt_3+Blr2,_4+~~) (12.3.14)

an infinite moving average of past squared returns. The formula shows that the squared
returns in the distant past receive exponentially diminishing weights. In contrast, simple
moving averages of the squared returns are sometimes used to estimate the conditional
variance. These, however, suffer much larger bias.

If o + By =1, then the GARCH(1,1) model is nonstationary and instead is called an
IGARCH(1,1) model with the letter I standing for integrated. In such a case, we shall
drop the subscript from the notation and let oo = 1 — 8. Suppose that ® = 0. Then

2 2 2 22 32
Spi—1 = (1=B)(ry_ +Bry o+ B r, 3+ B r,_4+), (12.3.15)

an exponentially weighted average of the past squared returns. The famed Riskmetrics
software in finance employs the IGARCH(1,1) model with B = 0.94 for estimating con-
ditional variances; see Andersen et al. (2006).
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12.4 Maximum Likelihood Estimation

The likelihood function of a GARCH model can be readily derived for the case of nor-
mal innovations. We illustrate the computation for the case of a stationary GARCH(1,1)
model. Extension to the general case is straightforward. Given the parameters ®, o, and
B, the conditional variances can be computed recursively by the formula

2 2 2
Si-1 = @+ +Bo_y)n (12.4.1)

for ¢t > 2, with the initial value, G1]0 set under the stationarity assumption as the sta-
tionary unconditional variance 62 = /(1 — o.— B). We use the conditional pdf

1 2 2
frlr g oo ry) = —===expl=r/(20y,_)] (12.4.2)
,/2TC(5t|t71
and the joint pdf
f(rpyosr) = f(ry oo A1, 15 i y) (12.4.3)

Iterating this last formula and taking logs gives the following formula for the log-likeli-
hood function:

_ 1 & 2 2,2
L(ow,a,pB) = =) og(2m)— > Z log(c, _ 1|t72) +r /Gz|171 (12.4.4)
i=1

There is no closed-form solution for the maximum likelihood estimators of ®, a., and 3,
but they can be computed by maximizing the log-likelihood function numerically. The
maximum likelihood estimators can be shown to be approximately normally distributed
with the true parameter values as their means. Their covariances may be collected into a
matrix denoted by A, which can be obtained as follows. Let

w
0= o (12.4.5)

p

be the vector of parameters. Write the ith component of 6 as 0, so that 6; = w, 6, = a,
and 05 = B. The diagonal elements of A are the approximate variances of the estimators,
whereas the off-diagonal elements are their approximate covariances. So, the first diag-
onal element of A is the approximate variance of o, the (1,2)th element of A is the
approximate covariance between ® and 0., and so forth. We now outline the computa-
tion of A. Readers not interested in the mathematical details may skip the rest of this
paragraph. The 3 x3 matrix A is approximately equal to the inverse matrix of the 3x3
matrix whose (i, j)th element equals
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2 2
%Z”: 1 06,,_106,,_, (12.4.6)
4
t=1 Gl‘|l‘71 ael 59]

The partial derivatives in this expression can be obtained recursively by differentiating
Equation (12.4.1). For example, differentiating both sides of Equation (12.4.1) with
respect to o yields the recursive formula

2 2
0 oo
Ol 1 =1+p lél -2 (12.4.7)

om
Other partial derivatives can be computed similarly.

Recall that, in the previous section, the simulated GARCH(1,1) series was identi-
fied to be either a GARCH(1,1) model or a GARCH(2,2) model. The model fit of the
GARCH(2,2) model is reported in Exhibit 12.23, where the estimate of ® is denoted by
a0, that of a; by al, that of B by bl, and so forth. Note that none of the coefficients is
significant, although a2 is close to being significant. The model fit for the GARCH(1,1)
model is given in Exhibit 12.24.

Exhibit 12.23 Estimates for GARCH(2,2) Model of a Simulated

GARCH(1,1) Series
Coefficient Estimate Std. Error t-value Pr(>|1)
a0 1.835e-02 1.515e-02 1.211 0.2257
al 4.09e-15 4.723e-02 8.7e-14 1.0000
a2 1.136e-01 5.855e-02 1.940 0.0524
b1 3.369e-01 3.696e-01 0.911 0.3621
b2 5.100e-01 3.575e-01 1.426 0.1538

> gl=garch(garchll.sim,order=c(2,2))
> summary (gl)

Exhibit 12.24 Estimates for GARCH(1,1) Model of a Simulated

GARCH(1,1) Series
Coefficient Estimate Std. Error t-value Pr(>|t))
a0 0.007575 0.007590 0.998 0.3183
al 0.047184 0.022308 2.115 0.0344
b1 0.935377 0.035839 26.100 < 0.0001

> g2=garch(garchll.sim,order=c(1,1))

> summary (g2)




300 Time Series Models of Heteroscedasticity

Now all coefficient estimates (except a0) are significant. The AIC of the fitted
GARCH(2,2) model is 961.0, while that of the fitted GARCH(1,1) model is 958.0,and
thus the GARCH(1,1) model provides a better fit to the data. (Here, AIC is defined as
minus two times the log-likelihood of the fitted model plus twice the number of param-
eters. As in the case of ARIMA models, a smaller AIC is preferable.) A 95% confidence
interval for a parameter is given (approximately) by the estimate £1.96 times its stan-
dard error. So, an approximate 95% confidence interval for o equals (—0.0073, 0.022),
that of oy equals (0.00345, 0.0909), and that of 3, equals (0.865,1.01). These all contain
their true values of 0.02, 0.05, and 0.9, respectively. Note that the standard error of b1 is
0.0358. Since the standard error is approximately proportional to 1/4J/n, the standard
error of bl is expected to be about 0.0566 (0.0462) if the sample size n is 200 (300).
Indeed, fitting the GARCH(1,1) model to the first 200 simulated data, bl was found to
equal 0.0603 with standard error equal to 50.39! When the sample size was increased to
300, b1 became 0.935 with standard error equal to 0.0449. This example illustrates that
fitting a GARCH model generally requires a large sample size for the theoretical sam-
pling distribution to be valid and useful; see Shephard (1996, p. 10) for a relevant dis-
cussion.

For the CREF return data, we earlier identified either a GARCH(1,1) or
GARCH(2,2) model. The AIC of the fitted GARCH(1,1) model is 969.6, whereas that
of the GARCH(2,2) model is 970.3. Hence the GARCH(1,1) model provides a margin-
ally better fit to the data. Maximum likelihood estimates of the fitted GARCH(1,1)
model are reported in Exhibit 12.25.

Exhibit 12.25 Maximum Likelihood Estimates of the GARCH(1,1) Model for
the CREF Stock Returns

Parameter Estimate’ Std. Error t-value Pr(>|1))
a0 0.01633 0.01237 1.320 0.1869
al 0.04414 0.02097 2.105 0.0353
b1 0.91704 0.04570 20.066 < 0.0001

T As remarked earlier, the analysis depends on the scale of measurement. In par-
ticular, a GARCH(1,1) model based on the raw CREF stock returns yields
estimates a0 = 0.00000511, a1 =0.0941, and b1 =0.789.

> ml=garch (x=r.cref,order=c(1,1))
> summary (ml)

Note that the long-term variance of the GARCH(1,1) model is estimated to be

&/(1-6—B) = 0.01633/(1—0.04414 - 0.91704) = 0.4206 (12.4.8)

which is very close to the sample variance of 0.4161.
In practice, the innovations need not be normally distributed. In fact, many financial
time series appear to have nonnormal innovations. Nonetheless, we can proceed to esti-
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mate the GARCH model by pretending that the innovations are normal. The resulting
likelihood function is called the Gaussian likelihood, and estimators maximizing the
Gaussian likelihood are called the quasi-maximum likelihood estimators (QMLEs). It
can be shown that, under some mild regularity conditions, including stationarity, the
quasi-maximum likelihood estimators are approximately normal, centered at the true
parameter values, and their covariance matrix equals [(k +2)/2]A, where « is the
(excess) kurtosis of the innovations and A is the covariance matrix assuming the innova-
tions are normally distributed—see the discussion above for the normal case. Note that
the heavy-tailedness of the innovations will inflate the covariance matrix and hence
result in less reliable parameter estimates. In the case where the innovations are deemed
nonnormal, this result suggests a simple way to adjust the standard errors of the
quasi-maximum likelihood estimates by multiplying the standard errors of the Gaussian
likelihood estimates from a routine that assumes normal innovations by /(k +2)/2,
where k can be substituted with the sample kurtosis of the standardized residuals that
are defined below. It should be noted that one disadvantage of QMLE is that the AIC is
not strictly applicable.

Let the estimated conditional standard deviation be denoted by 3t| (—1- The stan-
dardized residuals are then defined as

g =r1/6)_, (12.4.9)

t

The standardized residuals from the fitted model are proxies for the innovations and can
be examined to cast light on the distributional form of the innovations. Once a (parame-
terized) distribution for the innovations is specified, for example a ¢-distribution, the
corresponding likelihood function can be derived and optimized to obtain maximum
likelihood estimators; see Tsay (2005) for details. The price of not correctly specifying
the distributional form of the innovation is a loss in efficiency of estimation, although,
with large datasets, the computational convenience of the Gaussian likelihood approach
may outweigh the loss of estimation efficiency.

12.5 Model Diagnostics

Before we accept a fitted model and interpret its findings, it is essential to check
whether the model is correctly specified, that is, whether the model assumptions are
supported by the data. If some key model assumptions seem to be violated, then a new
model should be specified; fitted, and checked again until a model is found that provides
an adequate fit to the data. Recall that the standardized residuals are defined as

8= r /8y (125.1)
which are approximately independently and identically distributed if the model is cor-
rectly specified. As in the case of model diagnostics for ARIMA models, the standard-
ized residuals are very useful for checking the model specification. The normality
assumption of the innovations can be explored by plotting the QQ normal scores plot.
Deviations from a straight line pattern in the QQ plot furnish evidence against normality

and may provide clues on the distributional form of the innovations. The Shapiro-Wilk
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test ar;d the Jarque-Bera test are helpful for formally testing the normality of the innova-
tions.

For the GARCH(1,1) model fitted to the simulated GARCH(1,1) process, the sam-
ple skewness and kurtosis of the standardized residuals equal —0.0882 and —0.104,
respectively. Moreover, both the Shapiro-Wilk test and the Jarque-Bera test suggest that
the standardized residuals are normal.

For the GARCH(1,1) model fitted to the CREF return data, the standardized residu-
als are plotted in Exhibit 12.26. There is some tendency for the residuals to be larger in
magnitude towards the end of the study period, perhaps suggesting that there is some
residual pattern in the volatility. The QQ plot of the standardized residuals is shown in
Exhibit 12.27. The QQ plot shows a largely straight-line pattern. The skewness and the
kurtosis of the standardized residuals are 0.0341 and 0.205, respectively. The p-value of
the Jarque-Bera test equals 0.58 and that of the Shapiro-Wilk test is 0.34. Hence, the
normality assumption cannot be rejected.

Exhibit 12.26 Standardized Residuals from the Fitted GARCH(1,1) Model
of Daily CREF Returns

Standardized Residuals

-3

0 100 200 300 400 500

Time

> plot (residuals(ml) ,type='h',ylab='Standardized Residuals')

¥ Chen and Kuan (2006) have shown that the Jarque-Bera test with the residuals from a
GARCH model is no longer approximately chi-square distributed under the null hypothesis
of normal innovations. Their simulation results suggest that, in such cases, the Jarque-Bera
test tends to be liberal; that is, it rejects the normality hypothesis more often than its nomi-
nal significance level. The authors have proposed a modification of the Jarque-Bera test
that retains the chi-square null distribution approximately. Similarly, it can be expected that
the Shapiro-Wilk test may require modification when it is applied to residuals from a
GARCH model, although the problem seems open.
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Exhibit 12.27 QQ Normal Scores Plot of Standardized Residuals from the
Fitted GARCH(1,1) Model of Daily CREF Returns
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Theoretical Quantiles

> win.graph(width=2.5,height=2.5,pointsize=8)
> ggnorm(residuals (ml)); ggline(residuals (ml))

If the GARCH model is correctly specified, then the standardized residuals {’ét}
should be close to independently and identically distributed. The independently and
identically distributed assumption of the innovations can be checked by examining their
sample acf. Recall that the portmanteau statistic equals

m A2
"2 Pk
where p « 18 the lag k autocorrelation of the standardized residuals and n is the sample
size. (Recall that the same statistic is also known as the Box-Pierce statistic and, in a
modified version, the Ljung-Box statistic.) Furthermore, it can be shown that the test
statistic is approximately Xz distributed with m degrees of freedom under the null
hypothesis that the model is correctly specified. This result relies on the fact that the
sample autocorrelations of nonzero lags from an independently and identically distrib-
uted sequence are approximately independent and normally distributed with zero mean
and variance 1/n, and this result holds approximately also for the sample autocorrela-
tions of the standardized residuals if the data are truly generated by a GARCH model of
the same orders as those of the fitted model. However, the portmanteau test does not
have strong power against uncorrelated and yet serially dependent innovations. In fact,
we start out with the assumption that the return data are uncorrelated, so the preceding
test is of little interest.

More useful tests may be devised by studying the autocorrelation structure of the
absolute standardized residuals or the squared standardized residuals Let the lag k auto-
correlation of the absolute standardlzed residuals be denoted by pk | and that of the
squared standardized residuals by pk 5 - Unfortunately, the approximate X dlstnbutlon
w1th m degrees of freedom for the correspondlng portmanteau statistics based on p k1
(p k. 5 ) is no longer valid, the reason being that the estimation of the unknown parame-
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ters induces a nonnegligible effect on the tests. Li and Mak (1994) showed that the Xz
approximate distribution may be preserved by replacing the sum of squared autocorrela-
tions by a quadratic form in the autocorrelations; see also Li (2003). For the absolute
standardized residuals, the test statistic takes the form

m m A A

n z Zqi,j Pi 1P 1 (12.5.2)
i=1j=1

We shall call this modified test statistic the generalized portmanteau test statistic. How-

ever, the ¢’s depend on m, the number of lags, and they are specific to the underlying

true model and so must be estimated from the data. For the squared residuals, the ¢’s

take different values. See Appendix I on page 318 for the formulas for the ¢’s.

We illustrate the generalized portmanteau test with the CREF data. Exhibit 12.28,
plots the sample ACF of the squared standardized residuals from the fitted GARCH(1,1)
model. The (individual) critical limits in the figure are based on the 1/7 nominal vari-
ance under the assumption of independently and identically distributed data. As dis-
cussed above, this nominal value could be very different from the actual variance of the
autocorrelations of the squared residuals even when the model is correctly specified.
Nonetheless, the general impression from the figure is that the squared residuals are
serially uncorrelated.

Exhibit 12.28 Sample ACF of Squared Standardized Residuals from the
GARCH(1,1) Model of the Daily CREF Returns

.05

ACF
0
|

-0.05 0.00

Lag

> acf (residuals (ml) *2,na.action=na.omit)

Exhibit 12.29 displays the p-values of the generalized portmanteau tests with the
squared standardized residuals from the fitted GARCH(1,1) model of the CREF data for
m =1 to 20. All p-values are higher than 5%, suggesting that the squared residuals are
uncorrelated over time, and hence the standardized residuals may be independent.



12.5 Model Diagnostics 305

Exhibit 12.29 Generalized Portmanteau Test p-Values for the Squared
Standardized Residuals for the GARCH(1,1) Model of the
Daily CREF Returns
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Lag

> gBox (ml,method="'squared')

We repeated checking the model using the absolute standardized residuals—see
Exhibits 12.30 and 12.31. The lag 2 autocorrelation of the absolute residuals is signifi-
cant according to the nominal critical limits shown. Furthermore, the generalized port-
manteau tests are significant when m = 2 and 3 and marginally not significant at m = 4.
The sample EACF table (not shown) of the absolute standardized residuals suggests an
AR(2) model for the absolute residuals and hence points to the possibility that the CREF
returns may be identified as a GARCH(1,2) process. However, the fitted GARCH(1,2)
model to the CREF data did not improve the fit, as its AIC was 978.2—much higher
than 969.6, that of the GARCH(1,1) model. Therefore, we conclude that the fitted
GARCH(1,1) model provides a good fit to the CREF data.
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Exhibit 12.30 Sample ACF of the Absolute Standardized Residuals from

ACF

0.00 0.05

-0.10

the GARCH(1,1) Model for the Daily CREF Returns

Lag

> acf (abs(regsiduals(ml)) ,na.action=na.omit)

Exhibit 12.31 Generalized Portmanteau Test p-Values for the Absolute

P-value

1.0

02 04 06 0.8

0.0

Standardized Residuals for the GARCH(1,1) Model of the
Daily CREF Returns

Lag

> gBox (ml,method="'absolute')

Given that the GARCH(1,1) model provides a good fit to the CREF data, we may

use it to forecast the future conditional variances. Exhibit 12.32 shows the within-sam-
ple estimates of the conditional variances, which capture several periods of high volatil-
ity, especially the one at the end of the study period. At the final time point, the squared
return equals 2.159, and the conditional variance is estimated to be 0.4411. These values
combined with Equations (12.3.8) and (12.3.9) can be used to compute the forecasts of
future conditional variances. For example, the one-step-ahead forecast of the condi-
tional variance equals 0.01633 + 0.04414*2.159 + 0.91704*%0.4411 = 0.5161. The
two-step forecast of the conditional variance equals 0.01633 + 0.04414*0.5161 +
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0.91704%0.5161 = 0.5124, and so forth, with the longer lead forecasts eventually
approaching 0.42066, the long-run variance of the model. The conditional variances
may be useful for pricing financial assets through the Black-Scholes formula and calcu-
lation of the value at risk (VaR); see Tsay (2005) and Andersen et al. (2006).

It is interesting to note that the need for incorporating ARCH in the data is also
supported by the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
see Exhibit (12.9), page 283.

Exhibit 12.32 Estimated Conditional Variances of the Daily CREF Returns
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> plot ((fitted(ml) [,1])"2,type="'1"',ylab="'Conditional Variance',
xlab="'t")

12.6 Conditions for the Nonnegativity of the
Conditional Variances

Because the conditional variance Gtzlz— | must be nonnegative, the GARCH parameters
are often constrained to be nonnegative. However, the nonnegativity parameter con-
straints need not be necessary for the nonnegativity of the conditional variances. This
issue was first explored by Nelson and Cao (1992) and more recently by Tsai and Chan
(2006). To better understand the problem, first consider the case of an ARCH(g) model.
Then the conditional variance is given by the formula

2

2 2 2
Olr—1 = @+ O+ 0 o+ F0,r,_, (12.6.1)

Assume that g consecutive returns can take on any arbitrary set of real numbers. If one
of the a’s is negative, say o < 0, then Gt2|t— | will be negative if rtz_ | is sufficiently
large and the other 7’s are sufficiently close to zero. Hence, it is clear that all a’s must be
nonnegative for the conditional variances to be nonnegative. Similarly, by letting the
returns be close to zero, it can be seen that ® must be nonnegative—otherwise the con-
ditional variance may become negative. Thus, it is clear that for an ARCH model, the
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non-negativity of all ARCH coefficients is necessary and sufficient for the conditional
variances Gt2|t_ | to be always nonnegative.

The corresponding problem for a GARCH(p,q) model can be studied by expressing
the GARCH model as an infinite-order ARCH model. The conditional variance process
{Gt2| (— 1} is an ARMA(p,q) model with the squared returns playing the role of the noise
process. Recall that an ARMA(p,q) model can be expressed as an MA(c0) model if all
the roots of the AR characteristic polynomial lie outside the unit circle. Hence, assum-
ing that all the roots of 1 — B;x — Bzx2 —e— Bpxp = 0 have magnitude greater than 1, the
conditional variances satisfy the equation

2 2 2
Ot = O NIyt (12.6.2)

where

P
o = w/|1- 2B, (12.6.3)

i=1
It can be similarly shown that the conditional variances are all nonnegative if and

only if ®* and ;2 0 for all integers j > 1. The coefficients in the ARCH(0) representa-
tion relate to the parameters of the GARCH model through the equality

4" =y, B+y,B . (12.6.4)

If p = 1, then it can be easily checked that y; = By _ for k > g. Thus, y; > 0 for
all j = 1if and only if f; 2 0 and y; 20,..., y, > 0. For higher GARCH order, the situa-
tion is more complex. Let A;, 1 <j < p, be the roots of the characteristic equation

1—[31)6—'--—3,7)5” =0 (12.6.5)

With no loss of generality, we can and shall henceforth assume the convention that
< hyl < < |xp| (12.6.6)

Let i = /=1 and X denote the complex conjugate of A, B(x) = 1 — Bix—-— Bpx”,
and B) be the first derivative of B. We then have the following result.

Result 1: Consider a GARCH(p,q) model where p > 2. Assume A1, that all the roots of
the equation

1-Bpr—Pyr’ =B = 0 (12.6.7)
have magnitude greater than 1, and A2, that none of these roots satisfy the equation
apx o’ =0 (12.6.8)

Then the following hold:

(a) o >0 if and only if ® > 0.
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(b) Assuming the roots Ay,..., A, are distinct, and | <[A,|, then the conditions
given in Equation (12.6.9) are necessary and sufficient for y; > 0 for all positive
integers k:

Ayisreal and A > 1
a(ry)>0 (12.6.9)
v, 20fork = 1,... k"

where k" is the smallest integer greater than or equal to

log(ry) —log[(p - 1)r"]
log(|Aq]) —log(|Ay|)

a(A; w
() , forl<j<p, and r =max (|rj|) (12.6.10)

ri=-
B(l)(k]) 2<j<p

For p =2, the k" defined in Result 1 can be shown to be q + 1; see Theorem 2 of Nelson
and Cao (1992). If the k" defined in Equations (12.6.10) is a negative number, then it
can be seen from the proof given in Tsai and Chan (2006) that y; > O for all positive k.

Tsai and Chan (2006) have also derived some more readily verifiable conditions for
the conditional variances to be always nonnegative.

Result 2: Let the assumptions of Result 1 be satisfied. Then the following hold:

(a) For a GARCH(p,1) model, if Xj is real and kj >1,forj=1,..,p,and o; 20,
then v > 0 for all positive integers k.

(b) For a GARCH(p,1) model, if y; > 0 for all positive integers k, then oy = 0,
P
DN > 0, Ajisreal,and A; > 1.

j=1

(c) For a GARCH(3,1) model, vy, = 0 for all positive integers k if and only if o
> 0 and either of the following cases hold:

Case 1. All the ;s are real numbers, 1; > 1, and XII + X;l + ?»;l >0.

Case2.1;>1,and A, = X3 = |7x2|ei6 = a+ bi, where a and b are real num-
bers, b >0,and 0 <0 < m:

Case 2.1. 0 = 27/r for some integer r > 3, and 1 <A < [A,).

Case 2.2.0 ¢ {2n/r| r=3,4,...}, and |h,|/A; = xy> 1, where x; is the largest real
root of f,, g(x) = 0, and

fr o) = 12 _xsin[(sizn+62)9] + sin[(srizn+61)6] (12.6.11)

where n is the smallest positive integer such that sin((n+1)0) < 0 and sin((n+2)0)
> 0.
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(d) For a GARCH(3,1) model, if 1, = A, = |7u2|eie = a+ bi,where g and b
are real numbers, b > 0, and a > A, > 1, then y; > 0 for all positive integers k.

(e) For a GARCH(4,1) model, if the kj’s are real for 1 <j <4, then a necessary
and sufficient condition for {w, }7=0 to be nonnegative is that o > 0,
At et et 40120, and 2y > 1L
Note that x is the only real root of Equation (12.6.11) that is greater than or equal to 1.
Also, Tsai and Chan (2006) proved that if the ARCH coefficients (a’s) of a
GARCH(p,g) model are all nonnegative, the model has nonnegative conditional vari-
ances if the nonnegativity property holds for the associated GARCH(p,1) models with a
nonnegative o coefficient.

12.7 Some Extensions of the GARCH Model

The GARCH model may be generalized in several directions. First, the GARCH model
assumes that the conditional mean of the time series is zero. Even for financial time
series, this strong assumption need not always hold. In the more general case, the condi-
tional mean structure may be modeled by some ARMA(,v) model, with the white noise
term of the ARMA model modeled by some GARCH(p, ¢) model. Specifically, let {Y,}
be a time series given by (now we switch to using the notation Y, to denote a general
time series)

Y, =¢,Y,_;+--+0,Y,_ 05+e,+0e, [ +---+0 e

t u-t—u vVt—-v
€ = Oyr-1% (12.7.1)
2 2 2 2 2
Oft-1 = ® toge, e +aqet—q+ BIGI—1|I—2+ et chtfph‘fpfl

and where we have used the plus convention in the MA parts of the model. The ARMA
orders can be identified based on the time series {Y,}, whereas the GARCH orders may
be identified based on the squared residuals from the fitted ARMA model. Once the
orders are identified, full maximum likelihood estimation for the ARMA + GARCH
model can be carried out by maximizing the likelihood function as defined in Equation
(12.4.4) on page 298 but with r, there replaced by e, that are recursively computed
according to Equation (12.7.1). The maximum likelihood estimators of the ARMA
parameters are approximately independent of their GARCH counterparts if the innova-
tions €, have a symmetric distribution (for example, a normal or -distribution) and their
standard errors are approximately given by those in the pure ARMA case. Likewise, the
GARCH parameter estimators enjoy distributional results similar to those for the pure
GARCH case. However, the ARMA estimators and the GARCH estimators are corre-
lated if the innovations have a skewed distribution. In the next section, we illustrate the
ARMA + GARCH model with the daily exchange rates of the U.S. dollar to the Hong
Kong dollar.

Another direction of generalization concerns nonlinearity in the volatility process.
For financial data, this is motivated by a possible asymmetric market response that may,
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for example, react more strongly to a negative return than a positive return of the same
magnitude. The idea can be simply illustrated in the setting of an ARCH(1) model,
where the asymmetry can be modeled by specifying that
2 2 . 5
Oji—1 = @+ 0e,_ +ymin(e,_,0) (12.7.2)

Such a model is known as a GJR model—a variant of which allows the threshold to be
unknown and other than 0. See Tsay (2005) for other useful extensions of the GARCH
models.

12.8 Another Example: The Daily USD/HKD Exchange Rates

As an illustration for the ARIMA + GARCH model, we consider the daily USD/HKD
(U.S. dollar to Hong Kong dollar) exchange rate from January 1, 2005 to March 7,
2006, altogether 431 days of data. The returns of the daily exchange rates are shown in
Exhibit 12.33 and appear to be stationary, although volatility clustering is evident in the
plot.

Exhibit 12.33 Daily Returns of USD/HKD Exchange Rate: 1/1/05-3/7/06
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> data (usd.hkd)
> plot (ts(usd.hkdshkrate, freg=1),type='1"',xlab="'Day’',
ylab="'Return')

It is interesting to note that the need for incorporating ARCH in the data is also
supported by the McLeod-Li test applied to the residuals of the AR(1) + outlier model;
see below for further discussion of the additive outlier. Exhibit 12.34 shows that the
tests are all significant when the number of lags of the autocorrelations of the squared
residuals ranges from 1 to 26, displaying strong evidence of conditional heteroscedas-
city.
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Exhibit 12.34 McLeod-Li Test Statistics for the USD/HKD Exchange Rate
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> attach (usd.hkd)
> McLeod.Li.test (arima (hkrate,order=c(1,0,0),
xreg=data.frame (outlierl)))

An AR(1) + GARCH(3,1) model was fitted to the (raw) return data with an additive
outlier one day after July 22, 2005, the date when China revalued the yuan by 2.1% and
adopted a floating-rate system for it. The outlier is shaded in gray in Exhibit 12.33. The
intercept term in the conditional mean function was found to be insignificantly different
from zero and hence is omitted from the model. Thus we take the returns to have zero
mean unconditionally. The fitted model has an AIC = -2070.9, being smallest among
various competing (weakly) stationary models—see Exhibit 12.35. Interestingly, for
lower GARCH orders (p < 2), the fitted models are nonstationary, but the fitted models
are largely stationary when the GARCH order is higher than 2. As the data appear to be
stationary, we choose the AR(1) + GARCH(3,1) model as the final model.

The AR + GARCH models partially reported in Exhibit 12.35 were fitted using the
Proc Autoreg routine in the SAS software.” We used the default option of imposing that
the Nelson-Cao inequality constraints for the GARCH conditional variance process be
nonnegative. However, the inequality constraints so imposed are only necessary and suf-
ficient for the nonnegativity of the conditional variances of a GARCH(p,q) model for p
< 2. For higher-order GARCH models, Proc Autoreg imposes the constraints that (1) y,,
>0, 1 <k <max(g—1,p) + 1 and (2) the nonnegativity of the in-sample conditional
variances; see the SAS 9.1.3 Help and Documentation manual. Hence, higher-order
GARCH models estimated by Proc Autoreg with the Nelson-Cao option need not have
nonnegative conditional variances with probability one.

T Proc Autoreg of SAS has the option of imposing the Nelson-Cao inequality constraint in
the GARCH model, hence it is used here.
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Exhibit 12.35 AIC Values for Various Fitted Models for the Daily Returns of
the USD/HKD Exchange Rate
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For the Hong Kong exchange rate data, the fitted model from Proc Autoreg is listed
in Exhibit 12.37 with the estimated conditional variances shown in Exhibit 12.36. Note
that the GARCH2 (3,) coefficient estimate is negative.

Exhibit 12.36 Estimated Conditional Variances of the Daily Returns of
USD/HKD Exchange Rate from the Fitted
AR(1) + GARCH(3,1) Model
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> plot (ts(usd.hkdsv, freg=1),type='1"',xlab="Day"',
ylab='Conditional Variance')

Since both the intercept and the ARCH coefficient are positive, we can apply part
(c) of Result 2 to check whether or not the conditional variance process defined by the
fitted model is always nonnegative. The characteristic equation 1 — {x — B2x2 - B3x3 =0
admits three roots equal to 1.153728 and —0.483294+1.221474i. Thus A; = 1.153728
and |[A,)/A; = 1.138579. Based on numerical computations, n in Equation (12.6.11) turns
out to be 2 and Equation (12.6.11) has one real root equal to 1.1385751 which is strictly
less than 1.138579 = |A,|/A,. Hence, we can conclude that the fitted model always
results in nonnegative conditional variances.
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Exhibit 12.37 Fitted AR(1) + ARCH(3,1) Model for Daily Returns of
USD/HKD Exchange Rate

Coefficient Estimate Std. error t-ratio p-value
AR1 0.1635 0.005892 21.29 0.0022
ARCHO (0) 2.374x107° 6.93x107° 3.42 0.0006
ARCH1 (aq) 0.2521 0.0277 9.09 <0.0001
GARCH1 (B4) 0.3066 0.0637 4.81 < 0.0001
GARCH2 () —0.09400 0.0391 —2.41 0.0161
GARCHS (B3) 0.5023 0.0305 16.50 < 0.0001
Outlier —0.1255 0.00589 -21.29 < 0.0001

> SAS code: data hkex; infile 'hkrate.dat'; input hkrate;
outlierl=0;
day+1; if day=203 then outlierl=1;
proc autoreg data=hkex;
model hkrate=outlierl /noint nlag=1 garch=(p=3,g=1)
maxiter=200 archtest;
/*hetero outlier /link=linear;*/
output out=a cev=v residual=r