1 Change of variables in \mathbb{R}^n

1 Change of variables

Theorem 1.1

Let (X, \mathscr{A}, μ) be measure space and (Y, \mathscr{B}) be measurable space. Let $g: X \to Y$ be a measurable function. We define the measure ν on Y by:

 $\nu(B) = \mu(g^{-1}(B))$ for all measurable subset $B \subseteq Y$.

 ν is called the transport measure of μ or the pullback measure of μ . Let $f: Y \to \overline{\mathbb{R}}$, then

$$\int_Y f(y)d\nu(y) = \int_X (f \circ g)(x)d\mu(x).$$

Proof .

First suppose $f = \chi_B$. Let $A = g^{-1}(B) \subseteq X$. Then $f \circ g = \chi_A$, and we have

$$\int_{Y} f(y)d\nu(y) = \int_{Y} \chi_{B}(y)d\nu(y) = \nu(B) = \mu(g^{-1}(B)) = \mu(A) = \int_{X} (f \circ g)(x)d\mu(x).$$

Since both sides of this equation are linear in f, the equation holds whenever f is simple. Applying the standard procedure, the equation is then proved for all measurable function f.

Remark .

If (X, \mathscr{A}) be measurable space and (Y, \mathscr{B}, ν) is a measure space. Let $g: X \to Y$ be a bijective function and its inverse is measurable. We define the measure μ on X by: $\mu(A) = \nu(g(A))$, and it follows that

$$\int_Y f(y)d\nu(y) = \int_X (f \circ g)(x)d\mu(x).$$

2 Change of variables in \mathbb{R}^n

This section will be devoted to prove the Change of variables in \mathbb{R}^n theorem. For this we prove two fundamental lemmas. The first called the Factorization of diffeomorphisms lemma and the second is called the volume differential lemma.

Lemma 2.1 Factorization of diffeomorphisms

Let g be a diffeomorphism of open sets in \mathbb{R}^n , for $n \geq 2$. For any point in the domain of g, there is a neighborhood A around that point where g can be expressed as the composition:

$$g_{\uparrow_A} = u \circ v$$

of a diffeomorphism u that fixes some $1 \le m \le n-1$ coordinates of \mathbb{R}^n and another diffeomorphism v that fixes the other n-m coordinates.

Proof .

We have to solve the above equation for the appropriate diffeomorphisms $v: A \to v(A)$ and $u: v(A) \to g(A)$. Let $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^{n-m}$ be the coordinate values. Labelling the first batch and second batch of coordinates with the subscripts "1" and "2" respectively, we expand:

$$g(x,y) = u(v(x,y))$$

= $\left(u_1(v_1(x,y),v_2(x,y)),u_2(v(x,y))\right)$
= $\left(u_1(v_1(x,y),y),u_2(v(x,y))\right)$ since v fixes last coordinates
= $\left(v_1(x,y),u_2(v(x,y))\right)$ since u fixes first coordinates.

Or, succinctly:

$$g_1 = v_1, \quad g_2 = u_2 \circ v$$

The first equation determines the solution function v trivially. The second equation can be inverted by the inverse function theorem:

$$u_2 = g_2 \circ v^{-1} \,,$$

for

$$\mathcal{D}v(x,y) = \begin{pmatrix} \mathcal{D}_1 g_1(x,y) & \mathcal{D}_2 g_1(x,y) \\ 0 & I \end{pmatrix}, \quad \det \mathcal{D}v(x,y) = \det \mathcal{D}_1 g_1(x,y) \neq 0.$$

So given a starting point (x_0, y_0) in the domain of g, we can define v^{-1} on some open set B containing $v(x_0, y_0)$. Then take $A = v^{-1}(B)$.

Lemma 2.2 Volume Differential

Let $g: U \to V$ be a diffeomorphism between open sets in \mathbb{R}^n . Then for all measurable subset $A \subseteq X$,

$$\lambda(g(A)) = \int_{g(A)} d\lambda(x) = \int_{A} |\det \mathcal{D}g(x)| d\lambda(x).$$
(2.1)

2. CHANGE OF VARIABLES IN \mathbb{R}^N

Proof .

First step It suffices to prove the lemma locally. That is, suppose there exists an open cover of U, $\{U_{\alpha}\}$, so that the equation 2.1 holds for measurable A contained inside one of the U_{α} . Then equation 2.1 actually holds for all measurable $A \subseteq U$.

Proof .

By passing to a countable subcover (Lindelöf's theorem), we may assume there are only countably many U_k . Define the disjoint measurable sets $E_k = U_k \setminus \bigcup_{j=1}^{k-1} U_j$, which also cover U. And define the two measures:

$$\mu(A) = \lambda(g(A)), \quad \nu(A) = \int_A |\det \mathcal{D}g(x)| d\lambda(x).$$

Now let $A \subseteq U$ be any measurable set. We have $A \cap E_j \subseteq U_j$, so $\mu(A \cap E_j) = \nu(A \cap E_j)$ by hypothesis. Therefore,

$$\mu(A) = \mu\Big(\bigcup_{j=1}^{+\infty} A \cap E_j\Big) = \sum_{j=1}^{+\infty} \mu(A \cap E_j) = \sum_{j=1}^{+\infty} \nu(A \cap E_j) = \nu(A).$$

Second step Suppose the equation 2.1 holds for two diffeomorphisms g and h, and all measurable sets. Then it holds for the composition diffeomorphism $g \circ h$, and all measurable sets.

Proof .

For any measurable A,

$$\begin{split} \int_{g(h(A))} d\lambda(x) &= \int_{h(A)} |\det \mathcal{D}g(x)| d\lambda(x) \\ &= \int_{A} |(\det \mathcal{D}g) \circ h(x)| \cdot |\det \mathcal{D}h(x)| d\lambda(x) \\ &= \int_{A} |\det \mathcal{D}(g \circ h)(x)| d\lambda(x). \end{split}$$

The second equality follows from 2.2 applied to the diffeomorphism h, which is valid once we know $\lambda(h(B)) = \int_{B} |\det \mathcal{D}h|$ for all measurable B.

Proof of the lemma .

We proceed to prove the lemma by induction, on the dimension n.

1. Case n = 1.

Cover U by a countable set of bounded intervals I_k in \mathbb{R} . By the first reduction, it suffices to prove the lemma for measurable sets contained in each of the interval I_k individually. By the uniqueness of measures, it also suffices to show $\mu = \nu$ only for the intervals [a, b], [a, b[,]a, b] and [a, b[.

In the case of closed interval, this is just the Fundamental Theorem of Calculus:

$$\int_{g([a,b])} d\lambda(x) = |g(b) - g(a)| = |\int_a^b g'(x) d\lambda(x)| = \int_a^b |g'(x)| d\lambda(x).$$

For the last equality, remember that g, being a diffeomorphism, must have a derivative that is positive on all of [a, b] or negative on all of [a, b].

If the interval is not closed, say]a, b[, then we may not be able to apply the Fundamental Theorem directly, but we may still obtain the desired equation by taking limits:

$$\int_{g((a,b))} d\lambda(x) = \lim_{n \to \infty} \int_{g([a+\frac{1}{n}, b-\frac{1}{n}])} d\lambda(x)$$
$$= \lim_{n \to \infty} \int_{[a+\frac{1}{n}, b-\frac{1}{n}]} |g'|(x) d\lambda(x) = \int_{(a,b)} |g'(x)| d\lambda(x).$$

2. General case.

According to 2.1, the diffeomorphism g can always be factored locally (i.e. on a sufficiently small open set around each point $x \in U$) as $g = h_k \circ \ldots \circ h_2 \circ h_1$, where each h_i is a diffeomorphism and fixes one coordinate of \mathbb{R}^n . By reduction 1, it suffices to consider this local case only. By reduction 2, it suffices to prove the lemma for each of the diffeomorphisms h_i .

So suppose g fixes one coordinate. For convenience in notation, assume g fixes the last coordinate: $g(u, v) = (h_v(u), v)$, for $u \in \mathbb{R}^{n-1}, v \in \mathbb{R}$, and h_v are functions on open subsets of \mathbb{R}^{n-1} . Clearly h_v are one-to-one, and most importantly, $\det \mathcal{D}h_v(u) = \det \mathcal{D}g(u, v) \neq 0$.

Next, let a measurable set A be given, and consider its projection and cross-section:

$$V = \{v \in \mathbb{R} : (u, v) \in A\}, \quad U_v = \{u \in \mathbb{R}^{n-1} : (u, v) \in A\}.$$

We now apply Fubini's theorem and the induction hypothesis on the diffeomorphisms h_v :

$$\begin{split} \int_{g(A)} d\lambda(u,v) &= \int_{v \in V} \left(\int_{h_v(U_v)} d\lambda(u) \right) d\lambda(v) \\ &= \int_{v \in V} \left(\int_{u \in U_v} |\det \mathcal{D}h_v(u)| d\lambda(u) \right) d\lambda(v) \\ &= \int_{v \in V} \int_{u \in U_v} |\det \mathcal{D}g(u,v)| d\lambda(u,v) = \int_A |\det \mathcal{D}g(u,v)| d\lambda(u,v). \end{split}$$

Theorem 2.3 Differential change of variables in \mathbb{R}^n

Let $g: X \to Y$ be a diffeomorphism of open sets in \mathbb{R}^n . If $A \subseteq X$ is measurable, and $f: Y \to \mathbb{R}$ is measurable, then

$$\int_{g(A)} f(y) \, dy = \int_A f(g(x)) \, g(dx) = \int_A f(g(x)) \cdot |\det \mathcal{D}g(x)| \, dx \, .$$

(Substitute y = g(x) and $dy = g(dx) = |\det \mathcal{D}g(x)| dx$.)

Proof .

Take $\nu = \lambda$ and $\mu = \nu \circ g$, then

$$\int_Y f(y) d\lambda(y) = \int_X (f \circ g)(x) d(\lambda \circ g)(x).$$

We have $d(\lambda \circ g)(x) = |\det \mathcal{D}g(x)| d\lambda(x)$ from equation, so by 2.2

$$\int_X (f \circ g)(x) \, d(\lambda \circ g)(x) = \int_X (f \circ g)(x) \cdot |\det \mathcal{D}g(x)| d\lambda(x).$$

If we replace f by $f \chi_{g(A)}$, then

$$\int_{g(A)} f(x) d\lambda(x) = \int_A (f \circ g)(x) \cdot |\det \mathcal{D}g(x)| d\lambda(x).$$