1 L^p Spaces

1 L^p Spaces

 (X, \mathcal{A}, μ) will be a fixed measure space.

Definition 1.1

If $0 , we define the space <math>\mathcal{L}^p(\mu)$ to be the set of all measurable functions $f: X \longrightarrow \mathbb{R}$ such that $\int_X |f|^p d\mu < \infty$.

We Remark that the space $\mathcal{L}^1(\mu)$ is the set of all functions which are integrable over X with respect to the measure μ .

If μ is the counting measure on a countable set X, then $\int_X f(x)d\mu(x) = \sum_{x \in X} f(x)$.

Then \mathcal{L}^p is usually denoted ℓ^p , the set of sequences $(x_n)_n$ such that $\sum_{n=1}^{+\infty} |x_n|^p < +\infty$.

Definition 1.2

We define the relation \sim on $\mathcal{L}^p(\mu)$ as follows: we write $f \sim g$ if f = g a.e. on X.

Proposition 1.3

The relation \sim on $\mathcal{L}^p(\mu)$ is an equivalence relation.

Proof.

It is obvious that $f \sim f$ and that, if $f \sim g$, then $g \sim f$. Now, if $f \sim g$ and $g \sim h$, then there exist $A, B \in \mathscr{A}$ with $\mu(A^c) = \mu(B^c) = 0$ such that f = g on A and g = h on B. This implies that $\mu((A \cap B)^c) = 0$ and f = h on $A \cap B$ and, hence, $f \sim h$.

The relation \sim defines equivalence classes. The equivalence class [f] of any $f \in \mathcal{L}^p(\mu)$ is the set of all $g \in \mathcal{L}^p(\mu)$ which are equivalents to $f \colon [f] = \{g \in \mathcal{L}^p(\mu); g \sim f\}$.

Definition 1.4

We define $L^p(\mu) = L^p(\mu) / \sim = \{ [f]; f \in \mathcal{L}^p(\mu) \}.$

Proposition 1.5

For $p \geq 1$, the space $L^p(\mu)$ is an \mathbb{R} vector space.

Proof.

We shall use the trivial inequality $|a+b|^p \le 2^{p-1}(|a|^p+|b|^p)$, for $p \ge 1$ and $a,b \in \mathbb{R}$. For p=1 the statement is obvious. For p>1 the function $y=x^p$; x>0 is convex since $y'' \ge 0$. Therefore $\left(\frac{|a|+|b|}{2}\right)^p \le \frac{|a|^p+|b|^p}{2}$. Assume that f,g are in $L^p(\mu)$. Then both functions f and g are finite a.e. on X and,

Assume that f, g are in $L^p(\mu)$. Then both functions f and g are finite a.e. on X and, hence, f+g is defined a.e. on X. If f+g is any measurable definition of f+g, then, using the above elementary inequality, $|(f+g)(x)|^p \leq 2^{p-1}(|f(x)|^p + |g(x)|^p)$ for a.e. $x \in X$ and, hence,

$$\int_X |f(x) + g(x)|^p d\,\mu(x) \le 2^p \int_X |f(x)|^p d\,\mu(x) + 2^p \int_X |g(x)|^p d\,\mu(x) < +\infty.$$

Therefore $f + g \in L^p(\mu)$.

If
$$f \in L^p(\mu)$$
 and $\lambda \in \mathbb{R}$, then $\int_X |\lambda f(x)|^p d\mu(x) = |\lambda|^p \int_X |f(x)|^p d\mu(x) < +\infty$.
Therefore, $\lambda f \in L^p(\mu)$.

Definition 1.6

Let $f: X \longrightarrow \mathbb{R}$ be measurable. We say that f is essentially bounded over X with respect to the measure μ if there exists $M < +\infty$ such that $|f| \leq M$ a.e. on X.

Proposition 1.7

Let $f: X \longrightarrow \mathbb{R}$ be measurable. If f is essentially bounded over X with respect to the measure μ , then there exists a smallest M with the property: $|f| \leq M$ a.e. on X. This smallest M_0 is characterized by:

- i) $|f| \leq M_0 \ a.e. \ on \ X$,
- ii) $\mu(\{x \in X; |f(x)| > m\}) > 0 \text{ for every } m < M_0.$

Proof.

We set $A = \{M; |f| \leq M \text{ a.e. on } X\}$ and $M_0 = \inf A$. The set A is non-empty by assumption and is included in $[0, +\infty[$ and, hence, M_0 exists. We take a decreasing sequence $(M_n)_n$ in A with $\lim_{n \to +\infty} M_n = M_0$. From $M_n \in A$, the set $A_n = \{x \in X; |f(x)| > M_n\}$ is a null set for every n and, since $\{x \in X; |f(x)| > M_0\} = \bigcup_{n=1}^{+\infty} A_n$, we conclude that $\{x \in X; |f(x)| > M_0\}$ is a null set. Therefore, $|f| \leq M_0$ a.e. on X. If $m < M_0$, then $m \notin A$ and, hence, $\mu(\{x \in X; |f(x)| > m\}) > 0$.

Definition 1.8

Let $f: X \longrightarrow \mathbb{R}$ be a measurable function. If f is essentially bounded, then the smallest M with the property that $|f| \leq M$ a.e. on X is called the essential supremum of f over X with respect to the measure μ and it is denoted by $\operatorname{ess.sup}_X(f)$ or $||f||_{\infty}$. The $||f||_{\infty}$ is characterized by the properties:

- 1. $|f| \leq ||f||_{\infty}$ a.e. on X,
- 2. for every $m < ||f||_{\infty}$, $\mu(\{x \in X; |f(x)| > m\}) > 0$.

1. L^P SPACES 3

Definition 1.9

We define $L^{\infty}(\mu)$ to be the set of all measurable functions $f: X \longrightarrow \mathbb{R}$ which are essentially bounded over X with respect to the measure μ .

Proposition 1.10

The space $L^{\infty}(\mu)$ is a linear space over \mathbb{R} .

Proof.

If f, g in $L^{\infty}(\mu)$, then there exist two subsets $A_1, A_2 \in \mathscr{A}$ such that $\mu(A_1^c) = \mu(A_2^c) = 0$ and $|f| \leq ||f||_{\infty}$ on A_1 and $|g| \leq ||g||_{\infty}$ on A_2 . If we set $A = A_1 \cap A_2$, then we have $\mu(A^c) = 0$ and $|f + g| \leq |f| + |g| \leq ||f||_{\infty} + ||g||_{\infty}$ on A. Hence f + g is essentially bounded over X with respect to the measure μ and

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$$

If $f \in L^{\infty}(\mu)$ and $\lambda \in \mathbb{R}$, then there exists $A \in \mathscr{A}$ with $\mu(A^c) = 0$ such that $|f| \leq ||f||_{\infty}$ on A. Then $|\lambda f| \leq |\lambda| ||f||_{\infty}$ on A. Hence λf is essentially bounded over X with respect to the measure μ and $||\lambda f||_{\infty} = |\lambda|||f||_{\infty}$.

Definition 1.11

Let $1 \le p \le +\infty$. We define $q = \frac{p}{p-1}$, if $1 , <math>q = \infty$ if p = 1 and q = 1, if $p = \infty$. We say that q is the conjugate of p or the dual of p.

Moreover, p, q are related by the symmetric equality

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Lemma 1.12

Let p and q be two conjugate real numbers such that p > 1. Then for all a > 0; b > 0, we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

Proof.

Note that $\varphi(t) = \frac{t^p}{p} + \frac{1}{q} - t$ with $t \ge 0$ has the only minimum at t = 1. It follows that $t \le \frac{t^p}{p} + \frac{1}{q}$.

For
$$t = ab^{-\frac{1}{p-1}}$$
 we have $\frac{a^pb^{-q}}{p} + \frac{1}{q} \ge ab^{-\frac{1}{p-1}}$; and the result follows.

Theorem 1.13 (Hölder's inequalities)

Let $1 \le p, q \le +\infty$ and p, q be conjugate to each other. If $f \in L^p(\mu)$ and $g \in L^q(\mu)$, then $fg \in L^1(\mu)$ and

$$\int_{X} |fg(x)| d\mu(x) \le \left(\int_{X} |f(x)|^{p} d\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |g(x)|^{q} d\mu(x) \right)^{\frac{1}{q}}$$
$$\int_{X} |fg(x)| d\mu(x) \le ||g||_{\infty} \int_{X} |f(x)| d\mu(x), \quad p = 1, q = +\infty.$$

Proof .

We start with the case $1 < p, q < +\infty$. If $\int_X |f(x)|^p d\mu(x) = 0$ or if $\int_X |g(x)|^q d\mu(x) = 0$, then either f = 0 a.e. on X or g = 0 a.e. on X and the inequality is trivially true. So we assume that $A = \int_X |f(x)|^p d\mu(x) > 0$ and $B = \int_X |g(x)|^q d\mu(x) > 0$. Applying lemma 1.12 with $a = \frac{|f|}{A^{\frac{1}{p}}}$, $b = \frac{|g|}{B^{\frac{1}{q}}}$, we have that $\frac{|fg|}{A^{\frac{1}{p}}B^{\frac{1}{q}}} \le \frac{1}{p} \frac{|f|^p}{A} + \frac{1}{q} \frac{|g|^q}{B}$

a.e. on X. Integrating, we find

$$\frac{1}{A^{\frac{1}{p}}B^{\frac{1}{q}}} \int_{X} |fg(x)| d\mu(x) \le \frac{1}{p} + \frac{1}{q} = 1$$

Then

$$\int_{X} |fg(x)| d\,\mu(x) \le \left(\int_{X} |f(x)|^{p} d\,\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |g(x)|^{q} d\,\mu(x) \right)^{\frac{1}{q}}$$

Let now p=1 and $q=+\infty$. Since $|g| \leq ||g||_{\infty}$ a.e. on X, we have that $|fg| \leq |f|||g||_{\infty}$ a.e. on X. Integrating, we find the inequality we want to prove.

Theorem 1.14 (Minkowski's inequality) Let $1 \le p < +\infty$. If f, g in $L^p(\mu)$, then

$$\left(\int_X |f(x) + g(x)|^p d\, \mu(x) \right)^{\frac{1}{p}} \leq \left(\int_X |f(x)|^p d\, \mu(x) \right)^{\frac{1}{p}} + \left(\int_X |g(x)|^p d\, \mu(x) \right)^{\frac{1}{p}}, \quad 1 \leq p < +\infty.$$

Proof.

The case p=1 is trivial. Hence, we assume that 1 . $We write <math>|f+g|^p \le (|f|+|g|)|f+g|^{p-1} = |f||f+g|^{p-1}+|g||f+g|^{p-1}$ a.e. on X and, applying Hölder's inequality, we find

$$\int_{X} |f(x) + g(x)|^{p} d\mu(x) \leq \left(\int_{X} |f(x)|^{p} d\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |f(x) + g(x)|^{(p-1)q} d\mu(x) \right)^{\frac{1}{q}} \\
+ \left(\int_{X} |g(x)|^{p} d\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |f(x) + g(x)|^{(p-1)q} d\mu(x) \right)^{\frac{1}{q}} \\
= \left(\int_{X} |f(x)|^{p} d\mu(x) \right)^{\frac{1}{p}} \left(\int_{X} |f(x) + g(x)|^{p} d\mu(x) \right)^{\frac{1}{q}}$$

Simplifying, we get the inequality we want to prove.

Corollary 1.15

The mapping $f \mapsto ||f||_p = \left(\int_X |f(x)|^p\right)^{\frac{1}{p}}$ is a norm on $L^p(\mu)$ and $(L^p(\mu), ||f||_p)$ is a vector space.

2 Convergence of Functions

Definition 2.1

Let A be an arbitrary non empty set and $(f_n: A \longrightarrow \overline{\mathbb{R}})_n$ be a sequence of functions defined on A.

- 1. We say that the sequence $(f_n)_n$ converges pointwise on A to a function $f: A \longrightarrow \mathbb{R}$ if $\lim_{n \to +\infty} f_n(x) = f(x)$ for every $x \in A$.
 - In case f(x) is finite, this means that: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that: $|f_n(x) f(x)| \leq \varepsilon$; $\forall n \geq N$.
- 2. Let (X, \mathscr{A}, μ) be a measure space. We say that the sequence $(f_n)_n$ converges to f (pointwise) a.e. on $A \in \mathscr{A}$ if there exists a set $B \in \mathscr{A}$, $B \subset A$, such that $\mu(A \setminus B) = 0$ and $(f_n)_n$ converges to f pointwise on B.

Remark.

If $(f_n)_n$ converges to both f and g a.e. on A, then f = g a.e. on A.

2.1 Convergence in L^p

Definition 2.2

Let $(f_n)_n$ be a sequence in $L^p(\mu)$ and $f \in L^p(\mu)$. We say that $(f_n)_n$ converges to f in $L^p(\mu)$ if: $\lim_{n \to +\infty} ||f_n - f||_p = 0$. We say that $(f_n)_n$ is Cauchy in $L^p(\mu)$ if: $\lim_{n,m \to +\infty} ||f_n - f_m||_p = 0$.

Theorem 2.3

If $(f_n)_n$ is Cauchy sequence in $L^p(\mu)$, then there exists $f \in L^p(\mu)$ such that $(f_n)_n$ converges to f in $L^p(\mu)$. (In other words $L^p(\mu)$ is a Banach space.) Moreover, there exists a subsequence $(f_{n_k})_k$ which converges to f a.e. on X.

Corollary 2.4

If $(f_n)_n$ converges to f in $L^p(\mu)$, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on X.

Proof .

a) We consider the first case $1 \le p < +\infty$.

Since each f_n is finite a.e. on X, there exists $A \in \mathscr{A}$ such that $\mu(A^c) = 0$ and all f_n are finite on A. Then for every k, there exists n_k such that $\int_X |f_n(x) - f_m(x)|^p d\mu(x) < \frac{1}{2^{kp}}$ for every $n, m \ge n_k$. Since we may assume that each n_k is large enough, then we can take $n_k < n_{k+1}$ for every k. Therefore, $(f_{n_k})_k$ is a subsequence of $(f_n)_n$.

From the construction of n_k and from the fact that $n_k < n_{k+1}$, we get $\int_X |f_{n_{k+1}}(x) - f_{n_k}(x)|^p d\mu(x) < \frac{1}{2^{kp}}$ for every k. We define the measurable function G by: G =

 $\sum_{k=0}^{+\infty} |f_{n_{k+1}} - f_{n_k}|, \text{ on } A \text{ and } G = 0, \text{ on } A^c.$

Let $G_N = \sum_{k=1}^N |f_{n_{k+1}} - f_{n_k}|$ on A and $G_N = 0$ on A^c , then $\left(\int_X G_N^p(x) d\,\mu(x)\right)^{\frac{1}{p}} \le \sum_{k=1}^N \left(\int_X |f_{n_{k+1}}(x) - f_{n_k}(x)|^p d\,\mu(x)\right)^{\frac{1}{p}} < 1$, by Minkowski's inequality. Since $(G_N)_N$ increases to G on X, we find that $\int_X G^p(x) d\,\mu(x) \le 1$ and, thus, $G < +\infty$ a.e. on X. It follows that the series $\sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ converges for a.e. $x \in A$. Therefore, there exists a $B \in \mathscr{A}$, $B \subset A$ such that $\mu(A \setminus B) = 0$ and $\sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ converges for every $x \in B$. We define the measurable function f by: $f = f_{n_1} + \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})$ on B and B^c .

On B we have $f = f_{n_1} + \lim_{N \to +\infty} \sum_{k=1}^{N} (f_{n_{k+1}} - f_{n_k}) = \lim_{N \to +\infty} f_{n_N}$ and, hence, $(f_{n_k})_k$ converges to f a.e. on X. We, also, have on B

$$|f_{n_N} - f| = |f_{n_N} - f_{n_1} - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})|$$

$$= |\sum_{k=1}^{N-1} (f_{n_{k+1}} - f_{n_k}) - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})|$$

$$\leq \sum_{k=N+1}^{+\infty} |f_{n_{k+1}} - f_{n_k}| \leq G$$

for every N and, hence, $|f_{n_N}-f|^p \leq G^p$ a.e. on X for every N. Since $\int_X G^p(x)d\,\mu(x) < +\infty$ and $\lim_{N\to +\infty} |f_{n_N}-f|=0$ a.e. on X, we apply the Dominated Convergence Theorem we find that

$$\lim_{N \to +\infty} \int_X |f_{n_N}(x) - f(x)|^p d\,\mu(x) = 0$$

If $n_k \longrightarrow +\infty$, we get

$$\lim_{k \to +\infty} \left(\int_X |f_k(x) - f(x)|^p d\mu(x) \right)^{\frac{1}{p}} \leq \lim_{k \to +\infty} \left[\left(\int_X |f_k(x) - f_{n_k}(x)|^p d\mu(x) \right)^{\frac{1}{p}} + \left(\int_Y |f_{n_k}(x) - f(x)|^p d\mu(x) \right)^{\frac{1}{p}} \right] = 0$$

and we conclude that $(f_n)_n$ converges to f in $L^p(\mu)$.

b) Now, let $p = +\infty$. For each n, m we have a set $A_{n,m} \in \mathscr{A}$ such that $\mu(A_{n,m}^c) = 0$ and $|f_n - f_m| \le ||f_n - f_m||_{\infty}$ on $A_{n,m}$.

Let
$$A = \bigcap_{n,m>1} A_{n,m}$$
, then $\mu(A^c) = 0$ and $|f_n - f_m| \le ||f_n - f_m||_{\infty}$ on A for every n, m .

This gives that $(f_n)_n$ is Cauchy sequence for the $|| ||_{\infty}$ on A and, hence, there exists a mapping f such that $(f_n)_n$ converges to f uniformly on A. Now,

$$\lim_{n \to +\infty} \operatorname{ess.sup}_X(f_n - f) \le \lim_{n \to +\infty} \sup_{x \in A} |f_n(x) - f(x)| = 0$$

2.2 Convergence in Measure

Let (X, \mathscr{A}, μ) is a measure space.

Definition 2.5

1. Let $f, f_n: X \longrightarrow \mathbb{R}$ be measurables functions. We say that $(f_n)_n$ converges to f in measure on $A \in \mathscr{A}$ if all f, f_n are finite a.e. on A and for every $\varepsilon > 0$;

$$\lim_{n \to +\infty} \mu(\{x \in A; |f_n(x) - f(x)| \ge \varepsilon) = 0.$$

2. We say that $(f_n)_n$ is a Cauchy sequence in measure on $A \in \mathscr{A}$ if all f_n are finite a.e. on A and for every $\varepsilon > 0$

$$\lim_{n,m\to+\infty} \mu(\{x\in A; |f_n(x)-f_m(x)|\geq \varepsilon\}) = 0.$$

Remarks.

- 1. The uniform convergence yields the convergence in measure
- 2. If we want to be able to write the values $\mu(\{x \in A; |f_n(x) f(x)| \geq \varepsilon\})$ and $\mu(\{x \in A; |f_n(x) f_m(x)| \geq \varepsilon\})$, we first extend the functions $|f_n f|$ and $|f_n f_m|$ outside the set $B \subset A$, where all f, f_n are finites, as functions defined on X and measurables. Then, since $\mu(A \setminus B) = 0$, we get that the above values are equal to the values $\mu(\{x \in B; |f_n(x) f(x)| \geq \varepsilon\})$ and, respectively, $\mu(\{x \in B; |f_n(x) f_m(x)| \geq \varepsilon\})$. Therefore, the actual extensions play no role and, hence, we may for simplicity extend all f, f_n as 0 on $X \setminus B$. Thus the replacement of all f, f_n by 0 on $X \setminus B$ makes all functions finite everywhere on A and does not affect the fact that $(f_n)_n$ converges to f in measure on A or that $(f_n)_n$ is Cauchy in measure on A.
- 3. Let a,b>0 and $A=\{x\in A;\ |f(x)|\geq a\},\ B=\{x\in A;\ |g(x)|\geq b\}$ and $C=\{x\in A;\ |f(x)+g(x)|\geq a+b\}.$ If $x\in C\setminus A$, then |f(x)|< a and $a+b\leq |f(x)+g(x)|\leq |f(x)|+|g(x)|< a+|g(x)|.$ It follows that $\{x\in A;\ |f(x)+g(x)|\geq a+b\}\subset \{x\in A;\ |f(x)|\geq a\}\cup \{x\in A;\ |g(x)|\geq b\}$ and

$$\mu(\{x \in A; |f(x) + g(x)| \ge a + b\}) \le \mu(\{x \in A; |f(x)| \ge a\}) + \mu(\{x \in A; |g(x)| \ge b\}).$$

Proposition 2.6

If $(f_n)_n$ converges to both f and g in measure on A, then f = g a.e. on A.

Proof.

We may assume that all f, g, f_n are finites on A. Applying the above remark we find that:

$$\mu(\lbrace x \in A; |f(x) - g(x)| \ge \varepsilon \rbrace) \le \mu(\lbrace x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{2} \rbrace) + \mu(\lbrace x \in A; |f_n(x) - g(x)| \ge \frac{\varepsilon}{2} \rbrace) \xrightarrow[n \to +\infty]{} 0.$$

This implies that $\mu(\{x \in A; |f(x) - g(x)| \ge \varepsilon\}) = 0$ for every $\varepsilon > 0$. We now write

$${x \in A; \ f(x) \neq g(x)} = \bigcup_{k=1}^{+\infty} {x \in A; \ |f(x) - g(x)| \ge \frac{1}{k}}.$$

Since each term in the union is a null set, we get $\mu(\{x \in A; f(x) \neq g(x)\}) = 0$ and we conclude that f = g a.e. on A.

Proposition 2.7

If $(f_n)_n$ converges to f and $(g_n)_n$ converges to g in measure on A and let $\alpha \in \mathbb{R}$. Then

- a) $(f_n + g_n)_n$ converges to f + g in measure on A.
- b) $(\alpha f_n)_n$ converges to αf in measure on A.
- c) If there exists $M<+\infty$ such that $|f_n|\leq M$ a.e. on A, then $|f|\leq M$ a.e. on A.
- d) If there exists $M < +\infty$ such that $|f_n|, |g_n| \leq M$ a.e. on A, then $(f_n g_n)_n$ converges to fg in measure on A.

Proof.

We may assume that all f, f_n are finites on A.

a) We apply the remark 3

$$\mu(\lbrace x \in A; \ | (f_n + g_n)(x) - (f + g)(x) | \ge \varepsilon \rbrace) \le \mu(\lbrace x \in A; \ | f_n(x) - f(x) | \ge \frac{\varepsilon}{2} \rbrace) + \mu(\lbrace x \in A; \ | g_n(x) - g(x) | \ge \frac{\varepsilon}{2} \rbrace) \underset{n \to +\infty}{\longrightarrow} 0.$$

b) Also for $\alpha \neq 0$,

$$(\{x \in A; |\alpha f_n(x) - \alpha f(x)| \ge \varepsilon\}) = \mu(\{x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{|\alpha|}\}) \xrightarrow[n \to +\infty]{} 0.$$

c) For n large enough

$$\mu(\lbrace x \in A; |f(x)| \ge M + \varepsilon \rbrace) \le \mu(\lbrace x \in A; |f_n(x)| \ge M + \frac{\varepsilon}{2} \rbrace)$$

$$+\mu(\lbrace x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{2} \rbrace)$$

$$= \mu(\lbrace x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{2} \rbrace) \xrightarrow[n \to +\infty]{} 0.$$

Hence, $\mu(\lbrace x \in A; |f(x)| \ge M + \varepsilon \rbrace) = 0$ for every $\varepsilon > 0$.

We have $\{x \in A; |f(x)| > M\} = \bigcup_{k=1}^{+\infty} \{x \in A; |f(x)| \ge M + \frac{1}{k}\}$ and, since all sets of the union are null sets, then $\mu(\{x \in A; |f(x)| > M\}) = 0$. Hence, $|f| \le M$ a.e. on A.

d) Applying the result of c),

$$\mu(\{x \in A; |f_n(x)g_n(x) - f(x)g(x)| \ge \varepsilon\}) \le \mu(\{x \in A; |f_n(x)g_n(x) - f_n(x)g(x)| \ge \frac{\varepsilon}{2}\})$$

$$+\mu(\{x \in A; |f_n(x)g(x) - f(x)g(x)| \ge \frac{\varepsilon}{2}\})$$

$$\le \mu(\{x \in A; |g_n(x) - g(x)| \ge \frac{\varepsilon}{2M}\})$$

$$+\mu(\{x \in A; |f_n(x) - f(x)| \ge \frac{\varepsilon}{2M}\}) \xrightarrow[n \to +\infty]{} 0.$$

Proposition 2.8

Let $(f_n)_n$ be a sequence of measurable functions on a measure space (X, \mathcal{B}, μ) . If μ is finite and the sequence $(f_n)_n$ converges almost everywhere to f, then the sequence $(f_n)_n$ converges in measure to f.

Proof.

Let $\varepsilon > 0$, we set

$$A_n(\varepsilon) = \{x; |f_n(x) - f(x)| \ge \varepsilon\}, \quad B_n(\varepsilon) = \bigcup_{k \ge n} A_k(\varepsilon)$$

and

$$B(\varepsilon) = \bigcap_{n \ge 1} B_n(\varepsilon) = \overline{\lim}_{n \to +\infty} A_n(\varepsilon)$$

If $x \in B(\varepsilon)$, then x belongs to an infinite of $A_n(\varepsilon)$. Then $(f_n(x))_n$ can not converges to f(x) and then $\mu(B(\varepsilon)) = 0$. Moreover since μ is finite $\lim_{n \to +\infty} \mu(B_n(\varepsilon)) = 0$, and since $A_n(\varepsilon) \subset B_n(\varepsilon)$, then $\lim_{n \to +\infty} \mu(A_n(\varepsilon)) = 0$.

Theorem 2.9

If $(f_n)_n$ is Cauchy in measure on A, then there exists $f: X \longrightarrow \mathbb{R}$ such that $(f_n)_n$ converges to f in measure on A. Moreover, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on A.

Corollary 2.10

If $(f_n)_n$ converges to f in measure on A, there is a subsequence $(f_{n_k})_k$ which converges to f a.e. on A.

Proof.

As usual, we assume that all f_n are finites on A. We have, for all k, $\mu(\{x \in A; |f_n(x) - f_m(x)| \ge \frac{1}{2^k}\}) \xrightarrow[n,m \to +\infty]{} 0$. Therefore, there exists n_k such that $\mu(\{x \in A; |f_n(x) - f_m(x)| \ge \frac{1}{2^k}\}) < \frac{1}{2^k}$ for every $n,m \ge n_k$. Since we may assume that each n_k is as large as we like, we may inductively take n_k such that $n_k < n_{k+1}$ for every k. Hence, $(f_{n_k})_k$ is a subsequence of $(f_n)_n$ and, from the construction of n_k and since $n_k < n_{k+1}$, we have that for every k;

$$\mu(\lbrace x \in A; |f_{n_{k+1}}(x) - f_{n_k}(x)| \ge \frac{1}{2^k} \rbrace) < \frac{1}{2^k}$$

Let $E_k = \{x \in A; |f_{n_{k+1}}(x) - f_{n_k}(x)| \ge \frac{1}{2^k}\}$ and, hence, $\mu(E_k) < \frac{1}{2^k}$ for all k. We also define the subsets of A: $F_m = \bigcup_{k=m}^{+\infty} E_k$, $F = \bigcap_{m=1}^{+\infty} F_m = \overline{\lim}_{k \to +\infty} E_k$.

 $\mu(F_m) \le \sum_{k=m}^{+\infty} \mu(E_k) < \sum_{k=m}^{+\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}}$ and, hence, $\mu(F) \le \mu(F_m) < \frac{1}{2^{m-1}}$ for every m. This implies that $\mu(F) = 0$.

If $x \in A \setminus F$, then there exists m such that $x \in A \setminus F_m$, which implies that $x \in A \setminus E_k$ for all $k \ge m$. Therefore, $|f_{n_{k+1}}(x) - f_{n_k}(x)| < \frac{1}{2^k}$ for all $k \ge m$, such that $\sum_{k=m}^{+\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)| < \frac{1}{2^{m-1}}.$ Thus, the series $\sum_{k=m}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ converges and we may define $f: X \longrightarrow \mathbb{R}$ by:

$$f = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k}),$$

on $A \setminus F$ and 0, on $A^c \cup F$.

$$f(x) = f_{n_1}(x) + \lim_{m \to +\infty} \sum_{k=1}^{m} (f_{n_{k+1}}(x) - f_{n_k}(x)) = \lim_{m \to +\infty} f_{n_m}(x)$$

for every $x \in A \setminus F$ and since $\mu(F) = 0$, we get that $(f_{n_k})_k$ converges to f a.e. Now, on $A \setminus F_m$; we have

$$|f_{n_m} - f| = |f_{n_m} - f_{n_1} - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})|$$

$$= |\sum_{k=1}^{m-1} (f_{n_{k+1}} - f_{n_k}) - \sum_{k=1}^{+\infty} (f_{n_{k+1}} - f_{n_k})|$$

$$= \sum_{k=m}^{+\infty} |f_{n_{k+1}} - f_{n_{k+1}}| < \frac{1}{2^{m-1}}.$$

Therefore, $\{x \in A; |f_{n_m}(x) - f(x)| \ge \frac{1}{2^{m-1}}\} \subset F_m$ and, hence,

$$\mu(\lbrace x \in A; |f_{n_m}(x) - f(x)| \ge \frac{1}{2^{m-1}}\rbrace) \le \mu(F_m) < \frac{1}{2^{m-1}}.$$

Take an arbitrary $\varepsilon > 0$ and m_0 large enough such that $\frac{1}{2^{m-1}} \leq \varepsilon$. If $m \geq m_0$, $\{x \in A; |f_{n_m}(x) - f(x)| \geq \varepsilon\} \subset \{x \in A; |f_{n_m}(x) - f(x)| \geq \frac{1}{2^{m-1}}\}$ and, hence,

$$\mu(\lbrace x \in A; |f_{n_m}(x) - f(x)| \ge \varepsilon \rbrace) < \frac{1}{2^{m-1}} \underset{m \to +\infty}{\longrightarrow} 0.$$

This means that $(f_{n_k})_k$ converges to f in measure on A. Since $n_k \xrightarrow[k \to +\infty]{} +\infty$, we have

$$\mu(\lbrace x \in A; |f_k(x) - f(x)| \ge \varepsilon \rbrace) = \mu(\lbrace x \in A; |f_k(x) - f_{n_k}(x)| \ge \frac{\varepsilon}{2} \rbrace) + \mu(\lbrace x \in A; |f_{n_k}(x) - f(x)| \ge \frac{\varepsilon}{2} \rbrace) \underset{k \to +\infty}{\longrightarrow} 0.$$

and we conclude that $(f_n)_n$ converges to f in measure on A.

Example

Consider the sequence $f_1 = \chi_{]0,1[}$, $f_2 = 2\chi_{]0,\frac{1}{2}[}$, $f_3 = 2\chi_{]\frac{1}{2},1[}$, and for all $n \in \mathbb{N}$, $f_{\frac{n(n+1)}{2}+k+1} = n\chi_{]\frac{k}{n+1},\frac{k+1}{n+1}[}$, for $k = 0, \ldots, n$. If $0 < \varepsilon \le 1$, the sequence of the values $\mu(\{x \in]0,1[; |f_n(x)| \ge \varepsilon\}) \xrightarrow[n \to +\infty]{} 0$. Therefore, $(f_n)_n$ converges to 0 in measure on]0,1[. But, as we have already seen, it is not true that $(f_n)_n$ converges to 0 a.e. on]0,1[.