$1 \quad L^{p}$ Spaces

$1 L^{p}$ Spaces

(X, \mathscr{A}, μ) will be a fixed measure space.

Definition 1.1

If $0<p<+\infty$, we define the space $\mathcal{L}^{p}(\mu)$ to be the set of all measurable functions $f: X \longrightarrow \overline{\mathbb{R}}$ such that $\int_{X}|f|^{p} d \mu<\infty$.

We Remark that the space $\mathcal{L}^{1}(\mu)$ is the set of all functions which are integrable over X with respect to the measure μ.
If μ is the counting measure on a countable set X, then $\int_{X} f(x) d \mu(x)=\sum_{x \in X} f(x)$.
Then \mathcal{L}^{p} is usually denoted ℓ^{p}, the set of sequences $\left(x_{n}\right)_{n}$ such that $\sum_{n=1}^{+\infty}\left|x_{n}\right|^{p}<+\infty$.

Definition 1.2

We define the relation \sim on $\mathcal{L}^{p}(\mu)$ as follows: we write $f \sim g$ if $f=g$ a.e. on X.

Proposition 1.3

The relation \sim on $\mathcal{L}^{p}(\mu)$ is an equivalence relation.

Proof .

It is obvious that $f \sim f$ and that, if $f \sim g$, then $g \sim f$. Now, if $f \sim g$ and $g \sim h$, then there exist $A, B \in \mathscr{A}$ with $\mu\left(A^{c}\right)=\mu\left(B^{c}\right)=0$ such that $f=g$ on A and $g=h$ on B. This implies that $\mu\left((A \cap B)^{c}\right)=0$ and $f=h$ on $A \cap B$ and, hence, $f \sim h$.

The relation \sim defines equivalence classes. The equivalence class $[f]$ of any $f \in \mathcal{L}^{p}(\mu)$ is the set of all $g \in \mathcal{L}^{p}(\mu)$ which are equivalents to $f:[f]=\{g \in$ $\left.\mathcal{L}^{p}(\mu) ; g \sim f\right\}$.

Definition 1.4
We define $L^{p}(\mu)=L^{p}(\mu) / \sim=\left\{[f] ; f \in \mathcal{L}^{p}(\mu)\right\}$.

Proposition 1.5

For $p \geq 1$, the space $L^{p}(\mu)$ is an \mathbb{R} vector space.

Proof .

We shall use the trivial inequality $|a+b|^{p} \leq 2^{p-1}\left(|a|^{p}+|b|^{p}\right)$, for $p \geq 1$ and $a, b \in \mathbb{R}$.
For $p=1$ the statement is obvious. For $p>1$ the function $y=x^{p} ; x>0$ is convex since $y^{\prime \prime} \geq 0$. Therefore $\left(\frac{|a|+|b|}{2}\right)^{p} \leq \frac{|a|^{p}+|b|^{p}}{2}$.
Assume that f, g are in $L^{p}(\mu)$. Then both functions f and g are finite a.e. on X and, hence, $f+g$ is defined a.e. on X. If $f+g$ is any measurable definition of $f+g$, then, using the above elementary inequality, $|(f+g)(x)|^{p} \leq 2^{p-1}\left(|f(x)|^{p}+|g(x)|^{p}\right)$ for a.e. $x \in X$ and, hence,

$$
\int_{X}|f(x)+g(x)|^{p} d \mu(x) \leq 2^{p} \int_{X}|f(x)|^{p} d \mu(x)+2^{p} \int_{X}|g(x)|^{p} d \mu(x)<+\infty .
$$

Therefore $f+g \in L^{p}(\mu)$.
If $f \in L^{p}(\mu)$ and $\lambda \in \mathbb{R}$, then $\int_{X}|\lambda f(x)|^{p} d \mu(x)=|\lambda|^{p} \int_{X}|f(x)|^{p} d \mu(x)<+\infty$. Therefore, $\lambda f \in L^{p}(\mu)$.

Definition 1.6

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be measurable. We say that f is essentially bounded over X with respect to the measure μ if there exists $M<+\infty$ such that $|f| \leq M$ a.e. on X.

Proposition 1.7

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be measurable. If f is essentially bounded over X with respect to the measure μ, then there exists a smallest M with the property: $|f| \leq M$ a.e. on X. This smallest M_{0} is characterized by:
i) $|f| \leq M_{0}$ a.e. on X,
ii) $\mu(\{x \in X ;|f(x)|>m\})>0$ for every $m<M_{0}$.

Proof .

We set $A=\{M ;|f| \leq M$ a.e. on $X\}$ and $M_{0}=\inf A$. The set A is non-empty by assumption and is included in $\left[0,+\infty\left[\right.\right.$ and, hence, M_{0} exists. We take a decreasing sequence $\left(M_{n}\right)_{n}$ in A with $\lim _{n \rightarrow+\infty} M_{n}=M_{0}$. From $M_{n} \in A$, the set $A_{n}=\{x \in$ $\left.X ;|f(x)|>M_{n}\right\}$ is a null set for every n and, since $\left\{x \in X ;|f(x)|>M_{0}\right\}=\bigcup_{n=1}^{+\infty} A_{n}$, we conclude that $\left\{x \in X ;|f(x)|>M_{0}\right\}$ is a null set. Therefore, $|f| \leq M_{0}$ a.e. on X. If $m<M_{0}$, then $m \notin A$ and, hence, $\mu(\{x \in X ;|f(x)|>m\})>0$.

Definition 1.8

Let $f: X \longrightarrow \overline{\mathbb{R}}$ be a measurable function. If f is essentially bounded, then the smallest M with the property that $|f| \leq M$ a.e. on X is called the essential supremum of f
 The $\|f\|_{\infty}$ is characterized by the properties:

1. $|f| \leq\|f\|_{\infty}$ a.e. on X,
2. for every $m<\|f\|_{\infty}, \mu(\{x \in X ;|f(x)|>m\})>0$.

Definition 1.9

We define $L^{\infty}(\mu)$ to be the set of all measurable functions $f: X \longrightarrow \overline{\mathbb{R}}$ which are essentially bounded over X with respect to the measure μ.

Proposition 1.10

The space $L^{\infty}(\mu)$ is a linear space over \mathbb{R}.

Proof .

If f, g in $L^{\infty}(\mu)$, then there exist two subsets $A_{1}, A_{2} \in \mathscr{A}$ such that $\mu\left(A_{1}^{c}\right)=\mu\left(A_{2}^{c}\right)=0$ and $|f| \leq\|f\|_{\infty}$ on A_{1} and $|g| \leq\|g\|_{\infty}$ on A_{2}. If we set $A=A_{1} \cap A_{2}$, then we have $\mu\left(A^{c}\right)=0$ and $|f+g| \leq|f|+|g| \leq\|f\|_{\infty}+\|g\|_{\infty}$ on A. Hence $f+g$ is essentially bounded over X with respect to the measure μ and

$$
\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}
$$

If $f \in L^{\infty}(\mu)$ and $\lambda \in \mathbb{R}$, then there exists $A \in \mathscr{A}$ with $\mu\left(A^{c}\right)=0$ such that $|f| \leq\|f\|_{\infty}$ on A. Then $|\lambda f| \leq|\lambda|\|f\|_{\infty}$ on A. Hence λf is essentially bounded over X with respect to the measure μ and $\|\lambda f\|_{\infty}=\left|\lambda\|\mid\| f \|_{\infty}\right.$.

Definition 1.11

Let $1 \leq p \leq+\infty$. We define $q=\frac{p}{p-1}$, if $1<p<\infty, q=\infty$ if $p=1$ and $q=1$, if $p=\infty$. We say that q is the conjugate of p or the dual of p.
Moreover, p, q are related by the symmetric equality

$$
\frac{1}{p}+\frac{1}{q}=1
$$

Lemma 1.12

Let p and q be two conjugate real numbers such that $p>1$. Then for all $a>0 ; b>0$, we have

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Proof .
Note that $\varphi(t)=\frac{t^{p}}{p}+\frac{1}{q}-t$ with $t \geq 0$ has the only minimum at $t=1$. It follows that $t \leq \frac{t^{p}}{p}+\frac{1}{q}$.
For $t=a b^{-\frac{1}{p-1}}$ we have $\frac{a^{p} b^{-q}}{p}+\frac{1}{q} \geq a b^{-\frac{1}{p-1}}$; and the result follows.
Theorem 1.13 (Hölder's inequalities)
Let $1 \leq p, q \leq+\infty$ and p, q be conjugate to each other. If $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$, then $f g \in L^{1}(\mu)$ and

$$
\begin{aligned}
& \int_{X}|f g(x)| d \mu(x) \leq\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}\left(\int_{X}|g(x)|^{q} d \mu(x)\right)^{\frac{1}{q}} \\
& \int_{X}|f g(x)| d \mu(x) \leq\|g\|_{\infty} \int_{X}|f(x)| d \mu(x), \quad p=1, q=+\infty
\end{aligned}
$$

Proof .

We start with the case $1<p, q<+\infty$. If $\int_{X}|f(x)|^{p} d \mu(x)=0$ or if $\int_{X}|g(x)|^{q} d \mu(x)=$ 0 , then either $f=0$ a.e. on X or $g=0$ a.e. on X and the inequality is trivially true. So we assume that $A=\int_{X}|f(x)|^{p} d \mu(x)>0$ and $B=\int_{X}|g(x)|^{q} d \mu(x)>0$. Applying lemma 1.12 with $a=\frac{|f|}{A^{\frac{1}{p}}}, b=\frac{|g|}{B^{\frac{1}{q}}}$, we have that

$$
\frac{|f g|}{A^{\frac{1}{p}} B^{\frac{1}{q}}} \leq \frac{1}{p} \frac{|f|^{p}}{A}+\frac{1}{q} \frac{|g|^{q}}{B}
$$

a.e. on X. Integrating, we find

$$
\frac{1}{A^{\frac{1}{p}} B^{\frac{1}{q}}} \int_{X}|f g(x)| d \mu(x) \leq \frac{1}{p}+\frac{1}{q}=1
$$

Then

$$
\int_{X}|f g(x)| d \mu(x) \leq\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}\left(\int_{X}|g(x)|^{q} d \mu(x)\right)^{\frac{1}{q}}
$$

Let now $p=1$ and $q=+\infty$. Since $|g| \leq\|g\|_{\infty}$ a.e. on X, we have that $|f g| \leq|f|\|g\|_{\infty}$ a.e. on X. Integrating, we find the inequality we want to prove.

Theorem 1.14 (Minkowski's inequality)
Let $1 \leq p<+\infty$. If f, g in $L^{p}(\mu)$, then

$$
\left(\int_{X}|f(x)+g(x)|^{p} d \mu(x)\right)^{\frac{1}{p}} \leq\left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}+\left(\int_{X}|g(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}, \quad 1 \leq p<+\infty .
$$

Proof .
The case $p=1$ is trivial. Hence, we assume that $1<p<+\infty$.
We write $|f+g|^{p} \leq(|f|+|g|)|f+g|^{p-1}=|f||f+g|^{p-1}+|g||f+g|^{p-1}$ a.e. on X and, applying Hölder's inequality, we find

$$
\begin{aligned}
\int_{X}|f(x)+g(x)|^{p} d \mu(x) \leq & \left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}\left(\int_{X}|f(x)+g(x)|^{(p-1) q} d \mu(x)\right)^{\frac{1}{q}} \\
& +\left(\int_{X}|g(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}\left(\int_{X}|f(x)+g(x)|^{(p-1) q} d \mu(x)\right)^{\frac{1}{q}} \\
= & \left(\int_{X}|f(x)|^{p} d \mu(x)\right)^{\frac{1}{p}}\left(\int_{X}|f(x)+g(x)|^{p} d \mu(x)\right)^{\frac{1}{q}}
\end{aligned}
$$

Simplifying, we get the inequality we want to prove.

Corollary 1.15

The mapping $f \longmapsto\|f\|_{p}=\left(\int_{X}|f(x)|^{p}\right)^{\frac{1}{p}}$ is a norm on $L^{p}(\mu)$ and $\left(L^{p}(\mu),\| \|_{p}\right)$ is a vector space.

2 Convergence of Functions

Definition 2.1

Let A be an arbitrary non empty set and $\left(f_{n}: A \longrightarrow \overline{\mathbb{R}}\right)_{n}$ be a sequence of functions defined on A.

1. We say that the sequence $\left(f_{n}\right)_{n}$ converges pointwise on A to a function $f: A \longrightarrow$ $\overline{\mathbb{R}}$ if $\lim _{n \rightarrow+\infty} f_{n}(x)=f(x)$ for every $x \in A$.
In case $f(x)$ is finite, this means that: $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that: $\mid f_{n}(x)-$ $f(x) \mid \leq \varepsilon ; \quad \forall n \geq N$.
2. Let (X, \mathscr{A}, μ) be a measure space. We say that the sequence $\left(f_{n}\right)_{n}$ converges to f (pointwise) a.e. on $A \in \mathscr{A}$ if there exists a set $B \in \mathscr{A}, B \subset A$, such that $\mu(A \backslash B)=0$ and $\left(f_{n}\right)_{n}$ converges to f pointwise on B.

Remark .

If $\left(f_{n}\right)_{n}$ converges to both f and g a.e. on A, then $f=g$ a.e. on A.

2.1 Convergence in L^{p}

Definition 2.2

Let $\left(f_{n}\right)_{n}$ be a sequence in $L^{p}(\mu)$ and $f \in L^{p}(\mu)$. We say that $\left(f_{n}\right)_{n}$ converges to f in $L^{p}(\mu)$ if: $\lim _{n \rightarrow+\infty}\left\|f_{n}-f\right\|_{p}=0$.
We say that $\left(f_{n}\right)_{n}$ is Cauchy in $L^{p}(\mu)$ if: $\lim _{n, m \rightarrow+\infty}\left\|f_{n}-f_{m}\right\|_{p}=0$.

Theorem 2.3

If $\left(f_{n}\right)_{n}$ is Cauchy sequence in $L^{p}(\mu)$, then there exists $f \in L^{p}(\mu)$ such that $\left(f_{n}\right)_{n}$ converges to f in $L^{p}(\mu)$. (In other words $L^{p}(\mu)$ is a Banach space.) Moreover, there exists a subsequence $\left(f_{n_{k}}\right)_{k}$ which converges to f a.e. on X.

Corollary 2.4
If $\left(f_{n}\right)_{n}$ converges to f in $L^{p}(\mu)$, there is a subsequence $\left(f_{n_{k}}\right)_{k}$ which converges to f a.e. on X.

Proof .
a) We consider the first case $1 \leq p<+\infty$.

Since each f_{n} is finite a.e. on X, there exists $A \in \mathscr{A}$ such that $\mu\left(A^{c}\right)=0$ and all f_{n} are finite on A. Then for every k, there exists n_{k} such that $\int_{X}\left|f_{n}(x)-f_{m}(x)\right|^{p} d \mu(x)<\frac{1}{2^{k p}}$ for every $n, m \geq n_{k}$. Since we may assume that each n_{k} is large enough, then we can take $n_{k}<n_{k+1}$ for every k. Therefore, $\left(f_{n_{k}}\right)_{k}$ is a subsequence of $\left(f_{n}\right)_{n}$.
From the construction of n_{k} and from the fact that $n_{k}<n_{k+1}$, we get $\int_{X} \mid f_{n_{k+1}}(x)-$ $\left.f_{n_{k}}(x)\right|^{p} d \mu(x)<\frac{1}{2^{k p}}$ for every k. We define the measurable function G by: $G=$ $\sum_{k=1}^{+\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right|$, on A and $G=0$, on A^{c}.

Let $G_{N}=\sum_{k=1}^{N}\left|f_{n_{k+1}}-f_{n_{k}}\right|$ on A and $G_{N}=0$ on A^{c}, then $\left(\int_{X} G_{N}^{p}(x) d \mu(x)\right)^{\frac{1}{p}} \leq$ $\sum_{k=1}^{N}\left(\int_{X}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}}<1$, by Minkowski's inequality. Since $\left(G_{N}\right)_{N}$ increases to G on X, we find that $\int_{X} G^{p}(x) d \mu(x) \leq 1$ and, thus, $G<+\infty$ a.e. on X. It follows that the series $\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}(x)-f_{n_{k}}(x)\right)$ converges for a.e. $x \in A$. Therefore, there exists a $B \in \mathscr{A}, B \subset A$ such that $\mu(A \backslash B)=0$ and $\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}(x)-f_{n_{k}}(x)\right)$ converges for every $x \in B$. We define the measurable function f by: $f=f_{n_{1}}+$ $\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)$ on B and 0 on B^{c}.
On B we have $f=f_{n_{1}}+\lim _{N \rightarrow+\infty} \sum_{k=1}^{N}\left(f_{n_{k+1}}-f_{n_{k}}\right)=\lim _{N \rightarrow+\infty} f_{n_{N}}$ and, hence, $\left(f_{n_{k}}\right)_{k}$ converges to f a.e. on X. We, also, have on B

$$
\begin{aligned}
\left|f_{n_{N}}-f\right| & =\left|f_{n_{N}}-f_{n_{1}}-\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right| \\
& =\left|\sum_{k=1}^{N-1}\left(f_{n_{k+1}}-f_{n_{k}}\right)-\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right| \\
& \leq \sum_{k=N+1}^{+\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| \leq G
\end{aligned}
$$

for every N and, hence, $\left|f_{n_{N}}-f\right|^{p} \leq G^{p}$ a.e. on X for every N. Since $\int_{X} G^{p}(x) d \mu(x)<$ $+\infty$ and $\lim _{N \rightarrow+\infty}\left|f_{n_{N}}-f\right|=0$ a.e. on X, we apply the Dominated Convergence Theorem we find that

$$
\lim _{N \rightarrow+\infty} \int_{X}\left|f_{n_{N}}(x)-f(x)\right|^{p} d \mu(x)=0
$$

If $n_{k} \longrightarrow+\infty$, we get

$$
\begin{aligned}
\lim _{k \rightarrow+\infty}\left(\int_{X}\left|f_{k}(x)-f(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}} \leq & \lim _{k \rightarrow+\infty}\left[\left(\int_{X}\left|f_{k}(x)-f_{n_{k}}(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}}\right. \\
& \left.+\left(\int_{X}\left|f_{n_{k}}(x)-f(x)\right|^{p} d \mu(x)\right)^{\frac{1}{p}}\right]=0
\end{aligned}
$$

and we conclude that $\left(f_{n}\right)_{n}$ converges to f in $L^{p}(\mu)$.
b) Now, let $p=+\infty$. For each n, m we have a set $A_{n, m} \in \mathscr{A}$ such that $\mu\left(A_{n, m}^{c}\right)=0$ and $\left|f_{n}-f_{m}\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}$ on $A_{n, m}$.
Let $A=\bigcap_{n, m \geq 1} A_{n, m}$, then $\mu\left(A^{c}\right)=0$ and $\left|f_{n}-f_{m}\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty}$ on A for every n, m.
This gives that $\left(f_{n}\right)_{n}$ is Cauchy sequence for the $\left\|\|_{\infty}\right.$ on A and, hence, there exists a mapping f such that $\left(f_{n}\right)_{n}$ converges to f uniformly on A. Now,

$$
\lim _{n \rightarrow+\infty} \operatorname{ess}^{\sup } \sup _{X}\left(f_{n}-f\right) \leq \lim _{n \rightarrow+\infty} \operatorname{Sup}_{x \in A}\left|f_{n}(x)-f(x)\right|=0
$$

2.2 Convergence in Measure

Let (X, \mathscr{A}, μ) is a measure space.

Definition 2.5

1. Let $f, f_{n}: X \longrightarrow \overline{\mathbb{R}}$ be measurables functions. We say that $\left(f_{n}\right)_{n}$ converges to f in measure on $A \in \mathscr{A}$ if all f, f_{n} are finite a.e. on A and for every $\varepsilon>0$;

$$
\lim _{n \rightarrow+\infty} \mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right)=0\right.
$$

2. We say that $\left(f_{n}\right)_{n}$ is a Cauchy sequence in measure on $A \in \mathscr{A}$ if all f_{n} are finite a.e. on A and for every $\varepsilon>0$

$$
\lim _{n, m \rightarrow+\infty} \mu\left(\left\{x \in A ;\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}\right)=0
$$

Remarks .

1. The uniform convergence yields the convergence in measure
2. If we want to be able to write the values $\mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)$ and $\mu\left(\left\{x \in A ;\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}\right)$, we first extend the functions $\left|f_{n}-f\right|$ and $\left|f_{n}-f_{m}\right|$ outside the set $B \subset A$, where all f, f_{n} are finites, as functions defined on X and measurables. Then, since $\mu(A \backslash B)=0$, we get that the above values are equal to the values $\mu\left(\left\{x \in B ;\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)$ and, respectively, $\mu\left(\left\{x \in B ;\left|f_{n}(x)-f_{m}(x)\right| \geq \varepsilon\right\}\right)$. Therefore, the actual extensions play no role and, hence, we may for simplicity extend all f, f_{n} as 0 on $X \backslash B$. Thus the replacement of all f, f_{n} by 0 on $X \backslash B$ makes all functions finite everywhere on A and does not affect the fact that $\left(f_{n}\right)_{n}$ converges to f in measure on A or that $\left(f_{n}\right)_{n}$ is Cauchy in measure on A.
3. Let $a, b>0$ and $A=\{x \in A ;|f(x)| \geq a\}, B=\{x \in A ;|g(x)| \geq b\}$ and $C=\{x \in A ;|f(x)+g(x)| \geq a+b\}$. If $x \in C \backslash A$, then $|f(x)|<a$ and $a+b \leq|f(x)+g(x)| \leq|f(x)|+|g(x)|<a+|g(x)|$. It follows that $\{x \in A ;|f(x)+g(x)| \geq a+b\} \subset\{x \in A ;|f(x)| \geq a\} \cup\{x \in A ;|g(x)| \geq b\}$ and

$$
\begin{aligned}
\mu(\{x \in A ;|f(x)+g(x)| \geq a+b\}) \leq & \mu(\{x \in A ;|f(x)| \geq a\}) \\
& +\mu(\{x \in A ;|g(x)| \geq b\}) .
\end{aligned}
$$

Proposition 2.6

If $\left(f_{n}\right)_{n}$ converges to both f and g in measure on A, then $f=g$ a.e. on A.

Proof .

We may assume that all f, g, f_{n} are finites on A. Applying the above remark we find that:

$$
\begin{aligned}
\mu(\{x \in A ;|f(x)-g(x)| \geq \varepsilon\}) \leq & \mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \\
& +\mu\left(\left\{x \in A ;\left|f_{n}(x)-g(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0
\end{aligned}
$$

This implies that $\mu(\{x \in A ;|f(x)-g(x)| \geq \varepsilon\})=0$ for every $\varepsilon>0$. We now write

$$
\{x \in A ; f(x) \neq g(x)\}=\bigcup_{k=1}^{+\infty}\left\{x \in A ;|f(x)-g(x)| \geq \frac{1}{k}\right\}
$$

Since each term in the union is a null set, we get $\mu(\{x \in A ; f(x) \neq g(x)\})=0$ and we conclude that $f=g$ a.e. on A.

Proposition 2.7

If $\left(f_{n}\right)_{n}$ converges to f and $\left(g_{n}\right)_{n}$ converges to g in measure on A and let $\alpha \in \mathbb{R}$. Then
a) $\left(f_{n}+g_{n}\right)_{n}$ converges to $f+g$ in measure on A.
b) $\left(\alpha f_{n}\right)_{n}$ converges to αf in measure on A.
c) If there exists $M<+\infty$ such that $\left|f_{n}\right| \leq M$ a.e. on A, then $|f| \leq M$ a.e. on A.
d) If there exists $M<+\infty$ such that $\left|f_{n}\right|,\left|g_{n}\right| \leq M$ a.e. on A, then $\left(f_{n} g_{n}\right)_{n}$ converges to $f g$ in measure on A.

Proof .

We may assume that all f, f_{n} are finites on A.
a) We apply the remark 3
$\mu\left(\left\{x \in A ;\left|\left(f_{n}+g_{n}\right)(x)-(f+g)(x)\right| \geq \varepsilon\right\}\right) \leq \mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2}\right\}\right)$

$$
+\mu\left(\left\{x \in A ;\left|g_{n}(x)-g(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
$$

b) Also for $\alpha \neq 0$,

$$
\left(\left\{x \in A ;\left|\alpha f_{n}(x)-\alpha f(x)\right| \geq \varepsilon\right\}\right)=\mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{|\alpha|}\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
$$

c) For n large enough

$$
\begin{aligned}
\mu(\{x \in A ;|f(x)| \geq M+\varepsilon\}) \leq & \mu\left(\left\{x \in A ;\left|f_{n}(x)\right| \geq M+\frac{\varepsilon}{2}\right\}\right) \\
& +\mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \\
= & \mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0
\end{aligned}
$$

Hence, $\mu(\{x \in A ;|f(x)| \geq M+\varepsilon\})=0$ for every $\varepsilon>0$.
We have $\{x \in A ;|f(x)|>M\}=\bigcup_{k=1}^{+\infty}\left\{x \in A ;|f(x)| \geq M+\frac{1}{k}\right\}$ and, since all sets of the union are null sets, then $\mu(\{x \in A ;|f(x)|>M\})=0$. Hence, $|f| \leq M$ a.e. on A.
d) Applying the result of c),

$$
\begin{aligned}
\mu\left(\left\{x \in A ;\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \geq \varepsilon\right\}\right) \leq & \mu\left(\left\{x \in A ;\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \\
& +\mu\left(\left\{x \in A ;\left|f_{n}(x) g(x)-f(x) g(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \\
\leq & \mu\left(\left\{x \in A ;\left|g_{n}(x)-g(x)\right| \geq \frac{\varepsilon}{2 M}\right\}\right) \\
& +\mu\left(\left\{x \in A ;\left|f_{n}(x)-f(x)\right| \geq \frac{\varepsilon}{2 M}\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0 .
\end{aligned}
$$

Proposition 2.8

Let $\left(f_{n}\right)_{n}$ be a sequence of measurable functions on a measure space (X, \mathcal{B}, μ). If μ is finite and the sequence $\left(f_{n}\right)_{n}$ converges almost everywhere to f, then the sequence $\left(f_{n}\right)_{n}$ converges in measure to f.

Proof .

Let $\varepsilon>0$, we set

$$
A_{n}(\varepsilon)=\left\{x ;\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}, \quad B_{n}(\varepsilon)=\bigcup_{k \geq n} A_{k}(\varepsilon)
$$

and

$$
B(\varepsilon)=\bigcap_{n \geq 1} B_{n}(\varepsilon)=\overline{\lim }_{n \rightarrow+\infty} A_{n}(\varepsilon)
$$

If $x \in B(\varepsilon)$, then x belongs to an infinite of $A_{n}(\varepsilon)$. Then $\left(f_{n}(x)\right)_{n}$ can not converges to $f(x)$ and then $\mu(B(\varepsilon))=0$. Moreover since μ is finite $\lim _{n \longrightarrow+\infty} \mu\left(B_{n}(\varepsilon)\right)=0$, and since $A_{n}(\varepsilon) \subset B_{n}(\varepsilon)$, then $\lim _{n \longrightarrow+\infty} \mu\left(A_{n}(\varepsilon)\right)=0$.

Theorem 2.9

If $\left(f_{n}\right)_{n}$ is Cauchy in measure on A, then there exists $f: X \longrightarrow \overline{\mathbb{R}}$ such that $\left(f_{n}\right)_{n}$ converges to f in measure on A. Moreover, there is a subsequence $\left(f_{n_{k}}\right)_{k}$ which converges to f a.e. on A.

Corollary 2.10

If $\left(f_{n}\right)_{n}$ converges to f in measure on A, there is a subsequence $\left(f_{n_{k}}\right)_{k}$ which converges to f a.e. on A.

Proof .

As usual, we assume that all f_{n} are finites on A. We have, for all $k, \mu\left(\left\{x \in A ; \mid f_{n}(x)-\right.\right.$ $\left.\left.f_{m}(x) \left\lvert\, \geq \frac{1}{2^{k}}\right.\right\}\right) \underset{n, m \rightarrow+\infty}{\longrightarrow} 0$. Therefore, there exists n_{k} such that $\mu\left(\left\{x \in A ; \mid f_{n}(x)-\right.\right.$ $\left.\left.f_{m}(x) \left\lvert\, \geq \frac{1}{2^{k}}\right.\right\}\right)<\frac{1}{2^{k}}$ for every $n, m \geq n_{k}$. Since we may assume that each n_{k} is as large as we like, we may inductively take n_{k} such that $n_{k}<n_{k+1}$ for every k. Hence, $\left(f_{n_{k}}\right)_{k}$ is a subsequence of $\left(f_{n}\right)_{n}$ and, from the construction of n_{k} and since $n_{k}<n_{k+1}$, we have that for every k;

$$
\mu\left(\left\{x \in A ;\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right| \geq \frac{1}{2^{k}}\right\}\right)<\frac{1}{2^{k}}
$$

Let $E_{k}=\left\{x \in A ;\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right| \geq \frac{1}{2^{k}}\right\}$ and, hence, $\mu\left(E_{k}\right)<\frac{1}{2^{k}}$ for all k. We also define the subsets of $A: F_{m}=\bigcup_{k=m}^{+\infty} E_{k}, F=\bigcap_{m=1}^{+\infty} F_{m}=\overline{\lim }_{k \rightarrow+\infty} E_{k}$.
$\mu\left(F_{m}\right) \leq \sum_{k=m}^{+\infty} \mu\left(E_{k}\right)<\sum_{k=m}^{+\infty} \frac{1}{2^{k}}=\frac{1}{2^{m-1}}$ and, hence, $\mu(F) \leq \mu\left(F_{m}\right)<\frac{1}{2^{m-1}}$ for every m. This implies that $\mu(F)=0$.

If $x \in A \backslash F$, then there exists m such that $x \in A \backslash F_{m}$, which implies that $x \in A \backslash E_{k}$ for all $k \geq m$. Therefore, $\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|<\frac{1}{2^{k}}$ for all $k \geq m$, such that $\sum_{k=m}^{+\infty}\left|f_{n_{k+1}}(x)-f_{n_{k}}(x)\right|<\frac{1}{2^{m-1}}$. Thus, the series $\sum_{k=m}^{+\infty}\left(f_{n_{k+1}}(x)-f_{n_{k}}(x)\right)$ converges and we may define $f: X \longrightarrow \overline{\mathbb{R}}$ by:

$$
f=f_{n_{1}}(x)+\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right),
$$

on $A \backslash F$ and 0 , on $A^{c} \cup F$.

$$
f(x)=f_{n_{1}}(x)+\lim _{m \rightarrow+\infty} \sum_{k=1}^{m}\left(f_{n_{k+1}}(x)-f_{n_{k}}(x)\right)=\lim _{m \rightarrow+\infty} f_{n_{m}}(x)
$$

for every $x \in A \backslash F$ and since $\mu(F)=0$, we get that $\left(f_{n_{k}}\right)_{k}$ converges to f a.e.
Now, on $A \backslash F_{m}$; we have

$$
\begin{aligned}
\left|f_{n_{m}}-f\right| & =\left|f_{n_{m}}-f_{n_{1}}-\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right| \\
& =\left|\sum_{k=1}^{m-1}\left(f_{n_{k+1}}-f_{n_{k}}\right)-\sum_{k=1}^{+\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right)\right|
\end{aligned}
$$

$$
=\sum_{k=m}^{+\infty}\left|f_{n_{k+1}}-f_{n_{k+1}}\right|<\frac{1}{2^{m-1}} .
$$

Therefore, $\left\{x \in A ;\left|f_{n_{m}}(x)-f(x)\right| \geq \frac{1}{2^{m-1}}\right\} \subset F_{m}$ and, hence,

$$
\mu\left(\left\{x \in A ;\left|f_{n_{m}}(x)-f(x)\right| \geq \frac{1}{2^{m-1}}\right\}\right) \leq \mu\left(F_{m}\right)<\frac{1}{2^{m-1}}
$$

Take an arbitrary $\varepsilon>0$ and m_{0} large enough such that $\frac{1}{2^{m-1}} \leq \varepsilon$. If $m \geq m_{0}$, $\left\{x \in A ;\left|f_{n_{m}}(x)-f(x)\right| \geq \varepsilon\right\} \subset\left\{x \in A ;\left|f_{n_{m}}(x)-f(x)\right| \geq \frac{1}{2^{m-1}}\right\}$ and, hence,

$$
\mu\left(\left\{x \in A ;\left|f_{n_{m}}(x)-f(x)\right| \geq \varepsilon\right\}\right)<\frac{1}{2^{m-1}} \underset{m \rightarrow+\infty}{\longrightarrow} 0 .
$$

This means that $\left(f_{n_{k}}\right)_{k}$ converges to f in measure on A. Since $n_{k} \underset{k \rightarrow+\infty}{\longrightarrow}+\infty$, we have

$$
\begin{aligned}
\mu\left(\left\{x \in A ;\left|f_{k}(x)-f(x)\right| \geq \varepsilon\right\}\right)= & \mu\left(\left\{x \in A ;\left|f_{k}(x)-f_{n_{k}}(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \\
& +\mu\left(\left\{x \in A ;\left|f_{n_{k}}(x)-f(x)\right| \geq \frac{\varepsilon}{2}\right\}\right) \underset{k \rightarrow+\infty}{\longrightarrow} 0
\end{aligned}
$$

and we conclude that $\left(f_{n}\right)_{n}$ converges to f in measure on A.

Example .

Consider the sequence $f_{1}=\chi_{] 0,1[}, f_{2}=2 \chi_{] 0, \frac{1}{2}}\left[, f_{3}=2 \chi_{\left[\frac{1}{2}, 1\right]}\right.$, and for all $n \in \mathbb{N}$, $f_{\frac{n(n+1)}{2}+k+1}=n \chi_{]_{n+1}^{n+1}, \frac{k+1}{n+1}}$, for $k=0, \ldots, n$. If $0<\varepsilon \leq 1$, the sequence of the values $\mu\left(\{x \in] 0,1\left[;\left|f_{n}(x)\right| \geq \varepsilon\right\}\right) \underset{n \rightarrow+\infty}{\longrightarrow} 0$. Therefore, $\left(f_{n}\right)_{n}$ converges to 0 in measure on $] 0,1\left[\right.$. But, as we have already seen, it is not true that $\left(f_{n}\right)_{n}$ converges to 0 a.e. on]0, 1 [.

