
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

J. Math. Anal. Appl. 414 (2014) 734–741

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

The λ-function in JB∗-triples

Haifa M. Tahlawi, Akhlaq A. Siddiqui, Fatmah B. Jamjoom ∗

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455-5, Riyadh 11451,
Saudi Arabia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2013
Available online 15 January 2014
Submitted by Richard M. Aron

Keywords:
λ-function
JB∗-triple
BP-quasi-invertible element

We discuss the λ-function in the general setting of JB∗-triples. Several results
connecting the λ-function with the distance of a vector to the Brown–Pedersen’s
quasi-invertible elements and extreme convex decompositions have been obtained for
JB∗-triples; these include JB∗-triple analogues of some related C∗-algebra results
due to M. Rørdam, L. Brown and G. Pedersen.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article
under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

It has long been realized that the underlying structure making several interesting results on C∗-algebras
hold is not the presence of an associative product xy but the presence of the Jordan product x ◦ y :=
1
2 (xy + yx) or the Jordan triple product {xyz} := 1

2 (xy∗z + zy∗x) (cf. [5,16]). This provided one of the
stimuli for the development of Jordan product or Jordan triple product generalizations of C∗-algebras,
these including JB∗-algebras [17] and JB∗-triples [6]. Jordan analogues of various C∗-algebra results on
linear isometries, extreme points and faces of the closed unit ball have been proved (cf. [5,6,9–18], and the
references in [1]).

In 1987, R.M. Aron and R.H. Lohman introduced, in a motivating and celebrated paper, a geometric
function, called the λ-function, determined by extreme points of the unit ball of a normed space; a normed
space is said to have the λ-property if for each element x of its unit ball we have λ(x) > 0 (cf. [2]). One
of the problems left open by Aron and Lohman is the following question: “What spaces of operators have
the λ-property and what does the λ-function look like for these spaces?” (cf. [2]). To answer this question
in the setting of C∗-algebras, Brown and Pedersen [3] introduced a notion of quasi-invertible elements
in a C∗-algebra. As is well explained in [4], the Brown–Pedersen’s quasi-invertible elements (in short,
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BP-quasi-invertible elements) bear many interesting properties similar to those of invertible elements. They
obtained several results verifying that the relationships between the extreme convex decomposition theory,
λ-function and the distance, αq(x), from a vector x to the set of BP-quasi-invertible elements are analogous
with the relationships in the earlier C∗-algebra theory of unitary convex decompositions, λu-function and
regular approximations.

Recently, we initiated a study of BP-quasi-invertible elements in the setting of JB∗-triples (cf. [13–15]).
In this paper, we discuss the λ-function in the general setting of JB∗-triples. We obtain several results
connecting the λ-function with αq(x) and extreme convex decompositions in a JB∗-triple. We discuss
closely related set-valued functions V(x), S(x) (see the next section) and obtain some estimates on inf V(x)
in terms of αq(x). For convenience, we restrict the study of the λ-function to JB∗-triples J satisfying
E(J )1 �= ∅, where E(J )1 denotes the set of extreme points of the closed unit ball (J )1 of J .

Concerning the relationship between λ(x) and αq(x), we prove that

(a) x ∈ J−1
q if, and only if, there exists v ∈ E(J )1 and a unitary u in the JB∗-algebra J1(v) such that

‖x− u‖ < 1. In particular, for each x ∈ J−1
q the set V(x) ∩ [1, 2) is nonempty;

(b) For each v ∈ E(J )1 and x ∈ (J1(v))1\J−1
q , we have:

(i) λ(x) � 1
2 (1 − αq(x));

(ii) λ(x) = 0 when αq(x) = 1

(see Theorems 3.5 and 3.7 and Corollary 3.6).
Contrary to what is established by Brown and Pedersen in the setting of C∗-algebras (cf. [4]), we do not

know whether the equality λ(x) = 1
2 (1 − αq(x)) holds for every x ∈ (J )1\J−1

q or when λ(x) = 0 implies
αq(x) = 1. In this concern, we introduce a condition in the last section, called the Λ-condition, and give
some positive answers in certain cases. In the course of our analysis, we obtain JB∗-triple analogues of some
other related results on C∗-algebras, due to M. Rørdam [8], L. Brown and G.K. Pedersen [3,4,7].

2. BP-quasi-invertible elements

A Jordan triple system is a vector space J over a field of characteristic not 2, endowed with a triple
product {xyz}, which is linear and symmetric in the outer variables x, z and linear or anti-linear in the
inner variable y, satisfying the Jordan identity: {xu{yvz}} + {{xvy}uz} − {yv{xuz}} = {x{uyv}z} [16].
A JB∗-triple is a complex Banach space J together with a continuous, sesquilinear, operator-valued map
(x, y) ∈ J × J 	→ L(x, y) that defines a triple product L(x, y)z := {xyz} in J making it a Jordan triple
system such that each L(x, x) is a positive hermitian operator on J and ‖{xxx}‖ = ‖x‖3, for all x ∈ J [16].
Thus, any JB∗-algebra is a JB∗-triple with the triple product {xyz} := (x◦y∗)◦z− (x◦z)◦y∗+(y∗ ◦z)◦x.
A basic operator P (x, y) on the JB∗-triple J is defined by P (x, y)z := {xzy} for all x, y, z ∈ J ; we write
P (x, x) in short as P (x). Another basic operator B(x, y), called the Bergman operator, is defined on J by
B(x, y) := I − 2L(x, y) + P (x)P (y), where I is the identity operator.

As in [15], an element x in a JB∗-triple J is called BP-quasi-invertible with BP-quasi-inverse y ∈ J if
B(x, y) = 0. It is known that B(x, y) = 0 ⇒ B(y, x) = 0. A BP-quasi-invertible element need not admit a
unique BP-quasi-inverse; J−1

q includes E(J1); and x ∈ J−1
q ⇔ x is positive and invertible in the Peirce

1-space J1(v) induced by some v ∈ E(J )1 (cf. [15]). When J is a JB∗-algebra, J−1
q contains the set J−1

of all invertible elements in J .
To each δ � 1, there corresponds the following set:

coδE(J )1 :=
{

1
δ

(
n−1∑
i=1

vi + (1 + δ − n)vn

)
: vj ∈ E(J )1, j = 1, . . . , n, n ∈ N, n− 1 � δ � n

}
,

where N denotes the set of positive integers.
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Of course, coδE(J )1 ⊆ coE(J )1, the convex hull of E(J )1. For each x ∈ (J )1, we define V(x) :=
{β � 1: x ∈ coβE(J )1}.

Theorem 2.1. Let J be a JB∗-triple, v ∈ E(J )1 and x ∈ (J1(v))1\J−1
q .

(i) If γ ∈ V(x), then γ − 1 � γαq(x) + 1.
(ii) If αq(x) < 1 then V(x) ⊆ [2(1 − αq(x))−1,∞).

Proof. By [13, Theorem 3.5], x /∈ E(J )1 since x /∈ J−1
q , and so 1 /∈ V(x).

(i) Let γ ∈ V(x). Then, γ > 1 and x = γ−1∑ n−1
i=1 vi + γ−1(γ + 1 − n)vn with vi ∈ E(J )1, i = 1, . . . , n and

n−1 < γ � n. So, dist(γx, E(J )1) � ‖γx−v1‖ = ‖
∑ n−1

i=2 vi+(γ+1−n)vn‖ � (n−2)+(γ+1−n) = γ−1.
Hence, by [15, Lemma 25 and Theorem 26] and the fact γ > 1, we get γ − 1 � dist(γx, E(J )1) �
max{αq(γx) + 1, ‖γx‖ − 1} � αq(γx) + 1 = γαq(x) + 1.

(ii) If αq(x) < 1 and γ ∈ V(x), then γ � 2(1 − αq(x))−1 by Part (i). Thus, V(x) ⊆ [2(1 − αq(x))−1,∞) by
[15, Corollary 24]. �

When x ∈ E(J )1, we have V(x) = [1,∞). So, the above result is not true in this case. Indeed, if
x ∈ J−1

q ∩ (J )1 then αq(x) = 0 and [2,∞) ⊆ V(x) by [15, Theorem 20 and Corollary 24]; however, V(x) �
[2,∞) by Corollary 3.6 below. Thus, the above result is not true when x ∈ J−1

q .
For each x ∈ J , we define em(x) := min{n: x = 1

n

∑
n
j=1vj , vj ∈ E(J )1}; if x has no such decomposition,

em(x) := ∞.

Corollary 2.2. Let J be a JB∗-triple, v ∈ E(J )1 and x ∈ (J1(v))1 with αq(x) = 1. Then, V(x) = ∅ and
em(x) = ∞. Moreover, {y ∈ J1(v): ‖y‖ = αq(y) = 1} ⊆ (J )1\coE(J )1.

Proof. Since αq(x) = 1, x /∈ J−1
q . If γ ∈ V(x) then γ−1 � γ+1 by Theorem 2.1; an absurdity. So, V(x) = ∅.

Hence, em(x) > n, for all n ∈ N, by [15, Lemma 22]. Thus, x ∈ (J1(v))1\coE(J )1 ⊆ (J )1\coE(J )1. �
Corollary 2.3. Let J be a JB∗-triple, v ∈ E(J )1, x ∈ (J1(v))1 and integer n � 2. Then em(x) � n ⇒
αq(x) � 1 − 2

n .

Proof. If x ∈ J−1
q , then αq(x) = 0 � 1 − 2

n . Let x /∈ J−1
q and em(x) � n, but 1 − 2

n < αq(x). Then,
αq(x) < 1: otherwise, αq(x) = 1 since αq(x) � ‖x‖ by [15, Lemma 25]. So, em(x) = ∞ by Corollary 2.2; a
contradiction. It follows that n < 2(1 − αq(x))−1. Hence, n /∈ V(x) by Theorem 2.1; this with em(x) � n

contradicts [15, Lemma 22]. �
3. The λ-function

In a JB∗-triple J with E(J )1 �= ∅, a triple (v, y, λ) is said to be amenable to x ∈ (J )1 if v ∈ E(J )1,
y ∈ (J )1 and 0 � λ � 1 with x = λv + (1− λ)y. We define S(x) := {0 � λ � 1: (v, y, λ) is amenable to x}.
Note that 0 ∈ S(x), for every x ∈ (J )1. The λ-function is defined by x ∈ (J )1 	→ λ(x) := supS(x) (cf. [2]).

Theorem 3.1. Let J be a JB∗-triple, v ∈ E(J )1 and x ∈ (J1(v))1.

(i) If λ ∈ S(x) and λ > 0 then (λ−1,∞) ⊆ V(x).
(ii) If δ ∈ V(x) then δ−1 ∈ S(x).
(iii) λ(x) = 0 if and only if V(x) = ∅.
(iv) If λ(x) > 0 then S(x) = [0, λ(x)) or [0, λ(x)].
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(v) If λ(x) > 0 and 0 < γ < λ(x) then γ−1 ∈ V(x).
(vi) If λ(x) > 0, then (inf V(x))−1 = λ(x).
(vii) If inf V(x) ∈ V(x), then λ(x) ∈ S(x).

Proof. (i) λ ∈ S(x) means x = λw + (1 − λ)y with w ∈ E(J1), y ∈ (J )1. So, ‖λ−1x − w‖ � λ−1 − 1 as
λ > 0. Hence, (λ−1,∞) ⊆ V(x) by [15, Theorem 23].

(ii) Let δ ∈ V(x). Then, x = δ−1∑ n−1
i=1 vi + δ−1(1 + δ− n)vn for some δ � 1 and vi ∈ E(J )1, i = 1, . . . , n

with n − 1 < δ � n. If δ = 1, then x ∈ E(J )1, hence the result is clear as δ−1 = 1. Next, suppose δ > 1.
Then x = δ−1v1 + δ−1(δ − 1)[

∑ n−1
i=2

1
(δ−1)vi + 1

(δ−1) (1 + δ − n)vn]. Hence, x = δ−1v1 + (1 − δ−1)y where
y =

∑ n−1
i=2

1
(δ−1)vi + 1

(δ−1) (1 + δ − n)vn with ‖y‖ � n−2
δ−1 + 1+δ−n

δ−1 = 1, and so δ−1 ∈ S(x).
(iii) This is clear from the parts (i) and (ii).
(iv) As seen above, 0 ∈ S(x). Let λ(x) > 0. Then, there exists an increasing sequence (γn) in S(x) such

that limn→∞ γn = λ(x). Now, for any fixed γ ∈ (0, λ(x)), there exists integer N such that γn > γ for all
n � N . Hence, by [15, Corollary 24], γ−1 ∈ (γ−1

n ,∞) ⊆ V(x), so that γ ∈ S(x) by Part (ii). However,
λ(x) = supS(x). Thus, S(x) = [0, λ(x)) or [0, λ(x)].

(v) This is clear from the statements (ii) and (iv).
(vi) From the statement (v), we have λ(x) � (inf V(x))−1. Hence, the required equality follows from the

statement (ii).
(vii) Since inf V(x) ∈ V(x), V(x) �= ∅. Then, by Part (iii), λ(x) > 0. Hence, (inf V(x))−1 = λ(x) by

Part (vi). Thus, λ(x) ∈ S(x) by Part (ii). �
For any x ∈ (J1(v))◦1 with v ∈ E(J )1, V(x) �= ∅ by [15, Theorem 16 and Lemma 22], and so λ(x) �= 0 by

Theorem 3.1.

Corollary 3.2. Let J be a JB∗-triple. Then, for any fixed v ∈ E(J )1 and x ∈ (J1(v))1, the following
assertions are equivalent:

(i) αq(x) < 1 implies V(x) �= ∅.
(ii) λ(x) = 0 implies αq(x) = 1.
(iii) αq(x) < 1 implies λ(x) > 0.

Proof. If x ∈ J−1
q , then αq(x) = 0, V(x) �= ∅ and λ(x) �= 0. Thus the equivalences hold true by [15,

Theorem 20 and Corollary 24] (see comments before Corollary 2.2). Next, suppose x /∈ J−1
q . Then:

(i) ⇒ (ii): If λ(x) = 0, V(x) = ∅ by Theorem 3.1, and hence αq(x) � 1 by (i). But αq(x) � ‖x‖ = 1.
Therefore, αq(x) = 1.

(ii) ⇒ (iii): If αq(x) < 1, λ(x) �= 0 by (ii), and hence λ(x) > 0.
(iii) ⇒ (i): αq(x) < 1 with V(x) = ∅ gives λ(x) = 0 by Theorem 3.1. �

Corollary 3.3. For a JB∗-triple J with v ∈ E(J )1 and x ∈ (J1(v))1 ∩ J−1
q :

(i) dist(x, E(J )1) � 1.
(ii) λ(x) � 1

2 .
(iii) S(x) �= ∅ and V(x) �= ∅.

Proof. (i) By [15, Theorem 20], v1, v2 ∈ E(J )1 with x = 1
2 (v1 +v2). Hence, dist(x, E(J )1) = infv∈E(J )1 ‖x−

v‖ � ‖x− v1‖ = ‖1
2 (v2 − v1)‖ � 1.

(ii) Clear from the definition of λ-function and Part (i).
(iii) As seen above, 1

2 ∈ S(x), and so (2,∞) ⊆ V(x) by Theorem 3.1. �
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The following result is essentially the same as [15, Theorem 9]:

Theorem 3.4. Let J be a JB∗-triple, v ∈ E(J )1 and x ∈ (J1(v))−1. Then there exists u ∈ U(J1(v)) such
that x is positive and invertible in the unitary isotope J1(v)[u], which coincides with the Peirce 1-space
J1(u). Moreover, x ∈ J−1

q . Here, (J1(v))−1 denotes the set of invertible elements in J1(v).

If v ∈ E(J )1, then for every element x ∈ (J1(v))1, we define the set Tv(x) := {0 � λ � 1: x = λu+(1−λ)y
with u ∈ U(J1(v)), y ∈ (J1(v))1}, where U(J1(v)) denotes the set of unitary elements in the Peirce 1-space
J1(v) of J induced by v. Thus, Tv(x) ⊆ S(x) by [10, Lemma 4].

Theorem 3.5. Let J be a JB∗-triple and x ∈ (J )1. Then, the following assertions are equivalent:

(i) x ∈ J−1
q .

(ii) x ∈ δU(J1(v)) + (1 − δ)U(J1(v)) for some v ∈ E(J )1 and 0 � δ < 1
2 .

(iii) 1 − δ ∈ Tv(x) for some v ∈ E(J )1 and 0 � δ < 1
2 .

(iv) dist(x,U(J1(v))) � 2δ for some v ∈ E(J )1 and 0 � δ < 1
2 .

Proof. (i) ⇒ (ii): Let x ∈ J−1
q . Then, by [15, Theorem 11], there is some v ∈ E(J )1 such that x is

positive and invertible in the Peirce 1-space J1(v), which is a JB∗-algebra with unit v. Hence, by the
continuous functional calculus of JB∗-algebras, σJ1(v)(x) ⊆ [−1, 1]\(2δ−1, 1−2δ) for some 0 � δ < 1

2 since
0 /∈ σJ1(v)(x). Moreover, by [11, Lemma 2.4], we get x ∈ δU(J1(v)) + (1 − δ)U(J1(v)).

(ii) ⇒ (iii): x = δv1 + (1 − δ)v2 (= (1 − δ)v2 + δv1) with v1, v2 ∈ U(J1(v)) gives (1 − δ) ∈ Tv(x) since v1
being a unitary in J1(v) has norm 1.

(iii) ⇒ (iv): If x = (1 − δ)w + δy with w ∈ U(J1(v)) and y ∈ (J )1 and for some 0 � δ < 1
2 , then

‖x− w‖ � 2δ < 1, and hence dist(x,U(J1(v))) < 1.
(iv) ⇒ (ii): Clear from [15, Theorem 21].
(ii) ⇒ (i): x ∈ (J1(v))−1 by (ii). Hence, x ∈ J−1

q by Theorem 3.4. �
Corollary 3.6. If x ∈ J−1

q then λ ∈ V(x) for some 1 � λ < 2.

Proof. Follows straightforwardly from Theorem 3.5. �
Next result gives an upper bound of λ(x) for x /∈ J−1

q in terms of αq(x).

Theorem 3.7. Let J be a JB∗-triple with v ∈ E(J )1. Then, for any x ∈ (J1(v))1\J−1
q , we have:

(a) λ(x) � 1
2(1 − αq(x)).

(b) If αq(x) = 1 then λ(x) = 0.

Proof. (a) Under the hypothesis, we have dist(x, E(J )1) � max{αq(x) + 1, ‖x‖ − 1}, by [15, Theorem 26].
Now, if x = λw+(1−λ)y, where w ∈ E(J )1, y ∈ (J )1 and 0 � λ � 1, we have x−w = (λ− 1)w+(1−λ)y
and so αq(x) + 1 = dist(x, E(J )1) � ‖x − w‖ = |1 − λ|‖y − w‖ � 2(1 − λ); which gives λ � 1

2 (1 − αq(x)).
This proves the Part (a).

(b) Immediate from the Part (a) since λ(x) � 0. �
Corollary 3.8. For a JB∗-triple J with v ∈ E(J )1 and x ∈ (J1(v))◦1\J−1

q :

(i) V(x) �= ∅.
(ii) V(x) = [(λ(x))−1,∞) or V(x) = ((λ(x))−1,∞).
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(iii) em(x) = n if n �= (λ(x))−1 given by n− 1 < (λ(x))−1 � n.
(iv) em(x) = n or em(x) = n + 1 if n = (λ(x))−1.

Proof. (i) By [15, Theorem 16], for any x ∈ (J1(v))◦1, we have em(x) < ∞, and hence V(x) �= ∅ by [15,
Lemma 22].

(ii) Since V(x) �= ∅, em(x) = (inf V(x))−1 by Theorem 3.1(vi). This together with [15, Corollary 24]
proves the Part (ii).

The other parts follow easily from the Part (ii) and Theorem 3.7. �
4. The Λ-condition

Let J be a JB∗-triple. For any x ∈ (J1(v))1\J−1
q with v ∈ E(J )1 and αq(x) = 1, we have λ(x) = 0 by

Theorem 3.7. To get more progress on the λ-function, we introduce the Λ-condition on J , as follows:

x ∈
(
J1(v)

)
1\J

−1
q with v ∈ E(J )1 and λ(x) = 0 ⇒ αq(x) = 1.

With the Λ-condition, (J1(v))1\coE(J )1 ⊆ {y ∈ J1(v): ‖y‖ = αq(y) = 1} by [15, Theorem 16] and Theo-
rem 3.1; hence, (J1(v))1 = coE(J )1 if αq(x) < 1. Let x ∈ (J1(v))1\J−1

q and αq(x) < 1. Of course, λ(x) > 0.
If ‖x‖ = 1 then V(x) �= ∅ by Corollary 3.2, and so V(x) = [(λ(x))−1,∞) or V(x) = ((λ(x))−1,∞) by [15,
Corollary 24] and Theorem 3.1 (compare Corollary 3.8). Hence, for n − 1 < (λ(x))−1 � n, λ(x) = n if
n �= (λ(x))−1; and given by em(x) = n or em(x) = n+1 if n = (λ(x))−1. In either case, for every 0 < ε � 1,
we have x = (ε + n)−1(v1 + · · · + vn + εvn+1) with v1, . . . , vn+1 ∈ E(J )1.

Now, we see if one can identify inf V(x) in terms of αq(x). To each x ∈ J \J−1
q with αq(x) < 1, we

associate the number βqx := 2(1 − αq(x))−1.

Theorem 4.1. Let J be a JB∗-triple, v ∈ E(J )1 and x ∈ (J1(v))1\J−1
q with αq(x) < 1. Then, the following

conditions are equivalent:

(Λ1) (βqx ,∞) ⊆ V(x).
(Λ2) (λ(x))−1 = inf V(x) = βqx .
(Λ3) For all γ > βqx , there is w ∈ E(J )1 with ‖γx− w‖ � γ − 1.
(Λ4) λ(x) � β−1

qx .

Proof. (Λ1) ⇒ (Λ2): By Theorem 2.1, V(x) ⊆ [βqx ,∞). So, inf V(x) = βqx by the condition (Λ1); the
required equality follows from Theorem 3.1.

(Λ2) ⇒ (Λ3): See [15, Theorem 23].
(Λ3) ⇒ (Λ4): Let γ > βqx . Then, by (Λ3), there is w ∈ E(J )1 with ‖λx− w‖ � λ− 1. By Theorem 3.1,

(γ,∞) ⊆ V(x), so that inf V(x) � γ. Hence, λ(x) � γ−1 by Theorem 3.1. Thus, λ(x) � β−1
qx .

(Λ4) ⇒ (Λ1): Let γ > βqx . Then, 0 < γ−1 < β−1
qx � λ(x) by (Λ4). Thus, γ−1 ∈ S(x), so (γ,∞) ⊆ V(x)

by Theorem 3.1. �
If x ∈ (J1(v))1\J−1

q with ‖x‖ = 1 and αq(x) < 1, then rx ∈ (J )1 and αq(rx) = rαq(x) < 1, for each
0 < r � 1, by [15, Lemma 25]. We conclude this article with the following result on vectors of norm 1:

Theorem 4.2. Let J be a JB∗-triple with an extreme point v of (J )1 and let x ∈ (J1(v))1\J−1
q with ‖x‖ = 1

and αq(x) < 1.
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(a) The following assertions are equivalent:
(i) (Λ2) holds for x.
(ii) (Λ2) holds for all rx with 0 < r � 1.
(iii) If y ∈ Sp(x) (the linear span of x) and ‖y‖ > αq(y)+2, then ‖y−v‖ � ‖y‖−1 for some v ∈ E(J )1.

(b) If any one of the assertions (i) to (iii) holds for all unit vectors y ∈ J1(v)\J−1
q with αq(y) < 1, then J

satisfies the Λ-condition.

Proof. (a) (i) ⇔ (ii): The implication (ii) ⇒ (i) is clear. Conversely, suppose (λ(x))−1 = inf V(x) = βqx

and r is any fixed number such that 0 < r < 1. Then rx ∈ J1(v)◦1\J−1
q , and hence λ(rx) � β−1

qrx by
Theorem 3.7. Let λ > βqx . By the assertion (i) and Theorem 2.1, λ ∈ V(x), so that x ∈ coλE(J )1.
Then, x = λ−1(v1 + · · · + vn−1 + (1 + λ − n)vn) for some v1, v2, . . . , vn ∈ E(J )1 with the positive integer
satisfying n − 1 < λ � n. So, rx = rλ−1(v1 + · · · + vn−1 + (1 + λ − n)vn) + 1−r

2 (−v1) + 1−r
2 v1. Hence,

λ(rx) � rλ−1 + 1−r
2 = rβ−1

qx + 1−r
2 + rλ−1 − rβ−1

qx = 1
2 (1 − rαq(x)) + r(λ−1 − β−1

qx ) = β−1
qrx + r(λ−1 − β−1

qx ).
Therefore, λ(rx) � β−1

qrx + r(λ−1 − β−1
qx ) for all λ > βqx . Thus, λ(rx) = β−1

qrx .
(ii) ⇒ (iii): Under the hypothesis of (iii), ‖y‖−1 < 1

2 (1 − αq(‖y‖−1y)). Then, by the assertion (ii),
‖y‖−1 < 1

2 (1 − αq(x)) � λ(x) since x = ‖y‖−1y. Now, with λ = ‖y‖−1, [15, Theorem 5.3] provides the
existence of elements v ∈ E(J )1 and b ∈ (J )1 such that x = λv + (1 − λ)b. Hence, ‖x − λv‖ � 1 − λ as
λ � 1 (in fact, λ � 1

2 as λ = ‖y‖−1 < 1
αq(x)+2 � 1

2 ). Thus, ‖y − v‖ � ‖y‖ − 1.
(iii) ⇒ (i): For any x ∈ J1(v) with ‖x‖ = 1 and γ > 2(1 − αq(x))−1, we have ‖γx‖ − αq(γx) =

γ(1 − αq(x)) > 2, so that ‖γx‖ > αq(γx) + 2. Then, ‖γx − v‖ � ‖γx‖ − 1 for some v ∈ E(J )1 by the
assertion (iii). Hence, (γ,∞) ⊆ V(x) by [15, Theorem 23]. Thus, (βx,∞) ⊆ V(x).

(b) Finally, suppose x ∈ J1(v)\J−1
q with ‖x‖ = 1 and λ(x) = 0. Then, αq(x) = 1: for otherwise,

αq(x) < 1 would give λ(x) �= 0 by the assertion (i) and Theorem 4.1, a contradiction. �
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