Academic Year (G) 2016–2017 Academic Year (H) 1437–1438 Bachelor AFM: M. Eddahbi

Test Sunday April 16, 2017, from 7 to 9 PM

Exercise 1.

We specify below the basic elements of a financial market with T periods:

- A finite probability space $\Omega = \{\omega_1, \ldots, \omega_k\}$ with k elements.
- A probability measure P on Ω , such that $P(\omega) > 0$ for all $\omega \in \Omega$.
- A riskless asset (a saving account) $S_t^0, t \in \{0, 1, 2, ..., T\}$ such that $S_0^0 = 1$ with a constant interest rate r.
- A *d*-dimensional price process $S_t, t \in \{0, 1, 2, ..., T\}$ where $S_t = (S_t^0, S_t^1, ..., S_t^d)$ and S_t^i stands for the price of the asset *i* at time *t*.
- 1. (1 mark) Give the definition of a portfolio in this market
- 2. (1 mark) Recall the self-financing property for this model
- 3. (1 mark) Give the definition of attainable payoffs for this model
- 4. (1 mark) Give the definition of a RNPM (risk neutral probability measure) in this setting.
- 5. (1 mark) Give the definition of a complete market
- 6. (1 mark) Give the definition of an incomplete market

Exercise 2.

Consider stock with a current price \$100 and a constant annualized volatility σ of 20%. The stock does not pay dividends. A risk–less asset is worth \$0.95 today and is worth \$1 in one year maturity.

Consider also European and American put options on the stock with a maturity of **two years** and a strike price of \$110.

- 1. Build a **two-step** binomial tree of the stock price, with each step being **one** year.
- 2. Find the risk-neutral probability measure if any.

- 3. Is the model arbitrage free ? and complete.
- 4. Give the binomial tree of the European put option.
- 5. Is this European put option attainable in this market?
- 6. If yes find its replicating portfolio of the European put option.
- 7. Is an American put option attainable in this market?
- 8. If yes find its replicating portfolio of the American put option.

Exercise 3.

Consider the following model

n	S_n^0	S_n^1			S_n^2		
		ω_1	ω_2	ω_3	ω_1	ω_2	ω_3
0	1	5	5	5	10	10	10
1	$\frac{10}{9}$	$\frac{60}{9}$	$\frac{60}{9}$	$\frac{30}{9}$	$\frac{120}{9}$	$\frac{80}{9}$	$\frac{80}{9}$

- 1. Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ arbitrage free ?
- 2. Is the market $(S_t^0, S_t^1)_{t \in \{0,1\}}$ complete ?
- 3. Give an example of a contingent claim. Is it attainable?
- 4. Find a replicating portfolio for your contingent claim.

Exercise 4.

- 1. Calculate u, d, and the RNPM q when a binomial tree is constructed to value an option on a foreign currency. The tree step size is 2 month, the domestic interest rate is 6% per annum, the foreign interest rate is 4% per annum, and the volatility is 12% per annum.
- 2. (1 mark) Build the two-month step binomial algorithm for a European call option on a foreign currency with initial price $S_0 = 1.50$, maturity six-months and strike price K = 1.45 using the parameters given in Q1.
- 3. (1 mark) Use the two-month step binomial tree to find the initial price (premium) of an American call option on a foreign currency with initial price 1.50, maturity six-months and strike price 1.45 using the parameters given in Q1.
- 4. Compare the two prices obtained in Q2 and Q3.