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Abstract: Casimir/squeezed vacuum breaks Lorentz symmetry, by allowing light to propagate faster
than c. We looked at the possible transformation symmetry group such vacuum could obey. By solving
the semi-classical Einstein field equation in squeezed vacuum, we have found that the background
geometry describes an Anti-deSitter (AdS) geometry. Therefore, the proper transformation symmetry
group is the (A)dS group. One can describe quantum field theory in a finite volume as a quantum field
theory (QFT) on AdS background, or vice versa. In particular, one might think of QFT vacuum on AdS
as a QFT that posses a squeezed vacuum with boundary conditions proportional to R2

AdS. Applying
this correspondence to an accelerating detector-scalar field system, we notice at low acceleration
the system is at equilibrium at ground state, however if the detector’s acceleration (a) is greater
than a critical acceleration, the system experience a phase transition similar to Hawking-Page Phase

transition at the detector gets excited, with equivalent temperature Θ =

√
a2−R′2AdS

2π .

Keywords: quantum field theory in curved spacetime; anti-deSitter spacetime; Unruh effect;
Hawking Effect; first-order phase transition

1. Introduction

Squeezed quantum vacua breaks Lorentz symmetry, calculations of photon propagation between
Casimir plates showed it has a superluminal group velocity [1–3], Since Lorentz symmetry is broken
for such vacua, one is tempted to ask what spacetime symmetry group these vacua obey, if any?
In order to answer this, we turn at the calculations made by Casimir [4] of the energy density of
a squeezed vacuum Then plug the energy density term into the Einstein field equations, and study the
geometric backreaction [5]. Squeezed vacuum has a negative energy density ρvac = − π2

720L4 , where L is
the length of the box forming the boundary conditions [6]. Therefore, the spacetime (locally) under this
vacuum can be thought to be Anti-deSitter spacetime. Therefore, the symmetry group for quantum
fields in squeezed vacuum is the (A)dS group. This correspondence between boundary conditions
forced upon the quantum fields in the vacuum and quantum fields in curved background is seen
sometimes in the literature without formally addressing it. We believe this correspondence may help
simplifying problems in QFT in curved spacetime, particularly in AdS that has a special interest in
string theory or AdS-CFT correspondence. One of the interesting problems in QFT in curved spacetime
is accelerating detectors coupled to a field and their thermodynamics (Unruh effect). Using the above
correspondence, one can study accelerating detectors in AdS as accelerating detectors in squeezed
vacuum. We shall show that the cut-off frequencies due to boundary conditions of squeezed vacuum
play a rôle in the thermodynamics of the detector-field system. In addition, Rindler horizon will be
modified in accordance to the speed-of-light limit in this vacuum. Later we discuss other effects that
could be understood more deeper via this correspondence, like Page-Hawking phase transition.
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2. Simple Quantum Field Theory in Squeezed Vacuum

The most interesting vacuum to study its Fock space is an isotropic squeezed (Casimir) vacuum.
With critical (IR cut-off) wave number kc, corresponding to the wavelength of field excitations that is
at the maximal length that the boundary conditions allow. A scalar field φ can be expanded in mode
solutions, with a UV-cutoff kmax due to the presence of gravity theory

φ =
kmax

∑
k=kc

âkuk + â†
k u∗k , (1)

where uk’s are the modes functions and â†
k , âk the creation and annihilation operators respectively.

We observe that the corresponding Fock space of the modified vacuum ought to satisfy:

âk|0〉 = 0 and, (2)

â†
k |0〉 =

{
|1k〉, if k > kc,

0, if k < kc.

Now, we turn into determining the background perturbation caused by modifying the vacua .
We remain the isotropic and maximally symmetric case to get an analogous spacetime for the modified
vacua to Minkowskian spacetime. Writing the semi-classical Einstein Hilbert action:

S =
∫

d4x
√
−det(g)

1
2κ

(R+ b) . (3)

Were b = −16πρvac. the ’reduced’ vacuum density corresponding to the Casimir pressure in this
case. The action in (3) yields the following metric for the maximally symmetric (isotropic) case—in
Poincarè coordinates:

ds2 =
3

bz2

(
−dt2 + dz2 +

3

∑
i=2

dx2
i

)
. (4)

This solution is assuming the boundary conditions for b are compatible with the symmetry of
the metric. Thus, this metric describes how a detector in the squeezed vacuum would experience the
world. We observe that the Ricci scalar is given by R = 4b That is, the spacetime have a negative
curvature proportional to the vacuum density [5]. This is Anti de-Sitter solution with b = 3/R2

AdS,
RAdS is the AdS radius. This metric will resemble the background for the quantum field discussed
above. We clearly notice that Lorentz symmetry is clearly broken, but we have the (Anti)de-Sitter
symmetry group, for hyperbolic spaces. We now turn to write the Klein-Gordon equation in curved
spacetime of the modified Casimir vacuum; starting from the metric in the conformal form in (4).
The normal modes for massive Klein-Gordon equation for conformal spacetime is written as:

uk = (2π)−3/2Ω−1ek·x χ(z), (5)

where Ω2 = (bz2)−1 is the conformal factor of (4), and the function χ(z) satisfies the differential
equation for conformally coupled field:

d2

dz2 χ(z) + ω2
k(z)χ(z) = 0, (6)

where

ωk(z) = <
{√

k2 − (ΩM)2
}

, (7)

where M is the mass of the scalar field φ.
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Before solving Equation (6), we conclude that for certain values of k < kc, there are no excitation
of the field, satisfying the conditions set for the squeezed vacuum. However, for wave numbers larger
than kc we expect ordinary field excitations, as they would not be affected by the boundary conditions
imposed if boundary effects were ignored. Now, we solve Equation (6) (using the WKB method),
we get,

ξ(z)n = Ane(3/2)Ω−1
(Jν + BnYν) , (8)

where, Jν and Yν are Bessel and Neumann functions, respectively. The constants An and Bn depend of
the boundary conditions , and the parameter ν is given by:

ν =

√
9
4
+

M2

b
. (9)

It is called the effective scale for the field [7]. Hereby, we have completed the basic description of
quantum field theory in squeezed vacuum, with conformal coupling to gravity.

3. Accelerated Frames

We wish to write a similar metric of (4) but for an accelerating detector, considering only 1 + 1
dimensions (only t-z plane), and compactifying the other two spacial dimensions (every 2-sphere is
shrunk to a point).

ds2 = Ω2
(
−dt2 + dz2

)
. (10)

Then we need to employ a transformations similar to Rindler transformations for Minkowski
spacetime. Nevertheless this is not a straightforward process. We start by investigating the mode
solutions for the Klein-Gordon equation in these coordinates (5). The SO(1, 2) isometries allow us
to write the Hamiltonian, momentum and Lorentz boosts operators in terms of the Killing vector
fields ∂z and ∂t See [8–10] for details about this technique. Since our spacetime satisfies (Anti)deSiiter
group symmetries we can employ the same argument using this group. The Hamiltonian operator
for an accelerated field is written as Ĥ = aK̂ where a is the acceleration and K̂ is the Lorentz boosts
operator. From above we may write the Rindler-like transformations (for small b) as [9]:

T =−
√

3
b
+ z sinh at + O(b), (11)

X =z cosh at + O(b). (12)

With the line element [11], written in terms of the t-z coordinates:

ds2 = −a2z2
(

1− 4b
3

z2
)

dt2 +

(
a

√
b
3

z2

)
dtdz + dz2. (13)

We know that Rindler coordinates have a horizon at z = 0 where the metric becomes singular.
In particular 1

z
(
T̄2 − X̄2) = 1, we use the bar for the Rindler coordinates for accelerated observer in

Minkowski space. This defines the null generators as a straight lines with a slope of tan−1 1. We may
do the same argument with Rindler coordinates for squeezed vacua.

1
z

(
T2 − X2

)
= 1 (14)

This defines the horizon for a Rindler observer in modified vacua. We may rewrite (14) In terms
of Rindler coordinates for the Minkowski spacetime- the barred coordinates- we get :

1
z

(
T̄2 − X̄2

)
= 1− b

3
(15)
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As expected, the null generators seemed to be ’rotate’ or spread by an angle tan−1 b
3 in the

conformal diagram Figure 1. Hence, if we immersed the spacetime background of the squeezed
vacuum in Minkowski spacetime, we observe how photons in the first will have a superluminal
propagation when measured by observed in the Minkowski spacetime.

Figure 1. Rindler wedge with the dashed lines resembles the “modifeid” horizons due to modifying
the vacuum, and immersing the new geometry in flat spacetime. The new horizons are spread by
an angle tan−1 b

3 each, corresponding to a superluminal photon propagation.

4. Detector Response Function

We start by considering a detector in the modified vacua coupled to the scalar field φ described
above via a weak monopole coupling. We care about the coupling term in their Lagrangian gµ̂(τ)φ

where g is small coupling constant and µ̂ is the time-dependent monopole operator. The detector has
an energy states described by the associated Hilbert spaceHdetector. The field has an associated Fock
space described aboveHfeild for the squeezed vacuum. We are interested in the transition amplitude
from the initial state |E0, 0〉 to the final state |E, Ψ〉 of the Hilbert space for the detector and the field
Hdetector ⊗Hfeild. The transition amplitude shall refer to excitation of the detector energy state above
initial ground state due to particle creation in the scalar field. Hence it is rather natural to assume the
final state in the Fock space would be |Ψ〉 = |1ω〉 , ω > ω0 since we have only weak coupling. Writing
the first order perturbation term for the transition amplitude 〈E, 1ω |gµ̂φ|E0, 0〉:

− ig
∫ +∞

−∞
dτ〈E, 1ω |gµ̂φ|E0, 0〉. (16)

where τ is the proper time of the detector. We may use Heisenberg equation to rewrite the operator
µ̂(τ) as:

µ̂(τ) = eiĤτ µ̂e−iĤτ (17)

Substituting (17) into (16) to get:

− ig〈E|µ̂|E0〉
∫ +∞

−∞
dτe−i(E−E0)τ〈1ω |φ(x(τ))|0〉. (18)

In order to calculate the probability, we square the term and sum over the energies:

P = g2 ∑
E
|〈E|µ̂|E0〉|2F (E), (19)
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where F (E) is the detector’s response function which is given by:

F (E) =
∫ +∞

−∞
d(∆τ)e−i(E−E0)∆τG+(∆τ). (20)

It could be interpreted as the Fourier transform of the two-point correlation (Wightman) function
G+(∆τ) = 〈φ(x)φ(x′)〉. The dependence on ∆τ rather on the initial and final times the detector was
adiabatically turned on; is due to the assumption that the detector and the field it is coupled to are in
thermal equilibrium. The task now is to calculate the correlation function, which depends on the path
the detector follows in spacetime. Hence we need to write it in terms of the detector’s proper time
instead of coordinate time:

G+ =
−1
4π2

(
1

(t− t′ − iε)2 − |x− x′|2

)
. (21)

Since the spacetime is no longer flat, and observers cannot be inertial. It is needed to specify the
path of the particle. The proper time for the Rindler observer, with acceleration a in the squeezed
vacuum can be written as

t = v−1 sinh (τv) , (22)

here v =
√

a2 + ξ2 and ξ = i
√

3/|b|. Note that it is more helpful to write v as
√

a2 − ξ ′2. The primed
term is=(ξ), this is merely a convention that seems to help reading the results better. We now substitute
t in (21), and expand around zero, we obtain correlation function in terms of the detector’s proper time:

G+ =
1

2π

2

∑
n∈Z

(
∆τ − 2iε− 2πiv−1n

)−2
. (23)

It is, in fact, expansion of detector’s excitation modes n. Substituting in (20), we get,

F =
∫

γ
d(∆τ) ∑

n∈Z

e−i(E−E0)∆τ

4π2 (∆τ − 2iε− 2πiv−1n)2 . (24)

The contour γ runs through the entire lower half of the complex plane. We can use the methods
of residues to calculate the response function; we have the following cases:

• When the detector’s acceleration is (a ≤ ξ ′) The poles all lie in the upper half, therefore the
integral vanishes and thereby the transition probability is vanishing . Hence, particle creation is
not observed.

• Moreover, for (a > ξ ′ ) The poles lie in the lower half, therefore we can sum the resides and have
the following transition probability :

P = g2 ∑
E

(
|〈E|µ̂|E0〉|2

e2πv(E−E0) − 1

)
. (25)

The Planckian distribution indicates that the detector and the field are at thermal equilibrium
at temperature:

Θ =

√
a2 − ξ ′2

2π
. (26)

5. Discussion

We have started by solving the semi-classical Einstein field equations for squeezed quantum vacua,
that are known to possess negative energy density. The backreaction of geometry is assumed to be of
first order, as the energy perturbation above the existing geometry of (flat) spacetime. The solution
yields a curved spacetime, for isotropic boundary conditions the solution yields an anti-deSitter
spacetime. The correspondence between QFT with boundary conditions and QFT in the curved AdS is
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starting to appear. One can use this correspondence to move from one picture to another in order to
simplify calculations or clarify physical pictures.The n-dimensional AdS spacetime is a conformally flat
spacetime, with a symmetry group AdSn = O(2,n−1)

O(1,n−1) . It plays the isometry group of transformations,
instead of the Lorentz group of Minkowski spacetime. This explains the superluminal propagation
of photons in squeezed vacuum (Scharnhorst effect), as the latter calculations are made with QFT’s
with Lorentz symmetry in mind (as if the AdS patch was immersed in flat space). Applying the above
correspondence to a massive scalar field with boundary conditions. then, solving the Klein-Gordon
equation in AdS background. We observe that the solution for the wave number k < kc predicts
an exponential suppression of field fluctuations at low frequencies. Whilst for higher frequencies
the differential Equation (6) behaves like a harmonic oscillator of z-dependent normal modes (7).
A careful look at the formulation of QFT on squeezed vacuum/AdS reveals that if the field in study
is a conformally-symmetric field (CFT), this field theory is insensitive to the boundary conditions
imposed/AdS background geometry.

We turn to the main focus of this work, the thermal equilibrium conditions of an accelerated
detector-scalar field on squeezed vacuum. We observe that: (a) The detector-field system are in
equilibrium in the ground state if the detector is weakly accelerating, a ≤ ξ. (b) The detector is excited
if it is acceleration a > ξ. Unruh temperature registered by that accelerator is given by (26). (c) The
(modified) Rindler horizon is at the null generators of AdS, this horizon would be at the velocity limit
of photons in the squeezed vacuum when measured by observers in the unbounded vacuum, viz light
velocity in the squeezed vacuum is the speed limit for observers there. The previous observations
indicates that for the accelerating detector-field system the acceleration a = ξ form a critical point,
at which the thermodynamic behaviour changes.This was seen Hawking-Page phase transition [12],
when a blackhole in an AdS reaches a critical mass. The same logic underlies both phenomena.
Moreover, by the correspondence mentioned above, we conclude that Hawking-Page transition could
be deduced from putting a blackhole in a box (unphysical thought experiment), since the latter would
already be in an AdS by the geometric backreaction mentioned above.

6. Conclusions

An accelerated detector coupled to a field in squeezed vacuum will not detect particle
production/thermal radiation if its acceleration is below a critical acceleration, this result is expected
when the acceleration is weak such that most thermal radiation produced by (ordinary) Unruh effect
would lies in the large wavelengths region of the spectrum, where the boundary condition of the
squeezed vacuum prohibits their production. Using the correspondence between the QFT in AdS
and QFT having squeezed vacuum we could show this expected result. For the limit a >> ξ ′,
the temperature in (26) approaches Unruh temperature for ordinary vacuum, as the maximal intensity
gets higher and wavelengths move towards the shorter wavelengths as Plank’s law predicts. These
results indicates the usefulness of the above correspondence, and could be helpful in more complicated
calculations as well. Moreover deepens understanding of critical phenomena in both QFT’s in AdS
or with boundary conditions like blackholes in AdS. It would be interesting to invistigate the rô le of
this IR cut-off assumed in renormalisation of the thermodynamics of fields in curved space, in a more
general setting. Moreover, the calculations made in this paper would provide a useful technique for
computations in AdS/CFT correspondence.
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