King Saud University College of Computer and Information Sciences Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Syntax Directed Definition

- Q1. For the SDD of fig 1, give annotated parse trees for the following expressions:
 - a- (3+4) * (5+6)n
 - b- 1*2*3*(4+5)n
 - c- (9+8*(7+6)+5)*4n

Production	Semantic Rules
L→En	L.val=E.val
$E \rightarrow E_1 + T$	E.val= E_1 . val + T.val
$E \rightarrow T$	E.val=T.val
$T \rightarrow T_1 * F$	$T.val = T_1. val * F.val$
$T \rightarrow F$	T.val= F.val
$\mathbf{F} \rightarrow (\mathbf{E})$	F.val=E.val
F→digit	F.val=digit.lexval

Fig 1 Syntax-directed definition of the simple desk calculator [1]

- Q2. For the SDD of fig $\bf 2$, give annotated parse trees and the Dependency Graphs for the following expressions:
 - a- Int a,b,c,d
 - b- Float w,x,y

Productions	Semantic Rules
$(1) \mathbf{D} \rightarrow \mathbf{TL}$	L.inh=T.type
(2) T →int	T.type=integer
(3) T→float	T.type=float
(4) $L \rightarrow L_1$, id	L ₁ . inh=L.inh
	addType(id.entry,L.inh)
(5) L →id	addType(id.entry,L.inh)

Fig 2: Syntax directed Definition for simple type declaration [1]

King Saud University College of Computer and Information Sciences Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Syntax Directed Definition

- Q3. Suppose we have a production A->BCD. Each of the four non-terminals A, B, C and D have two attributes 's' is the synthesized attribute, and 'i' is an inherited attribute. For each of the set of rules below, tell whether
- (i) the rules are consistent with an S-attributed definition
- (ii) the rules are consistent with an L-attributed definition
 - a) A.s=B.i+C.s
 - b) A.s=B.i +C.s and D.i=A.i+B.s
 - c) A.s=B.s+D.s
 - d) A.s=D.i, B.i=A.s+C.s, C.i=B.s and D.i=B.i+C.i
- Q4. Below is a grammar for expressions involving operator + and integer or floating-point operands. Floating-point numbers are distinguished by having a decimal point.

 $E {\to} E {+} T | T$ $T {\to} num . num \mid num$

Give an SDD to determine the types of each term T and expression E.

[1] Book: "Compilers Principles, techniques, & tools", Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman