King Saud University
 College of Computer and Information Sciences Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Syntax Directed Definition

Q1. For the SDD of fig $\mathbf{1}$, give annotated parse trees for the following expressions:
a- $(3+4) *(5+6) n$
b- $1 * 2 * 3 *(4+5) n$
c- $(9+8 *(7+6)+5) * 4 n$

Production	Semantic Rules
$\mathbf{L} \rightarrow \mathbf{E n}$	L.val=E.val
$\mathbf{E} \rightarrow \mathbf{E}_{1}+\mathbf{T}$	E.val= $\boldsymbol{E}_{1} \cdot v a l+$ T.val
$\mathbf{E} \rightarrow \mathbf{T}$	E.val=T.val
$\mathbf{T} \rightarrow \mathbf{T}_{1} * \mathbf{F}$	T.val= $\mathbf{T}_{1} \cdot v a l *$ F.val
$\mathbf{T} \rightarrow \mathbf{F}$	T.val= F.val
$\mathbf{F} \rightarrow(\mathbf{E})$	F.val=E.val
$\mathbf{F} \rightarrow$ digit	F.val=digit.lexval

Fig 1 Syntax-directed definition of the simple desk calculator [1]

Q2. For the SDD of fig 2 , give annotated parse trees and the Dependency Graphs for the following expressions:
a- Int a,b,c,d
b- Float $\mathbf{w , x , y}$

Productions	Semantic Rules
(1) $\mathbf{D} \rightarrow$ TL	L.inh=T.type
(2) $\mathbf{T} \rightarrow$ int	T.type=integer
(3) $\mathbf{T} \rightarrow$ float	T.type=float
(4) $\mathbf{L} \rightarrow L_{1}$, id	L $_{1}$.inh=L.inh
	addType(id.entry,L.inh)
(5) $\mathrm{L} \rightarrow$ id	addType(id.entry,L.inh)

Fig 2: Syntax directed Definition for simple type declaration [1]

King Saud University
 College of Computer and Information Sciences Computer Science Department

CSC 340: Programming Language and Compilation Exercises: Syntax Directed Definition

Q3. Suppose we have a production A->BCD. Each of the four non-terminals A, B, C and D have two attributes ' s ' is the synthesized attribute, and ' i ' is an inherited attribute. For each of the set of rules below, tell whether
(i) the rules are consistent with an S -attributed definition
(ii) the rules are consistent with an L -attributed definition
a) A.s=B.i+C.s
b) A.s=B.i +C.s and D.i=A.i+B.s
c) A.s=B.s+D.s
d) A.s=D.i , B.i=A.s+C.s, C.i=B.s and D.i=B.i+C.i

Q4. Below is a grammar for expressions involving operator + and integer or floatingpoint operands. Floating-point numbers are distinguished by having a decimal point.

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{T} \mid \mathbf{T} \\
& \mathbf{T} \rightarrow \text { num } . \text { num } \mid \text { num }
\end{aligned}
$$

Give an SDD to determine the types of each term T and expression E.
[1] Book: "Compilers Principles, techniques, \& tools", Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman

