Question 1: Winter 2016-2017 (Marks = 25)

Helium and nitrogen gas are contained in a conduit 6 mm in diameter and 0.1 m long at 298 K and a uniform constant total pressure of 2.0 atm abs. The partial pressure of He at point one of the tube is 0.6 atm . and 0.2 atm at the other end (point two). At $\mathrm{P}=1 \mathrm{~atm}$ and $\mathrm{T}=298 \mathrm{~K}$, the molecular diffusivity of Helium in Nitrogen is $0.687 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}$, calculate the following for steady-state equi-molar counter diffusion.

a.	Flux of He in $\mathrm{kg} \mathrm{mol} / \mathrm{s} . \mathrm{m}^{2}$.	(Marks $=10$)
b.	Flux of N_{2}.	(Marks $=5$)
c.	Rate of He in $\mathrm{kg} \mathrm{mol} / \mathrm{s}$.	(Marks $=5$)
d.	Partial pressure of He at a point 0.03 m from point one.	(Marks $=5$)

$\frac{D_{A B 2}}{D_{A B 1}}=\left(\frac{P_{1}}{P_{2}}\right)$

$$
D_{A B 2}=D_{A B 1}\left(\frac{P_{1}}{P_{2}}\right)=0.5 \times 0.687 \times 10^{-4}=0.3435 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{s}
$$

$J_{A Z}^{\star}=-\frac{D_{A B}\left(p_{A 1}-p_{A 2}\right)}{R T\left(z_{1}-z_{2}\right)}=\frac{0.3435 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \times(0.6-0.2) \mathrm{atm}}{0.08205 \frac{\mathrm{~m}^{3} \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{kgmol}} \times 298 \mathrm{~K} \times 0.1 \mathrm{~m}}=5.68 \times 10^{-6} \frac{\mathrm{kgmol}}{\mathrm{m}^{2} \cdot \mathrm{~s}}$
$J_{B Z}^{\star}=-J_{B Z}^{\star}=-5.68 \times 10^{-6} \frac{\mathrm{kgmol}}{\mathrm{m}^{2} \cdot \mathrm{~s}}$
$N_{A Z}^{\star}=J_{A Z}^{\star} \times \pi R^{2}=5.68 \times 10^{-6} \frac{\mathrm{kgmol}}{\mathrm{m}^{2} \cdot \mathrm{~s}} \times \pi\left(\frac{3}{1000}\right)^{2} \mathrm{~m}^{2}=16.1 \times 10^{-11} \frac{\mathrm{kgmol}}{\mathrm{s}}$
$p_{A 2}=p_{A 1}-\frac{J_{A Z}^{\star} \times R T\left(z_{1}-z_{2}\right)}{D_{A B}}=0.6-\frac{5.68 \times 10^{-6} \times 0.08205 \times 298 \times(0.03)}{0.3435 \times 10^{-4}}=0.60-0.16=0.48 \mathrm{~atm}$

Question 2: (Marks = 25)

Predict the diffusivity of acetic acid ($\mathrm{CH}_{3} \mathrm{COOH} ; \mathrm{MW}=60$) solute in solvent water using Wilke-Chang correlation at atmospheric conditions taking temperature 25 degree C . At 25 degree C , the viscosity of water at is 0.9×10^{-3} Pa.s. Compare your results with experimental value, compute the \% error.

$$
\begin{aligned}
& D_{A B}=1.173 \times 10^{-16}\left(\varphi M_{B}\right)^{1 / 2}\left(\frac{T}{\mu_{B} V_{A}^{0.6}}\right) \\
& V_{A}=2(0.0148)+4(0.0037)+2(0.0074)=0.0592 \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~mol}} \\
& D_{A B}=1.173 \times 10^{-16} \times(2.6 \times 18)^{1 / 2}\left(\frac{298}{0.9 \times 10^{-3} \times 0.0592^{0.6}}\right)=1.44 \times 10^{-9} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& D_{A B}(\text { Exptl })=1.26 \times 10^{-9} \frac{\mathrm{~m}^{2}}{\mathrm{~s}} \\
& \% \text { Error }=\frac{\left|1.44 \times 10^{-9}-1.26 \times 10^{-9}\right|}{1.26 \times 10^{-9}} \times 100=14.2
\end{aligned}
$$

$$
\begin{aligned}
& D_{A B}=1.173 \times 10^{-16}\left(\varphi M_{B}\right)^{1 / 2}\left(\frac{T}{\mu_{B} V_{A}^{0.6}}\right) \\
& V_{A}^{0.6}=2(0.0148)+4(0.0037)+2(0.012)=0.0684 \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~mol}}
\end{aligned}
$$

$$
D_{A B}=1.173 \times 10^{-16} \times(2.6 \times 18)^{1 / 2}\left(\frac{298}{0.9 \times 10^{-3} \times 0.0684^{0.6}}\right)=1.33 \times 10^{-9} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
D_{A B}(\text { Exptl })=1.26 \times 10^{-9} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}
$$

$$
\% \text { Error }=\frac{\left|1.44 \times 10^{-9}-1.33 \times 10^{-9}\right|}{1.26 \times 10^{-9}} \times 100=5.4
$$

Question 1: Fall 2016-2017

A narrow tube contains Acetone $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right)$ at a constant temperature of 313 K . The total pressure of air (assumed dry) is $1.01325 \times 10^{5} \mathrm{~Pa}$. Acetone evaporates and diffuses through the air in the tube. The initial height of the acetone was 0.1176 m when measured from the top. After sometime during the experiment, the liquid level decreased due to evaporation. The final height recorded was 0.1180 m from the top.

Assume that the system is isothermal. (Given: Acetone vapor pressure at $313 \mathrm{~K}=55,864$ Pa; Diffusion coefficient $=1.2 \mathrm{x}$ $10^{-5} \mathrm{~m}^{2} / \mathrm{s}$; Density $=790 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{MW}=58.08 \mathrm{~kg}$ per $\mathrm{kg} \mathrm{mol} ; \mathrm{R}=8314\left(\mathrm{~m}^{3} . \mathrm{Pa}\right) /(\mathrm{kg}$ mol. K$)$). The diagram is similar to Fig. 6.2-2a.

- Determine the time taken in the experiment.
- Compute the diffusion coefficient of acetone-air system for the above case using Fuller et al. correlation and compare its value for the air-acetone system.

Question 1: Winter 2015-2016

i. Estimate the diffusivity of water vapor (solute, $\mathrm{MW}=18$) in $\operatorname{Air}(\mathrm{MW}=29)$ at 298 K and $\mathrm{P}=1 \mathrm{~atm}$.
ii. Compare your results with the reported experimental data and compute the $\%$ error.
iii. What would be the diffusivity air (solute) in water vapor at 298 K and $\mathrm{P}=2$ atm?

