The Sampling Distributions of Sample Statistics:

Case 1: The Sampling Distribution of the Sample Mean \bar{X}

<u>Case 2:</u> The Sampling Distribution of the Difference between two Sample Means $\overline{X}_1 - \overline{X}_2$:

When $n \ge 30 \& \sigma_1^2$ and σ_2^2 are Known & Normal or Non-Normal distribution.

Then

$$\begin{aligned} \text{Mean}(\bar{X}_1 - \bar{X}_2) &= \mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2 \\ \text{Variance}(\bar{X}_1 - \bar{X}_2) &= \sigma_{\bar{X}_1 - \bar{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \\ \text{Standard error}(\bar{X}_1 - \bar{X}_2) &= \sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \\ \bar{X}_1 - \bar{X}_2 \sim N \left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right) \end{aligned}$$

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

Case 3: The Sampling Distribution of the Sample Proportion \hat{p} :

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{X}{n}$.

Then

Mean
$$(\hat{p}) = \mu_{\hat{p}} = p$$

Variance $(\hat{p}) = \sigma_{\hat{p}}^2 = \frac{pq}{n}$
Standard error $(\hat{p}) = \sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$
 $\hat{p} \sim N\left(p, \frac{pq}{n}\right)$
 $Z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}} \sim N(0,1)$

<u>Case 4:</u> The Sampling Distribution of Difference between two Sample Proportions $\hat{p}_1 - \hat{p}_2$:

When $n_1 \geq 30$, $n_2 \geq 30$, $n_1 p_1 > 5$, $n_1 q_1 > 5$, $n_2 p_2 > 5$, $n_2 q_2 > 5$ and $\hat{p}_1 = \frac{\chi_1}{n_1}$, $\hat{p}_2 = \frac{\chi_2}{n_2}$;

$$\hat{p}_1 - \hat{p}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}.$$

Then

Mean
$$(\hat{p}_1 - \hat{p}_2) = \mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$

Variance $(\hat{p}_1 - \hat{p}_2) = \sigma_{\hat{p}_1 - \hat{p}_2}^2 = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$

Standard deviation $(\hat{p}_1 - \hat{p}_2) = \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$

$$\hat{p}_1 - \hat{p}_2 \sim N\left(p_1 - p_2, \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}\right)$$

$$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} \sim N(0,1)$$

Estimations:

1. Point Estimation for the Population Parameters:

	Population Parameter	Point Estimator (Sample Statistic)
Mean	μ	\bar{X}
Variance	σ^2	S^2
Standard Deviation	σ	S
Proportion	p	\hat{p}
The Difference between	., .,	$\bar{X}_1 - \bar{X}_2$
two Means	$\mu_1 - \mu_2$	$\Lambda_1 - \Lambda_2$
The Difference between	n — n	$\hat{n} - \hat{n}$
two Proportions	$p_{1} - p_{2}$	$\hat{p}_1 - \hat{p}_2$

2. Confidence Intervals for the Population Parameters:

<u>Case 1:</u> The Confidence Interval for the Population Mean μ :

<u>Case 2:</u> The Confidence Interval for the Difference between two Population Means $\mu_1 - \mu_2$:

Case 3: The Confidence Interval for the Population Proportion *p*:

When $n \ge 30$, np > 5, nq > 5 and $\hat{p} = \frac{x}{n}$.

Then the $(1 - \alpha)100\%$ confidence interval for p is

$$\hat{p} \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

<u>Case 4:</u> The Confidence Interval for the Difference between two Population Proportions $p_1 - p_2$:

When $n_1 \ge 30$, $n_2 \ge 30$, $n_1 p_1 > 5$, $n_1 q_1 > 5$, $n_2 p_2 > 5$, $n_2 q_2 > 5$ and $\hat{p}_1 = \frac{X_1}{n_1}$, $\hat{p}_2 = \frac{X_2}{n_2}$,

$$\hat{p}_1 - \hat{p}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}.$$

Then the $(1-\alpha)100\%$ confidence interval for p_1-p_2 is

$$(\hat{p}_1 - \hat{p}_2) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$$

The General Formulas: $Z = \frac{value-mean}{standard\ error}$

 $estimator \pm (reliability\ cofficient \times standard\ error)$

Or estimator ± margin of error

where,

Standard error = standard deviation

Estimator = Point estimate

Reliability coefficient = table value = $Z_{1-\frac{\alpha}{2}}$ or $t_{1-\frac{\alpha}{2}}$

Hypotheses Testing:

- A hypothesis is a statement about one or more populations.
- A statistical hypothesis is a conjecture (or a statement) concerning the population which can be evaluated by appropriate statistical technique.
- We usually test the null hypothesis (H_0) against the alternative (or the research) hypothesis (H_A or H_1) by choosing one of the following situations: Two-sided hypothesis:

$$H_0$$
: $\theta = \theta_0$ against H_A : $\theta \neq \theta_0$

One-sided hypothesis:

- (i) $H_0: \theta \ge \theta_0$ against $H_A: \theta < \theta_0$
- (ii) $H_0: \theta \le \theta_0$ against $H_A: \theta > \theta_0$
- There are 4 possible situations in testing a statistical hypothesis:

		Condition of Null Hypothesis H_0	
		(Nature/Reality)	
		H_0 is true H_0 is false	
Possible	Accepting H_0	Correct	Type II error
Action		Decision	(β)
(Decision)	Rejecting H_0	Type I error	Correct Decision
		(α)	

- There are two types of errors:
 - Type I error = Rejecting H_0 when H_0 is true (i) P(Type I error) = P(Rejecting $H_0 \mid H_0$ is true) = α Which is called the significance level of the test.
 - Type II error = Accepting H_0 when H_0 is false (ii) P(Type II error) = P(Accepting $H_0 \mid H_0$ is false) = β
- The test statistic has the following form:

$$Test \ Statistic = \frac{estimate - hypotheized \ parameter}{standard \ error \ of \ the \ estimate}$$

Summary of Sampling Distributions, Fount Estimation, Interval Estimations and Testing Trypomese.

1. Hypotheses Testing for the population Mean (μ) :

Hypotheses	$H_0: \mu = \mu_0 \ vs$ $H_A: \mu \neq \mu_0$	$H_0: \mu \le \mu_0 \ vs$ $H_A: \mu > \mu_0$	$H_0: \mu \ge \mu_0 \ vs$ $H_A: \mu < \mu_0$
Assumptions:	_	$\frac{11_A \cdot \mu > \mu_0}{1}$ nown; Normal or Non-N	-
Test Statistic (T.S.)		$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1 - \alpha \\ & \alpha/2 \\ & A.R. \text{ of } H_0 \\ & of H_0 - Z_{1-\frac{\alpha}{2}} \\ \end{array} \begin{array}{c} & \alpha/2 \\ & R.R. \\ & Of H_0 \end{array}$	$ \begin{array}{c c} \hline 1-\alpha \\ A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} \alpha \\ R.R. \\ \text{ of } H_0 \end{array} $	$\begin{array}{c c} & & & \\ & & & &$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	Z_{1-lpha}	$-Z_{1-\alpha}$
Decision	We reject H_0 (and accelerate $Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	ept H_A) at the significant $Z > Z_{1-\alpha}$	ce level α if: $Z < -Z_{1-\alpha}$
Assumptions:	Second Case:	σ^2 is unknown; Norma	al Distribution
Test Statistic (T.S.)	$T=\frac{\bar{X}}{S}$	$\frac{\overline{t}-\mu_0}{r/\sqrt{n}} \sim t_{(n-1)}$; d.f	=v=n-1
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & 1 - \alpha \\ & \alpha/2 \\ & A.R. \text{ of } H_0 \\ & \text{of } H_0 - t_{1-\frac{\alpha}{2}} \\ & t_{1-\frac{\alpha}{2}} \\ \end{array}$ $\begin{array}{c c} & \alpha/2 \\ & R.R. \\ & \text{of } H_0 \end{array}$	$ \begin{array}{c c} & & \alpha \\ & & \alpha \\ & & \alpha \\ & & A.R. \text{ of } H_0 \end{array} $ R.R. of H_0	$\begin{array}{c} \alpha \\ A.R. \text{ of } H_0 \\ \text{of } H_0 \end{array} - t_{1-\alpha} $
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$T < -t_{1-\frac{\alpha}{2}}$ or $T > t_{1-\frac{\alpha}{2}}$	$T > t_{1-\alpha}$	$T < -t_{1-\alpha}$

2. Hypotheses Testing for the Difference Between Two Population Means $(\mu_1 - \mu_2)$ (Independent Populations):

Hypotheses	$H_0: \mu_1 = \mu_2 \ vs$ $H_A: \mu_1 \neq \mu_2$	$H_0: \mu_1 \le \mu_2 \ vs$ $H_A: \mu_1 > \mu_2$	$H_0: \mu_1 \ge \mu_2 \ vs$ $H_A: \mu_1 < \mu_2$
Assumptions:	First Case: σ_1^2 and σ_2^2 are known		
Test Statistic (T.S.)	$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & & & & \\ & \alpha/2 & & & \\ & A.R. \text{ of } H_0 & & & \\ & \text{of } H_0 & -Z_{1-\frac{\alpha}{2}} & & Z_{1-\frac{\alpha}{2}} & \\ \end{array}$	$ \begin{array}{c c} \hline 1 - \alpha \\ A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} \alpha \\ R.R. \\ \text{ of } H_0 \end{array} $	$\begin{array}{c c} & & & \\ & & & &$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	Z_{1-lpha}	$-Z_{1-\alpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$
Assumptions:	Second Case: σ_1^2 and	σ_2^2 are unknown but ed	$\operatorname{qual}\left(\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}\right)$
Test Statistic (T.S.)	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_p^2 + s_p^2}{n_1 + n_2}}} \sim t(n_1 + n_2 - 2), df = v = n_1 + n_2 - 2$ $s_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} & \alpha \\ & A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} & \alpha \\ & t_{1-\alpha} \end{array} $ R.R. of H_0	$\begin{array}{c c} & & & \\ & & \\ & & & \\ $
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$
Decision	We reject H_0 (and accelerate $T<-t_{1-\frac{\alpha}{2}}$ or $T>t_{1-\frac{\alpha}{2}}$	ept H_A) at the significant $T > t_{1-\alpha}$	the level α if: $T < -t_{1-\alpha}$

3. Confidence Interval and Hypotheses Testing for the Difference Between Two Population Means $(\mu_1 - \mu_2 = \mu_D)$ for Dependent (Related) Populations: Paired t-Test:

Calculate the Quantities	 The differences (D-observations): D_i = X_i − Y_i, i = 1,2,,n Sample Mean of the D-observations: D̄ = ∑_{i=1}ⁿ D_i / n Sample Variance of the D-observations: S_D² = ∑_{i=1}ⁿ (D_i − D̄)² / n-1 Sample Standard Deviation of the D-observations: S_D = √S_D² 			
	Confidence Interv	val for $\mu_D = \mu_1 - \mu_2$		
$100(1-\alpha)\%$ Confidence Interval for μ_D	$\overline{D} \pm t_{1-\frac{\alpha}{2}} \frac{S_D}{\sqrt{n}} , df = v = n-1$			
	Hypotheses Testing for $\mu_D = \mu_1 - \mu_2$			
Hypotheses	$H_A: \mu_1 \neq \mu_2$ or $H_A: \mu_B = 0 \text{ is}$	$H_A: \mu_1 > \mu_2$ or $H_A: \mu_1 < 0$ vs	$H_0: \mu_1 \ge \mu_2 \ vs$ $H_A: \mu_1 < \mu_2$ or $H_0: \mu_D \ge 0 \ vs$ $H_A: \mu_D < 0$	
Test Statistic (T.S.)	$H_{A}: \mu_{D} \neq 0 \qquad H_{A}: \mu_{D} \geq 0 \qquad H_{A}: \mu_{D} \leq 0 \qquad H_{A}: \mu_{D$			
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c c} & & & & \\ & \alpha/2 & & & & \\ R.R & & & & & \\ & \text{of } H_0 - t_{1-\frac{\alpha}{2}} & & t_{1-\frac{\alpha}{2}} & \\ \end{array}$	$ \begin{array}{c c} & & \alpha \\ & & \alpha \\ & & \alpha \\ & & A.R. \text{ of } H_0 \end{array} $ R.R. of H_0	$\begin{array}{c c} & & & \\ & & & &$	
Critical Value	$-t_{1-\frac{\alpha}{2}}$ and $t_{1-\frac{\alpha}{2}}$	t_{1-lpha}	$-t_{1-lpha}$	
Decision	We reject H_0 (and accelerate $T<-t_{1-\frac{\alpha}{2}}$ or $T>t_{1-\frac{\alpha}{2}}$	ept H_A) at the significand $T > t_{1-\alpha}$	ce level α if: $T < -t_{1-\alpha}$	

4. Hypotheses Testing for the Population Proportion (p):

Hypotheses	$H_0: p = p_0 \ vs$ $H_A: p \neq p_0$	$H_0: p \le p_0 \ vs$ $H_A: p > p$	$H_0: p \ge p_0 \ vs$ $H_A: p < p_0$
Test Statistic (T.S.)	$Z = \frac{1}{\sqrt{\underline{p}}}$	$\frac{\hat{p}-p_0}{\frac{n}{n}}\sim N(0,1)$,	$\hat{p} = \frac{X}{n}$
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline 1-\alpha \\ A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} \alpha \\ Z_{1-\alpha} \text{ of } H_0 \end{array} $	$\begin{array}{c c} & & & \\ & & & &$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	Z_{1-lpha}	$-Z_{1-\alpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$

Summary of Sumpring Bioticutions, Females and Estimation, Interval Estimations and Testing Trype areas

5. Hypotheses Testing for the Difference Between Two Population Proportions $(p_1 - p_2)$:

	11	11	11
Hypotheses	$H_0: p_1 = p_2 \ vs$	$H_0: p_1 \le p_2 \ vs$	$H_0: p_1 \ge p_2 \ vs$
y F	$H_A: p_1 \neq p_2$	$H_A: p_1 > p_2$	$H_A: p_1 < p_2$
Test Statistic (T.S.)	$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\bar{p}(1-\bar{p})}{n_1} + \frac{\bar{p}(1-\bar{p})}{n_2}}} \sim N(0,1)$ $\hat{p}_1 = \frac{X_1}{n_1}, \hat{p}_2 = \frac{X_2}{n_2}, \bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$		
Rejection Region (R.R.) & Acceptance Region (A.R.) of H_0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \hline 1-\alpha \\ A.R. \text{ of } H_0 \end{array} $ $ \begin{array}{c} \alpha \\ Z_{1-\alpha} \text{ of } H_0 \end{array} $	$\begin{array}{c} 1 - \alpha \\ \\ \alpha \\ \text{A.R. of } H_0 \\ \\ -Z_{1-\alpha} \end{array}$
Critical Value	$-Z_{1-\frac{\alpha}{2}}$ and $Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$	$-Z_{1-\alpha}$
	We reject H_0 (and accept H_A) at the significance level α if:		
Decision	$Z < -Z_{1-\frac{\alpha}{2}}$ or $Z > Z_{1-\frac{\alpha}{2}}$	$Z > Z_{1-\alpha}$	$Z < -Z_{1-\alpha}$