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Exercise 6

Solve utt = c2uxx + g(x) sinωt for 0 < x < l, with u = 0 at both ends and u = ut = 0 when t = 0.
For which values of ω can resonance occur? (Resonance means growth in time.)

Solution

Since the PDE is linear and inhomogeneous, we choose to apply the method of eigenfunction
expansion to solve it. Consider the eigenvalue problem of the differential operator involving the
spatial variable x

d2

dx2
φ = λφ (1)

with the same boundary conditions as u.

φ(0) = 0

φ(l) = 0

Values of λ for which the boundary conditions are satisfied are known as the eigenvalues, and the
nontrivial solutions associated with them are called the eigenfunctions. Equation (1) is known as
the one-dimensional Helmholtz equation; the eigenfunctions for it are known to be orthogonal and
form a complete set, which will prove useful later.

Determination of Positive Eigenvalues: λ = µ2

Suppose that λ is positive. Then equation (1) becomes

d2φ

dx2
= µ2φ.

Its solution can be written in terms of hyperbolic sine and hyperbolic cosine.

φ(x) = C1 coshµx+ C2 sinhµx

Apply the boundary conditions to determine C1 and C2.

φ(0) = C1 = 0

φ(l) = C1 coshµl + C2 sinhµl = 0

Since C1 = 0, the second equation reduces to C2 sinhµl = 0. Hyperbolic sine is not oscillatory, so
the only way this equation is satisfied is if C2 = 0. The trivial solution is obtained, so there are no
positive eigenvalues.

Determination of the Zero Eigenvalue: λ = 0

Suppose that λ is zero. Then equation (1) becomes

d2φ

dx2
= 0.

The general solution is obtained by integrating both sides with respect to x twice.

φ(x) = C3x+ C4
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Apply the boundary conditions to determine C3 and C4.

φ(0) = C4 = 0

φ(l) = C3l + C4 = 0

Since C4 = 0, the second equation reduces to C3 = 0. The trivial solution is obtained, so zero is
not an eigenvalue.

Determination of Negative Eigenvalues: λ = −γ2

Suppose that λ is negative. Then equation (1) becomes

d2φ

dx2
= −γ2φ.

Its solution can be written in terms of sine and cosine.

φ(x) = C5 cos γx+ C6 sin γx

Apply the boundary conditions to determine C5 and C6.

φ(0) = C5 = 0

φ(l) = C5 cos γl + C6 sin γl = 0

Since C5 = 0, the second equation reduces to C6 sin γl = 0. To avoid getting the trivial solution,
we insist that C6 6= 0. Then

sin γl = 0

γl = nπ, n = 1, 2, . . .

γn =
nπ

l
, n = 1, 2, . . . .

The eigenfunctions associated with these eigenvalues for λ are

φ(x) = C6 sin γx → φn(x) = sin
nπx

l
, n = 1, 2, . . . .

Method 1 - Using Term-by-Term Differentiation

The eigenfunctions of the Helmholtz equation form a complete set, so the unknown function u can
be expanded in terms of them.

u(x, t) =

∞∑
n=1

an(t) sin
nπx

l

To determine the generalized Fourier coefficients an(t), substitute this expansion into the PDE.

utt = c2uxx + g(x) sinωt

∂2

∂t2

∞∑
n=1

an(t) sin
nπx

l
= c2

∂2

∂x2

∞∑
n=1

an(t) sin
nπx

l
+ g(x) sinωt
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Because u satisfies homogeneous boundary conditions and u, ∂u/∂x, and ∂u/∂t are continuous
(reasonable assumptions for the displacement of a homogeneous elastic string), the two series can
in fact be differentiated term by term.

∞∑
n=1

d2an
dt2

sin
nπx

l
= c2

∞∑
n=1

an(t)
d2

dx2
sin

nπx

l
+ g(x) sinωt

The operator applied to the eigenfunction is equal to the eigenvalue times the eigenfunction.

∞∑
n=1

d2an
dt2

sin
nπx

l
= c2

∞∑
n=1

an(t)λn sin
nπx

l
+ g(x) sinωt

Bring both series to the left side and combine them.

∞∑
n=1

[
d2an
dt2
− c2λnan(t)

]
sin

nπx

l
= g(x) sinωt

The left side is essentially a Fourier sine series expansion of g(x) sinωt. To solve for the term in
square brackets, multiply both sides by sin(mπx/l), where m is an integer,

∞∑
n=1

[
d2an
dt2
− c2λnan(t)

]
sin

nπx

l
sin

mπx

l
= g(x) sin

mπx

l
sinωt

and then integrate both sides with respect to x from 0 to l.

ˆ l

0

∞∑
n=1

[
d2an
dt2
− c2λnan(t)

]
sin

nπx

l
sin

mπx

l
dx =

ˆ l

0
g(x) sin

mπx

l
sinωt dx

g(x) is assumed not to be orthogonal to sin(mπx/l) so that the integral on the right side is
nonzero. Bring the functions of t in front of the integrals.

∞∑
n=1

[
d2an
dt2
− c2λnan(t)

]ˆ l

0
sin

nπx

l
sin

mπx

l
dx = sinωt

ˆ l

0
g(x) sin

mπx

l
dx

Since the eigenfunctions are orthogonal, the integral on the left side is zero if n 6= m. As a result,
every term in the infinite series vanishes except for one: n = m.[

d2an
dt2
− c2λnan(t)

]ˆ l

0
sin2

nπx

l
dx = sinωt

ˆ l

0
g(x) sin

nπx

l
dx

Evaluate the integral on the left side.[
d2an
dt2
− c2λnan(t)

]
· l
2
= sinωt

ˆ l

0
g(x) sin

nπx

l
dx

Multiply both sides by 2/l and replace λn with −(nπ/l)2.

d2an
dt2

+ c2
n2π2

l2
an =

[
2

l

ˆ l

0
g(x) sin

nπx

l
dx

]
sinωt
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With the help of the method of eigenfunction expansion, the PDE has been reduced to a
second-order inhomogeneous ODE. Because the ODE is linear, the general solution is the sum of
a complementary solution and a particular solution.

an = ac + ap

The complementary solution satisfies the associated homogeneous equation.

d2ac
dt2

+ c2
n2π2

l2
ac = 0

Its general solution can be written in terms of sine and cosine.

ac(t) = C7 cos
cnπt

l
+ C8 sin

cnπt

l

Since the inhomogeneous term is sine and there are no odd derivatives, the particular solution is
of the form ap = C0 sinωt. Substitute it into the ODE to find C0.

d2ap
dt2

+ c2
n2π2

l2
ap =

[
2

l

ˆ l

0
g(x) sin

nπx

l
dx

]
sinωt

−ω2C0 sinωt+ c2
n2π2

l2
C0 sinωt =

[
2

l

ˆ l

0
g(x) sin

nπx

l
dx

]
sinωt

c2
n2π2

l2
C0 − ω2C0 =

2

l

ˆ l

0
g(x) sin

nπx

l
dx

C0
c2n2π2 − l2ω2

l2
=

2

l

ˆ l

0
g(x) sin

nπx

l
dx

C0 =
2l

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx

Hence, the general solution for an is

an(t) = C7 cos
cnπt

l
+ C8 sin

cnπt

l
+

2l sinωt

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx.

Use the initial conditions for u in combination with the eigenfunction expansion to determine
those for an.

u(x, 0) =

∞∑
n=1

an(0) sin
nπx

l
= 0 ⇒ an(0) = 0

ut(x, 0) =
∞∑
n=1

dan
dt

(0) sin
nπx

l
= 0 ⇒ dan

dt
(0) = 0

Apply them both to obtain a system of equations for C7 and C8.

a(0) = C7 = 0

dan
dt

(0) =
cnπ

l
(C8) +

2lω

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx = 0
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Solving the second equation for C8 gives

C8 =

(
− ωl

cnπ

)
2l

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx.

So then

an(t) =

[(
− ωl

cnπ

)
2l

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx

]
sin

cnπt

l
+

2l sinωt

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx

=
2l

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx

(
sinωt− ωl

cnπ
sin

cnπt

l

)
.

Therefore,

u(x, t) =

∞∑
n=1

2l

c2n2π2 − l2ω2

ˆ l

0
g(s) sin

nπs

l
ds

(
sinωt− ωl

cnπ
sin

cnπt

l

)
sin

nπx

l
.

The dummy integration variable has been changed to s to distinguish it from x. Resonance occurs
when the solution blows up: c2n2π2 − l2ω2 = 0 (that is, if ω is a positive integer multiple of cπ/l).

Method 2 - Without Using Term-by-Term Differentiation

The eigenfunctions of the Helmholtz equation are known to form a complete set, so all of the
functions in the PDE can be expanded in terms of them.

u(x, t) =
∞∑
n=1

An(t)φn(x) → uφm =
∞∑
n=1

Anφnφm →
ˆ l

0
uφn dx = An

ˆ l

0
φ2n dx = An ·

l

2

∂2u

∂t2
=

∞∑
n=1

Bn(t)φn(x) → ∂2u

∂t2
φm =

∞∑
n=1

Bnφnφm →
ˆ l

0

∂2u

∂t2
φn dx = Bn

ˆ l

0
φ2n dx = Bn ·

l

2

g(x) sinωt =
∞∑
n=1

Dn(t)φn(x) → g(x) sinωtφm =
∞∑
n=1

Dnφnφm → sinωt

ˆ l

0
gφn dx = Dn

ˆ l

0
φ2n dx = Dn ·

l

2

∂2u

∂x2
=

∞∑
n=1

En(t)φn(x) → ∂2u

∂x2
φm =

∞∑
n=1

Enφnφm →
ˆ l

0

∂2u

∂x2
φn dx = En

ˆ l

0
φ2n dx = En ·

l

2

It should be emphasized that these are generalized Fourier series expansions for the functions, not
product solutions that come about from using the method of separation of variables. Solve the
latter equations for the generalized Fourier coefficients.

An(t) =
2

l

ˆ l

0
uφn dx

Bn(t) =
2

l

ˆ l

0

∂2u

∂t2
φn dx =

d2

dt2

(
2

l

ˆ l

0
uφn dx

)
=
d2An

dt2

Dn(t) =
2 sinωt

l

ˆ l

0
g(x)φn dx

En(t) =
2

l

ˆ l

0

∂2u

∂x2
φn dx =

2

l

(
∂u

∂x
φn

∣∣∣∣l
0︸ ︷︷ ︸

= 0

−
ˆ l

0

∂u

∂x

dφn
dx

dx

)
= −2nπ

l2

ˆ l

0

∂u

∂x
cos

nπx

l
dx
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Apply integration by parts once more in order to write En in terms of An.

En(t) = −
2nπ

l2

[
u cos

nπx

l

∣∣∣∣l
0︸ ︷︷ ︸

= 0

−
ˆ l

0
u
(
−nπ

l
sin

nπx

l

)
dx

]

= −n
2π2

l2

(
2

l

ˆ l

0
u sin

nπx

l
dx

)
= −n

2π2

l2
An

Now that the coefficients are known, substitute the eigenfunction expansions into the PDE.

utt = c2uxx + g(x) sinωt
∞∑
n=1

Bn(t)φn(x) = c2
∞∑
n=1

En(t)φn(x) +

∞∑
n=1

Dn(t)φn(x)

∞∑
n=1

Bn(t)φn(x) =
∞∑
n=1

[c2En(t) +Dn(t)]φn(x)

Thus,
Bn(t) = c2En(t) +Dn(t).

Substitute the formulas for Bn, En, and Dn to obtain an ODE for An exclusively.

d2An

dt2
= −c2n

2π2

l2
An +

2 sinωt

l

ˆ l

0
g(x)φn dx

Bring the term with An to the left side and replace φn with sin(nπx/l).

d2An

dt2
+ c2

n2π2

l2
An =

[
2

l

ˆ l

0
g(x) sin

nπx

l
dx

]
sinωt

This is the same ODE that was obtained for an in Method 1. The initial conditions are also the
same as before, so An(t) = an(t).

An(t) =
2l

c2n2π2 − l2ω2

ˆ l

0
g(x) sin

nπx

l
dx

(
sinωt− ωl

cnπ
sin

cnπt

l

)
Therefore,

u(x, t) =

∞∑
n=1

2l

c2n2π2 − l2ω2

ˆ l

0
g(s) sin

nπs

l
ds

(
sinωt− ωl

cnπ
sin

cnπt

l

)
sin

nπx

l
.

The dummy integration variable has been changed to s to distinguish it from x. Resonance occurs
when the solution blows up: c2n2π2 − l2ω2 = 0 (that is, if ω is a positive integer multiple of cπ/l).
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