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Alternative Versions of Regression Model 
 
 
The simple linear regression model is 
 

 
 
Alternative Versions of Regression Model is 
 

 
 
 
 

Estimation of 0 1and    
 
 
 

The least square method for estimating the unknown parameters of the simple 

linear regression model can be explained as follows: 
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,           (1.1) 

 

 

Differenatining (1.1) with respect to   0 1and   and equating to zero, we get 

 

 

 

Hence 
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Solving with respect b0 and b1, we get 

 

 

Which can be written as  
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Example 1  (Toluca Company Data) 
 

The Toluca company manufactures refrigeration equipment as well as many 

replacement parts. In the past, one of the replacement parts has been produced 

periodically in lots of varying sizes. When a cost improvement program was 

undertaken, company officials wished to determine the optimum lot size for 

producing this part. The production of this part involves setting up the production 

process (which must be done no matter what is the lot size) and machining and 

assembly operations. One key input for the model to ascertain the optimum lot size 

was the relationship between lot size and labor hours required to produce the lot. 

 

 To determine this relationship, data on lot size and work hours for 25 recent 

production runs were utilized. The production conditions were stable during the six-

month period in which the 25 runs were made and were expected to continue to be 

the same during the next three years, the planning period for which the cost 

improvement program was being conducted. 

 

The data is given in the book data website:  

http://www.stat.ufl.edu/~rrandles/sta4210/Rclassnotes/data/textdatasets/KutnerDat

a/Chapter%20%201%20Data%20Sets/CH01TA01.txt 
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Find the estimation of the simple linear regression model 

 

0 1Y X      

Solution 

 

The scatter plot for the data shows that the simple linear model represents a good fit 

for the data as follows: 
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Then it is easy to calculate 

 

Then 
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One can use R as follows: 

 

 

 

 

 

 

 

 

 

 

 

Or one can use the direct R command for regression as: lm(y~x) to get the same 

results. 

 

Call: 

lm(formula = y ~ x) 

Coefficients: 

(Intercept)            x   

       

 

mydata = read.table("TCD.txt", header=TRUE) 

# How to separate some variables the data file   

x=mydata$X 

y=mydata$Y 

x.bar=mean(x) 

y.bar=mean(y) 

print(c(x.bar,y.bar)) 

t1=sum((x‐x.bar)*(y‐y.bar)) 

t2=sum((x‐x.bar)^2) 

b1=t1/t2 

Call: 

lm(formula = y ~ x) 

Coefficients: 

(Intercept)            x   

      62.37         3.57   
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As we can see from the results the estimated linear regression model is 

Y = 62.4 + 3.57 X     (2) 
 

 Interpretation of the results 

 

1- When the lot size (X) increases by one units, the work hours (Y) increase 

by 3.57 hours.  

2- There is 62.4 hour of the work hours (Y) do not depend on the lot size (X). 

 

 The estimated simple linear regression model in equation (2) can be used 

to predict the work hours required for a certain lot size. For example, if 

the lot size is 85 units, then  

     Y = 62.4 + 3.57 * 85 = 365.85 hours. 

 

 We can use the alternative Model as:  
 

 

 

 The residual can be calculated at each point 

of the intendent variable x as 
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For example, when X=30 and X=80, we calculate 

the residuals as: 

 

 
 

From the Figure, we see that 
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Similarly, we can calculate the residuals at the all point of x to get 

i  e  i  e  i  e 

1  51.02  11  ‐45.17  21  103.53 

2  ‐48.47  12  ‐60.28  22  84.32 

3  ‐19.88  13  5.32  23  38.83 

4  ‐7.68  14  ‐20.77  24  ‐5.98 

5  48.72  15  ‐20.09  25  10.72 

6  ‐52.58  16  0.61       

7  55.21  17  42.53       

8  4.02  18  27.12       

9  ‐66.39  19  ‐6.68       

10  ‐83.88  20  ‐34.09       

 

These residuals can be calculated directly from R providing as: 

summary(model)$res 

 

 

 

 

   

 

 

 


