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Multiple Regression 11

regression model, with normal error terms, simply in terms of X variables:
Yi=Bo+ B X+ BoXio+ -+ Bp1 Xip-1 + &

where:

ﬁﬂs ﬁl; .- ﬁp—] arc paIaI]‘letcr'S
X1, - - -» Xi.p—1 are known constants

g; are independent N (0, 0%)

i=1,...,n

To express general linear regression model
Vi=Ppo+ br1Xua+ B X+ +PpaXipate&

in matrix terms, we need to define the following matrices:

Y (1 Xy X oo+ Xipe
Y, 1 X2 X - Xpp
- X ooy . . . .
nxl : nXp : : . .
__Yn_ __1 an XnZ e Xn.p—l__
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bo } £
B &
B s R E —
pxl1 : nxl
_ﬁp—| N €n

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

0 0 - o?]

Consequently, the random vector Y has expectation:
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Summary of Tests Concerning Regression Coefficients

Test whether All 8, =0

This is the overall F test of whether or not there is a regression relation between the
response vanable ¥ and the set of X variables. The alternatives are:

Hypr=p=--- :ﬁp_l =90
Hynotall B (k=1,..., p— 1) equal zero
and the test statistic 1s:

SSR(X,,. . X,n) | SSE(Xy, .. X))
p—1 ' n-p

F*

 MSR
"~ MSE

If Hyholds, F* ~ F(p — 1, n — p). Large values of F* lead to conclusion H,.
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Test whether a Single Bx = 0

This is a partial F test of whether a particular regression coefficient 8, equals zero. The
alternatives are:

H(}: ﬁk =0

Ha: ﬁk ?é 0
and the test statistic is:
— SSR(XkIXl! AR Xk—-ll Xf{'i"li e Xp—l) . SSE(Xh ceny Xp—l)

l ‘ a:-n - p
_ MSR(XiX\s oo Xi—1 Xiearts < ooy Xp—1)
MSE
If Hp holds, F* ~ F(1,n — p). Large values of F* lead to conclusion H, dStatistics

packages that provide extra sums of squares permit use of this test without having to fit the

reduced model.
An equivalent test statistic is

F*

 site}

If Hp holds, t* ~ r(rn — p). Large values of |r*| lead to conclusion H,,.

*

Test whether Some Bx =0

This 18 another partial F test. Here, the alternatives are:

HO:Bq:ﬁq+1 :"':ﬁp—l =0
H,: not all of the B in Hy equal zero
where for convenience, we arrange the model so that the last p — g coefficients are the ones
to be tedted. The test statistic 1s:
_ SSR(Xgs - Xp al X1, Xg 1) | SSE(X1, -5 Xp 1)
p—q ' n—p
_ MSR(X,, ..., Xp_1l X1, oo, Xgo4)
MSE

F*

If Hp holds, F* ~ F(p — g, n — p). Large values of F* lead to conclusion H,.

179



Dr. Khalaf Sultan Regression Analysis (Stat 332)

Remark:

The partial F* for several Bx=0 can be formed in terms of R? as

SSR(X gseves Xy [ X sy X )

e MSR(Xqoo Xy [ X s X g ) p-q
MSE (X ,,....,X ) SSE(X,....X ;)
n—-p
SSR(X 1.0, X ) ) =SSR(X ,.e0s X )
_ P—q
SSE (X ... X )
n—-p
SSR(X 1., X ) ) =SSR(X ,..0u X )
_ (P —q)SST
SSE (X ,....X ;)
(n—p)SST
R*(X,,....X , )-R*(X,...X,,) RZ2-R?
_ (p_q) :de—dfF
1-R*(X ... X ) 1-R;
(n-p) af.
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Coefticients of Partial determination

Two Predictor Variables

Yi = Bo+ BiXu + B Xiz + &

SSE(X>) measures the variation in Y when X; is included in the model. SSE(X;, X3)
measures the variation in ¥ when both X; and X; are included in the model. Hence, the
relative marginal reduction in the variation in ¥ associated with X when X5 is already in
the model is:
SSE(X,) — SSE(X1, X2)  SSR(X1|X»)
SSE(X>) — SSE(Xa)

This measure is the coefficient of partial determination between ¥ and X, given that X5 is
in the model. We denote this measure by RZ,,:

g2 _ SSE(X) — SSE(X), X;) _ SSR(X1|Xp)
Yiz = SSE(X») " SSE(X,)

Thus, RZ,,, measures the proportionate reduction in the variation in ¥ remaining after X
is included in the model that is gained by also including X in the model.

The coefficient of partial determination between ¥ and X5, given that X is in the model,
is defined correspondingly:

Thus, R},, measures the proportionate reduction in the variation in ¥ remaining after X
is included in the model that is gained by also including X in the model.

The coefficient of partial determination between ¥ and X, given that X1 is in the model,
is defined correspondingly:

o SSR(XalX)
Yo —
SSE(X1)
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General Case

The generalization of coefficients of partial determination to three or more X variables in
the model is immediate. For mstance:
, _ SSR(X1|Xs, X3)
T2 SSE(Xa, X3)
SSR(X>| X1, X3)
SSE(X;, X3)
w2 SSR(X3| X1, Xo)
T2 SSE(X;, Xa)
R2 . SSR(X4|X13 XZ! X3)
FBT T SSE(X), X2, X3)

2 —
RY2|13 —

Note that in the subscripts to R?, the entries to the left of the vertical bar show in turn
the variable taken as the response and the X variable being added. The entries to the right
of the vertical bar show the X variables already in the model.

Example For the body fat example, we can obtain a variety of coefficients of partial determinaﬁoﬂ_
—————————— Here are three (Tables 7.2 and 7.4):

. SSR(Xa2X)) 3347

T TRCE(X,) 14302
, SSR(X31X:, Xa) 1154
VIR TOORX,. X)) 109.95
. SSR(X1|Xs) 347

N s o = 03
Ry SSE(X2) 113.42 '

232

We see that when X, is added to the regtession model containing X, here, the error sup
of squares SSE(X1) s reduced by 23.2 percent. The error sum of squares for the mode|
containing both X, and X, is only reduced by another 10.5 percent when X 3 1s added 1o the
model. Finally, if the regression model already contains X, adding X, reduces SSE(X,)
by only 3.1 percent.
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Coefficients of Partial Correlation

—————" For the body fat example, we have:
Example
— Py = .232 = 482

Fyajiz = — 105 = -—324
rrip = +.031 = .176

Note that the coefficients 7y, and ry,p are positive because we see from'
b, = .6594 and b, = .2224 are positive. Similarly, rys);2 is negative because we see from
Table 7.2d that by = —2.186 is negative.

P

Comment

Coefficients of partial determination can be expressed in terms of simple or other partial correlation
coefficients. For example:

(ry2 — ?’lzf’n)2

1— rlzz) (l - r;";l)
(ryap — Fiptyi)?
1 rIZZB) (1 - ”%15)

where ry; denotes the coefficient of simple correlation between Y and X, ri2 denotes the coefficient
of simple correlation between X and X5, and so on. Extensions are straightforward.

Ryan = [ryap)? = (

R%"_J,“j. = [rlf2||3]2 = (

install.packages("asbio")
library(asbio)
Im1=Im(y~x1)
Im12=Im(y~x1+x2)

partial.R2(Im1, Im12)
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Standardized Multiple Regression Model

regression model, with normal error terms, simply in terms of X variables:

Yi=PFo+ B X+ B Xip+ -+ Bp1 Xip1 + &

where:
Bo. B, - -» Bp-1 are parameters
X1, - --» Xi,p—1 are known constants

g; are independent N (0, 0%)
i=1,....n

The standardized regression model is as follows:

/=B Xa+ -+ B Xip e

where the response variable Y™ and the independent

variables X;* are given by
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where ¥ and X, are the respective means of the ¥ and the X, observations, and sy and s
are the respective standard deviations defined as follows:

“t=

Z_:(Yi—f’)z
SY:\ n—1
Z(Xik—}zk)z
=\ k=1,...,p—1)

The correlation transformation is a simple function of the standardized variables

pr 1 (Y,-—?
"_\m—l Sy

1 X — Xy
Y = k=1,...,p—1
g ¢7:T( S ) ( p=b

The relation between the coefficients of the original

model and standardized model are

-

m=(ﬂ)& k=1,.... p=1)
Sk

Bo=Y—piX1— — BpaXp

We see that the standardized regression coefficients 8; and the original regression coeffi-

cients B (k=1, ..., p—1) are related by simple scaling factors involving ratios of standard
deviations.
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Estimated Standardized Regression Coefficients

Let
| TI o XT-p—I'
* *
) I 2.p—1
X = .
ux(p—-1j
- .:I:l X:;.p-r!_
and
_yf_
v |z
Yo
Then
b=XX)"XY
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It can be shown that for the transformed variables, X'Y and X'X
become

X'X=ry and XY =r

yX
1 N, r1,p—1 ryl
. N> 1 Iys r2,p—1 . ry2
Fyx = . » Kx = . )
| Tpar Top Fi-pya-p) | NEEY
r, =corr(X,;,X ), r; =corr(Y ,X;)
and hence
b=r;]
= Ly Tyx
- *J—
bl
* |
y
b = .
(p—1)x1 .
%
_bpﬂl_
‘The fegression coefficients 27, ..., b;ﬂl are often called standardized regression
coefficients.
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The return to the estimated regression coefficients for regression model
original variables is accomplished by employing the relations:

b = (f‘i)b;; k=1,....,p—1)

bo=Y~bX)— - —bp1X,

Example: In Dwaine Studios example data

yr— | (Yl—}_’) o | (Xu—}?.'l)
L™ =1\ sy o /n—1 81
1 174.4 — 181.90 1 [68.5—62.019
E JZI——I( 36.191 ) - le—-1( [8.620 )
— 04634 — 07783

1 Xin = X2 1 16.7 — 17.143
1= = = —.10208
e ( 52 ) 21— 1 ( 97035 ) 20

P* = 7484X* + 251X}

and

36.191
Sl) 0 (.7484) = 1.4546

~18.620

If

v 36.191
— = INE=
(S ) 97035(25 ) = 9.3652

X, — b X, = 181.90 — 1.4546(62.019) — 9.3652(17.143) = —68.860

||
~::
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R:Code

mydata=read.table("Dwaine Studios.txt",header=TRUE)
Y=mydata$§Y

X1=mydata$X1

X2=mydata$X2

n=length(X1)

one=as.vector(rep(1, n))

X=cbind(one,X1,X2)

Model=Im(Y~X1+X2)

library(QuantPsyc)

Im.beta(Model)
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