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Multiple Regression 11

regression model, with normal error terms, simply in terms of X variables:
Yi=Bo+ B X+ BoXio+ -+ Bp1 Xip-1 + &

where:

ﬁﬂs ﬁl; .- ﬁp—] arc paIaI]‘letcr'S
X1, - - -» Xi.p—1 are known constants

g; are independent N (0, 0%)

i=1,...,n

To express general linear regression model
Vi=Ppo+ br1Xua+ B X+ +PpaXipate&

in matrix terms, we need to define the following matrices:

Y (1 Xy X oo+ Xipe
Y, 1 X2 X - Xpp
- X ooy . . . .
nxl : nXp : : . .
__Yn_ __1 an XnZ e Xn.p—l__
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bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn
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Estimation of Regression Coefficients

b, | | B
b g | -

b= . |= ﬂ,l =B=(X"X)'XY
LTS _2p_1_

Y =Xb=XB=HY, H=X(X'X)'X"
E(B)=5
Var(f)=MSE (X 'X )

SSE
n—p

MSE =
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The Extra Sum of Squares

An extra sum of squares measures the marginal reduction in the error sum
of squares when one or several predictor variables are added to the
regression model, given that other predictor variables are already in the
model. Equivalently, one can view an extra sum of squares as measuring
the marginal increase in the regression sum of squares when one or several
predictor variables are added to the regression model. We first utilize an
example to illustrate these ideas, and then we present definitions of extra
sums of squares and discuss a variety of uses of extra sums of squares in

tests about regression coefficients.

Example (Book: page 256) Body fat example.
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From the example, we define

SSR(X ]| X5) = SSE(X32) — SSE(X,, X3)
or, equi;/alently:

SSR(X,|X2) = SSR(X1, X2) — SSR(X>)
If X, is the extra variable, we define:

SSR(X,3]X,) = SSE(X,) — SSE(X,, X»)
or, equivalently: . '
SSR(X,|X ) = SSR(X,, X2) — SSR(X))

Extensions for three or more variables are straightforward: For example, we define:

SSR(X;;]X], Xg) = S’SE(X[, Xz) - SSE(XI, Xz, X3)

or:
SSR(X3|X,, X2) = SSR(X,, X2, X3) — SSR(X,, X>)
and:
SSR(Xa, X3|X ) = SSE(X ) — SSE(X,. X, X3)
or:

SSR(X2, XX 1) = SSR(X ., X2, X3) — SSR(X))
and:

SSR(Xa, X31X1) = SSE(X1) — SSE(X\. X2, X3)
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Decomposition of $SR into Extra Sums of Squares

In multiple regression, unlike simple linear regression, we can obtain a variety of decom-
positions of the regression sum of squares SSR into extra sams of squares.

o

SSTO = SSR(X,) + SSE(X ) =

where the notation now shows explicitly that X is the X variable in the model. Replacing
SSE(X,) by its equivalent

SSTO = SSR(X,) + SSR(Xa[X1) + SSE(X ., X2)

We now make use of the same identity for multiple regressicn with two X variables as
for a single X variable, namely:

SSTO = SSR(X,, X2} + SSE(X . X>)
Solving (7.7) for SSE(X,, X2)
SSR(X,, X2} = SSR(X,) + SSR(X21 X))

Of course, the order of the X variables is arbitrary. Here, we can also Obtain the
decomposition:

SSR(X 1. X2} = SSR(X3) + SSR(X |1 X2)

When the regréssion model contains three X variables, a variety of decompositions of
SSR(X . X2, X3) can be obtained. We illustrate three of these:

SSR(X ., X2, X3) = SSR(X,) + SSR(X2| X)) + SSR(OX:|X . X2)
SSR(X\, Xa. X3) = SSR(X2) + SSR(X3]X2) + SSR(X(|X2. X3)
SSR(X\, Xa. X3) = SSR(X) + SSR(X2, X3|X,)
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5570 = 495.39

SSR(X,) = 381.97 4

SSROGIX) = 347 —( B8

SSE(X,) = 11342 < |

r ~

 SSROXG, Xg) = 385.44 —

$57T0 = 495.39

~

=< SSE(Xq, X5) = 109.95 —-j :

-

> SSR(Xy) = 352.27

4
L j ~— SSROG|Xy) = 33.17
> SSE(X;) = 143.12

J JI—p
Bxampleof Source of
ANOVA Table Vanatlg:?“ 55 df | MS |
with Regression SSR(Xq, X2, X3) 3 MSR(X1, X2, X3)
Decomposition X1 SSR(X1) 1 MSR(X4)
of SSR for Xa| X1 SSR(X21Xq).. 1 MSR(X2| X1)
Three X X3l X4, X2 SSR(X3| X1, X2) 1 MSR(X3| X1, Xz)
Variables. Error SSE(Xq; X3, X3) n—4 MSE(X+, Xa,. X3)

Total $ST0 n—1
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Uses of Extra Sums of Squares in Tests
for Regression Coefficients

Test whether a Single 8,=0

When we wish to test whether the term ¢ X can be dropped from a multiple regression
model, we are interested in the alternatives:

HO:ﬁk :0
H: B #0

We already know that test statistic

is appropriate for this test.

We, now show that this can also be done using the extra sum of squares.
Let us consider the first-order regression model with three predictor
variables:
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Y = Bo+ i1 Xut + foXio+ BsXis +&  Full model
To test the alternatives:
Hy: =0
H;:p:#0

we fit the full model and obtain the error sum of squares SSE(F). We now explicitly show
the variables n the full model, as follows:

SSE(F) = SSE(X,, X2, X3)

The degrees of freedom associated with SSE(F) are dfy = n — 4 since there are four
parameters in the regression function for the full model
The reduced model when Hy holds is:

Y,‘ = ﬁg + ﬁ] Xfl -+ ﬁzng + &; Reduced model

We next fit this reduced model and obtain:

SSE(R) = SSE(X,, X»)
There are dfp = n — 3 degrees of freedom associated with the reduced model.
The general linear test statistic
P SSE(R)— SSE(F) _ SSE(F)
dfg —dfr  dfr

here becomes:
_ SSE(X,, Xp) — SSE(X,, X2, X3)  SSE(X,, X3, X3)

F* :
(n—3)—(n—4) n—4
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Note that the difference between the two error swums of squares in the numerator term 1s the
extra sum of squares

SSE(X,, X2) — SSE(X 1, X5, X3) = SSR(X;3]| X1, X5)

Hence the general linear test statistic here 1s:

_ SSR(X;3]X), X2) N SSE(Xy, X2, X3)  MSR(X3]Xy, X»)

F* : —
1 n—4 MSE(XI,Xz, Xq)

And this can be compared with the critical region F(1, n-4) to have the

decision.

Remark: F-statistic in this case also equal to (t-statistic)?

Example:
In the body fat example, can we remove the X3 from the model?
Solution

1- HO: B3=0 vs HI: B3£0

2-

_ SSR(X3|X11 XZ) . SSE(XIQ X29 XS)
N 1 ' n—4

1.5 i
1 16

F*
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3-

For o = .01, we require £(.99;1, 16) = 8.53. Since F* = 1.88 < 8.53, we conclude H,,
that X5 can be dropped from the regression model that already contains X, and X,.

Remark: if we use t-test we see that

Since (*)* = (—1.37)* = 1.88 = F*, we see that the two test statistics are equivalent, just
as for simple linear regression.

Test whether Several Coefficients

In multiple regression we are frequently interested in whether several terms in the regression
model can be dropped. For example, we may wish to know whether both 8, X5 and f343
can be dropped from the full model . The alternatives here are:

Hyo: o = B3=0
H,: not both $, and 3 equal zero
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With the general linear test approach, the reduced model under Hj is:
Y; =60+ 61Xy + & Reduced model
and the error sum of squares for the reduced model is:
SSE(R) = SSE(X))

This etror sum of squares has dfg = n — 2 degrees of freedom associated with it.
The general linear test statistic (2.70) thus becomes here:

_ SSE(X)) — SSE(X,, X2, X3)  SSE(X), X3, X3)

B (n—2)—(m—4) ' n—4

%k

Again the difference between the two error sums of squares in the numerator term is an
extra sum of squares, namely:

SSE(X,) — SSE(X,, X2, X3) = SSR(X>, X5/ X)) .

Hence, the test statistic becomes:

. SSR(XZ, X3|Xl) . SSE(XI: XZs Xﬁ) . MSR(X2: X3|Xl)
B 2 ) n—4 ~ MSE(X1, X2, X3)

F’F

Note that SSR(X>, X3|X;) has two degrees of freedom associated with it, as we pointed out
earlier.

Example:

In the body fat example, can we remove the X2 and X3 from the model?
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