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Multiple Linear Regression

In This chapter, we generalized the simple linear regression model as

General Linear Regression Model

In general, the variables X,,..., X p:, in a regression model do not need to represent
different predictor variables, as we shall shortly see. We therefore define the general linear

regression model, with normal error terms, simply in terms of X variables:
YVi=Fo+BiXa+ BoXo+- + 6,1 Xip-1 + &
where:

Bo» P1, - - -, Bp—1 are parameters

X1, - - - Xi,p—1 are known constants
g; are independent N (0, 0?)
i=1,....n

If we let X;o = 1, regression model can be written as follows:
Yi = BoXio + B1Xay + BoXio +--- 4+ Bp-1 Xi p—1 + &7
where X;o = 1, or:
p—
Y=Y BiXu-+e&  where Xip=

k=0 i

K=U

The response function for regression model. is, since E{g;} = 0:

EfY} =B+ X1 +5Xs+ -+ Bp 1 X

This model can be specialized for different cases as follows
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1- Simple linear model when p=2

Y =8, +8X,+¢,

2- Model with some Qualitative Predictor Variables

Y :ﬁo+ﬁ1xl+ﬂzxz+59

This model cab be used in different applications such as:

The first-order regression model then is as follows:

Yi=PBo+ B Xi, + B2 Xin + &
where:

X;) = patient’s age

Xy = 1 if patient female
2710 if patient male

3- Polynomial regression

Polynomial Regression. Polynomial regression models are special cases of the general
linear regression model. They contain squared and higher-order terms of the predictor vari-

able(s), making the response function curvilinear. The following is a polynomial regression
model with one predictor variable: ‘

Y, =Po+ B Xi + B X + 5
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4- Transformed Variables

Transformed Variables. Models withtransformed variables involve complex, curvilinear
response functions, yet still are special cases of the general linear regression model. Consider
the following model with a transformed ¥ variable:

logY;, = Bo+ fiXin + BoXio + B3Xis + &

Here, the response surface is complex, yet model can still be treated as a general
lincar regression model. If we let ¥/ = log ¥;, we can write regressignsmodel

Y = po+ BiXu + HXin+ BiXis + &

which is in the form of general linear regression model The response variable just
happens to be the logarithm of Y.

Many models can be transformed into the general linear regression model. For instance,
the model:

1
Y,‘ =
BotBiXu+ BXin+ &

can be transformed to the general linear regression model by letting ¥ = 1/Y;. We then
have:

Y=Pph+bBXu+bhXnte
5- Interaction Effects

Interaction Effects. When the effects of the predictor variables on the response variable
are not additive, the effect of one predictor variable depends on the levels of the other pre-
dictor variables. The general linear regression model encompasses regression models
with nonadditive or interacting effects. An example of a nonadditive regression moedel with
two predictor variables X, and X5 is the following:

Yi=Po+ B Xa+ BXio+ BXnXn+s

Here, the response function i1s complex because of the interaction term B3 X;; Xy, Yet
regression model is a special case of the general linear regression model. Let X3 =
X1 X2 and then write

Y; = Bo+ Bi1Xo + B2 Xio + B3 Xiz + &;
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6-Combination of Cases

Combination of Cases. A regression model may combine several of the elements we have
just noted and still be treated as a general linear regression model. Consider the following
regression model containing linear and quadratic terms for each of two predictor variables
and an interaction term represented by the cross-product term:

Y = o+ PrXa + B X2 + BaXio + PuX: + BsXu X + &

Let us define:
Zy = Xi Zin = X}, Zn=Xn  Zu=Xp Zis = XnXin
We can then write regression model (6.16) as follows:
Yi =Po+ P12 + BoZiz ¥ B3Zis + PyZis + BsZis + &

General Linear Regression Model in Matrix Terms

To express general linear regression model
Yi=fo+ BiXu+ B Xz +--- +ﬁp71Xi,p7] + &

in matrix terms, we need to define the following matrices:

Y (1 Xy X -0 Xip
Y, 1 Xa Xoo -+ Xop
Y=1. X=1. . . .
nxl : nxp : . .
__K!__ __1 Xﬂl XnZ e Xn,p——l__

136



Dr. Khalaf Sultan Regression Analysis (Stat 332)

bo } £)

B &

B=1] . e =) .
px1 : nxl

_ﬁp—h En

Note that the Y and e vectors are the same as for simple linear regression. The § vector
contains additional regression parameters, and the X matrix contains a column of 1s as well
as a column of the n observations for each of the p — 1 X variables in the regression model
The row subscript for each element X;; in the X matrix identifies the trial or case, and the
column subscript identifies the X variable.

In matrix terms, the general linear regression model

Y=X B+e

nxl nXp nxp nxl

where:

Y is a vector of responses
B is a vector of parameters
X is a matrix of constants
€ is a vector of independent normal random variables with expectation

E{e} = 0 and variance-covariance matrix:

'0'2 0 P 0-

0 ¢ -« 0 .
o’{e} = : : . =GZI‘

(0 0 .- o?]

Consequently, the random vector Y has expectation:

E(Y) = XB

nxl

and the variance-covariance matrix of Y is the same as that of €:

oY} = o021

nxn

137



Dr. Khalaf Sultan Regression Analysis (Stat 332)

Estimation of Regression Coefficients

The least squares criterion is generalized as follows for general linear regression
model

Q=" (Yi—Fo~fiXn— - — BpXip)
i=1

The least squares estimators are those values of g, B, . .., Bp—1 that minimize Q. Let us
denote the vector of the least squares estimated regression coefficients by, by, . .., b,_; ashb:

» bo -
b
b =
pxl
]
- pr—l_.

The least squares normal equations for the general linear regression model
- X'Xb=XY g

Hence

b=| | |= = B=(X"X)'X Y
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The prove 1s similar to the simple linear model in the matrix form.

Example: Multiple Regression with Two Predictor Variables (Dwaine
Studios)

Dwaine Studios, Inc., operates portrait studios in 21 cities of medium size.
These studios specialize in portraits of children. The company is
considering an expansion into other cities of medium size and wishes to
investigate whether sales (Y)- thousands- in a community can be
predicted from the number of persons aged 16 or younger in the
community (X1)- thousands- and the per capita disposable personal
income in the community (X2 )- thousands. Data on these variables for
the most recent year for the 21 cities in which Dwaine Studios is now
operating are shown below:

city X1 X2 Y

1 68.5 16.7 174.4
2 45.2 16.8 164.4
3 91.3 18.2 244.2
4 47.8 16.3 154.6
5 46.9 17.3 181.6
6 66.1 18.2 207.5
7 49.5 15.9 152.8
8 52 17.2 163.2
9 48.9 16.6 145.4
10 38.4 16 137.2
11 87.9 18.3 241.9
12 72.8 171 191.1
13 88.4 17.4 232
14 42.9 15.8 145.3
15 52.5 17.8 161.1
16 85.7 18.4 209.7
17 41.3 16.5 146.4
18 51.7 16.3 144
19 89.6 18.1 232.6
20 82.7 19.1 224.1
21 52.3 16 166.5
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# How to read txt file in R

mat <- scan('DSD.txt")

mat <- matrix(mat, ncol = 3, byrow = TRUE)
X1=mat[,1]

X2=mat[,2]

Y=mat[,3]

n=length(mat[,1])
one=as.vector(rep(1, n))
X=cbind(one,X1,X2)
b=solve(t(X)%*%X)%*%t(X)%*%Y
model=Im(Y~X1+X2)

summary(model)

then we obtain

Y =—689+1.46X 1+9.37X 2.
The model coefficients can be interpreted as:
1- There is -68.9 of the sales when X1 and X2 are zeros
2- When 1n population size increases by one unit (thousand), the sales
increases by 1.46 thousand with fixed income.
3- When in income increases by one unit (thousand), the sales

increases by 9.37 thousand with fixed population zise.
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