King Saud University	Mid-2 Exam, Stat 332
College of Sciences	2 $^{\text {nd }}$ Semester 1436-1437H
Department of Statistics \& OR	Time: 90 Minutes

Student Name:

ID\#:

Answer the following

Problem 1

Consider the following the linear regression model
$\left.\begin{array}{l}Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}, \quad i=1,2, \ldots, n, \\ E\left(\varepsilon_{i}\right)=0, \quad \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} \text { and } \operatorname{Cov}\left(\varepsilon_{\mathrm{i}}, \varepsilon_{\mathrm{j}}\right)=0, \mathrm{i} \neq \mathrm{j}\end{array}\right\}$,
(a) Write the given regression model with the associated conditions in the matrix form.
(b) Use the least square method to derive the estimate of the vector of parameters $\beta^{\prime}=\left(\beta_{0}, \beta_{1}\right)$.

Problem 2

A marketing researcher studied annual sales of a product that had been introduced 10 years ago. The data are as follows, where X is the year (coded) and Y is the sales in thousands of units:

$\boldsymbol{i}:$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$X_{i}:$	0	$\mathbf{1}$	2	3	4	5	6	7	8	9
$Y_{i}:$	98	135	162	178	221	232	283	300	374	395

(a) Estimate the simple linear regression models before and after the transform $Y^{\prime}=\sqrt{Y}$
(b) Compare between the two models based on the meaning of the coefficient of determination.
(c) Calculate $90 \% \mathrm{CI}$ for $\mathrm{E}(\mathrm{Y})$ in when $\mathrm{X}=11$ before and after the transform. Then, compare the results.

Problem 3

To investigate the simple linear model $Y=\beta_{0}+\beta_{1} X+\varepsilon$, we have the following data:
$X^{\prime} X=\left[\begin{array}{cc}60 & 3599 \\ 3599 & 224091\end{array}\right], X^{\prime} Y=\left[\begin{array}{c}5098 \\ 296024\end{array}\right]$ and $Y^{\prime} Y=448662$
(a) Estimate the coefficients of the model.
(b) Find the standard deviation of the coefficients.
(c) Calculate R^{2} and the correlation coefficient and interpret the results.
(d) Find 90% prediction interval of $Y_{\text {New }}$ when $X=50$

