Department of Statistics & Operations Research College of Science

King Saud University

STAT-324: Probability and Statistics for Engineers Second Mid-Term Exam Second Semester 1435 – 1436

Student's Name (In Arabic):	Section's Number:	
Student's Number:	Attendance number:	
Teacher's Name:		

Instructions:

- There are 25 multiple choice questions.
- Time allowed is 90 minutes (1.5 Hour).
- For each question, put the code of the correct answer in the following table beneath the question number.
- Please, use capital letters: A, B, C, and D.
- Do not copy answers from your neighbors; they have different question forms.
- Mobile Telephones are not allowed in the classroom.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
11	12	13	14	15	16	17	18	19	20

21	22	23	24	25

Question (1-6):

Given the standard normal distribution, $Z\sim N(0,1)$, find:

(1) The area under the curve between z=-1.55 and z=1.55

(1) <u>0.0700</u> (D) 0.0004	(A)	0.8788	(B) 0.998	(C) 1.5396	(D) 0.0864
------------------------------	-----	--------	-----------	------------	------------

(2) $P(Z \ge 2.05) =$

(A) 0.1088	(B) <u>0.0202</u>	(C) 0.3645	(D) 0.1875
------------	-------------------	------------	------------

(3) P(0.1 < Z < 2.05) =

(A) 0.0746	(B) 0.9950	(C) <u>0.4400</u>	(D) 0.9750
			1

(4) If P(Z < a) = 0.879, then the value of a =

(A) 2.54	(B)-1.87	(C) 1.64	(D) <u>1.17</u>

(5) If P(-k < Z < k) = 0.95, then the value of k =

(A) 2.54	(B) 2.31	(C) <u>1.96</u>	(D) 0.5
----------	----------	-----------------	---------

(6) P(Z=1.89) =

(A) 0.1220	(B) 0.1660	(C) 0.1550	(D) <u>0.0</u>	

Question (7-9):

The weight of a large number of fat persons is nicely modeled with a normal distribution with mean of 100 kg and a standard deviation of 10 kg, find the probability that an individual picked at random from this population will have a weight

(7) at most 100 kg is:

(A) 0.75	(B) 0.125	(C) 0.0162	(D) <u>0.5</u>	

(8) Greater than 105 kg:

(A)	0.3085	(B) 0.4388	(C) 0. 0.0062	(D) 0.5278		
9) Between 7	5 and 125 k	rg:				
(A)	0.9876	(B) 0.7135	(C) 0.6153	(D) 0.8995		
• •	he life time	of a system is a rand n with mean of 6 yea	lom variable T which rs.	is modeled nicely b		
10) The varia						
(A) 13	36	(B) <u>36</u>	(C) 0.514 2	(D) 0.6161		
11) The prob	ability that	the life time of the sy	stem is greater than 10) years is		
(A) 0.0	462	(B) <u>0.1889</u>	(C) 0.4143	(D) 0.2960		
Question (12-13): Let X be a normal random variable with mean 4 and variance 9. Then $(12) P(X \ge 10.15) =$						
(A)	0.56	(B) <u>0.0202</u>	(C) 0.514 2	(D) 0.6161		
(13) If $P(X < a) = 0.879$, then the value of $a =$						
13) If P(X< a	(0.879, t)	then the value of $a = \frac{(B)7.51}{}$	(C)8.9	(D) 6.89		

Question (14-17):

It is known that 60% of mice inoculated with aserum are protected from a certain disease (does not contract the disease). If 5 mice are inoculated, the probability that

(14) none contracts the disease:

-	- 1)			
	(A) 0.264	(B) 0.331	(<u>C</u>) 0.078	(D) 0.159

(15) fewer than 2 contract the disease:

(A) 1.005 <u>(B) 0.337</u>	(C) 0.932	(D) 0.085
----------------------------	-----------	-----------

(16) more than 2 contract the disease:

` 1	/			
	(A) 0.2842	(B) 0.7315	(C) 0.4941	(D) 0.3174

(17) the standard deviation of the number of mice that contract the disease:

1	- / / 2		,		
	(A) 1.095	(B) 0.951	(C) 1.594	(D) 0.858	

Question (18-20):

A company is interested in evaluating its current inspection procedure for shipments of 10 identical items. The procedure is to take a sample of 5, without replacement. The defective proportion of shipments is 20%. The probability that in the sample

(18) none found to be defective:

(A)	0.222	(B) 0.526	(C) 0.123	(D) 0.628
-----	-------	-----------	-----------	-----------

(19) no more than 1 found to be defective:

\ <u> </u>) no more man i ro	una to ob activities		
	(A) 0.361	(B) 0.518	(C) 0.471	(D) 0.778

(20) the mean number found to be defective:

١.	-,			
	(A) 2	(B) 0.5	(C) 1	(D) 7

Question (21-23):

On average, a textbook author makes two word-processing errors per page on the first draft of his textbook. Assuming that the number of errors follows Poisson distribution, the probability that:

(21) on the next page he will make no errors:

' -	/ F8				
	(A) 0.076	(B) 0.305	(C)0.135	(D) 0.215	

(22) on the next page he will make 2 or more errors:

(A) 0.723 (B) 0.594 (C) 0.151 (D) 0.807	

(23) The probability that on the next two pages he will make 1 or more errors:

١.			1				
	(A)	0.982	(B) 0.678	(C)	0.265	(D) 0.781	

Question (24-25):

Suppose that X has the following uniform distribution:

$$f(x) = \begin{cases} \frac{1}{3}, & x = 1, 3, 4 \\ 0, & otherwise \end{cases}$$

 $(24) P(X \ge 2) =$

(<u> </u>			
(A) 0.282	(B) 0.667	(C) 0.155	(D) 0.437

(25) The mean of X is:

١.	,			
	(A) 3.275	(B) 1.888	(C) 5.234	(D) 2.667
	I	!		