
Exponential Distribution 

Some Continuous Probability Distributions: Part I 
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Continuous Uniform distribution 

Normal  Distribution 



(Rectangular Distribution) 

The probability density function of the 

continuous uniform random variable X on 

the interval [A, B] is given by: 

Chapter 6: Some Continuous Probability Distributions: 

6.1 Continuous Uniform distribution: 
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We write X~Uniform(A,B). 
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Theorem 6.1: 

The mean and the variance of the continuous uniform distribution on the interval 

[A, B] are: 
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Example 6.1:  
Suppose that, for a certain company, the conference time, X, has a uniform 

distribution on the interval [0,4]  (hours). 

(a)             What is the probability density function of X? 

(b)             What is the probability that any conference lasts at least 3 hours? 
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Exercise : Uniform Distribution 

Solution 

Solution 
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Solution 
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6.2 Normal  Distribution: 
The normal distribution is one of the most important continuous distributions.  

Many measurable characteristics are normally or 

approximately normally distributed, such as, height 

and weight. 

The graph of the probability density function (pdf) of 

a normal distribution, called the normal curve, is a 

bell-shaped curve. 

The pdf of the normal distribution depends on two parameters: mean = E(X)=   and  

variance =Var(X) = 2. 

If the random variable X has a normal distribution with mean  and variance 2, we write: 

X ~ Normal(,)  or X ~ N(,) 

The pdf of X ~ Normal(,)  is given by: 
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1 < 2, 1=2  
1 = 2, 1<2  1 < 2, 1<2  

 Some properties of the normal curve f(x) of N(,): 

1.    f(x) is symmetric about the mean . 

2.    The total area under the curve of  f(x) =1. 

3.    The highest point of the curve of  f(x) at  the mean . 

4. The mode, which is the point on the horizontal axis where the curve is a 

maximum, occurs at  X= µ    , (Mode = Median = Mean). 

5. The curve has its points of inflection at X= µ ±σ  is concave downward if  µ -σ 

<X< µ +σ  and is concave upward otherwise. 

6. The normal curve approaches the horizontal axis asymptotically as we proceed 

in either direction away from the mean. 

The location of the normal distribution depends on  and its shape depends on  . 
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6.3 Areas Under the Normal Curve: 

Definition 6.1: 

The Standard Normal  Distribution: 

•The normal distribution with mean =0 and variance 2=1 is called the 

standard normal distribution and is denoted by Normal(0,1) or N(0,1). If 

the random variable Z has the standard normal distribution, we write 

Z~Normal(0,1) or Z~N(0,1).  

•The pdf of Z~N(0,1) is given 

by: 
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•The standard normal distribution, Z~N(0,1), is very important 

because probabilities of any normal distribution can be  calculated 

from the probabilities of the standard normal distribution. 

•Probabilities of the standard normal distribution Z~N(0,1) of the 

form P(Za) are tabulated (Table A.3, p681).  
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  ·     We can transfer any normal distribution X~N(,) to the  standard normal 

distribution, Z~N(0,1) by using the following    result. 

  Result: If X~N(,), then  
N(0,1)~

X
Z






Areas Under the Normal Curve of X~N(,) 

The probabilities of the normal distribution N(,) depends on  and . 
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How to transform normal distribution (X) to standard normal 

distribution (Z)? 
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Probabilities of Z~N(0,1): 

Suppose Z ~ N(0,1). 

P(Za)  

The area to the left of Z 
P(Zb) = 1P(Zb)  

The area to the right of Z 
P(aZb) = 

     P(Zb)P(Za)  

Note: P(Z=a)=0  for every a . 
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Example: 
Suppose Z~N(0,1). 

(1) P(Z1.50)=0.9332  

Z 0.00 0.01 … 

:    

1.5   0.9332 

:  

(2) P(Z0.98) 

=1P(Z0.98) 

=1  0.8365 

= 0.1635  

Z 0.00 … 0.08 

:  :   :    

:  … …   

0.9      0.8365 

(3) P(1.33 Z2.42) 

=  P(Z2.42) P(Z1.33) 

= 0.9922  0.0918 

= 0.9004  

Z … 0.02 0.03 

:  :      

1.3   0.0918 

:  

2.4   0.9922  (4) P(Z0)=P(Z 0)=0.5 
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Direction of increasing probability 

Directio

n of 

increasi

ng 

Of  Z 

…

…

… 

All probabilities 

for Z < 0 (negative) 

are less than 0.5 

Direction of increasing probability 

All probabilities 

for Z > 0 (positive) 

are more than 0.5 

…

…

… 

P(Z<-3.49) ≈ 0 

P(Z> 3.49) ≈ 1 

Notations about Z table 
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Example 6.2: Given a standard normal distribution, find the area under the curve that lies   

(a) to the right of z = 1.84, and   (b) between z = -1.97 and z = 0.86. 

Solution:  

•The area in Figure (a) to the right of z = 1.84 is equal to 1 

minus the area in Table A.3 to the left of Z = 1.84, namely,  

1 - 0.9671 = 0.0329. 

• The area in Figure (b) between z =  - 1.97 and z = 0.86 is 

equal to the area to the left of z = 0.86 minus the area to the left 

of z = - 1.97. From Table A.3 we find the desired area to be 

0.8051 - 0.0244 = 0.7807 

Example 6.3: Given a standard normal distribution, find the 

value of  A  such that 

(a) P(Z > k) = 0.3015, and    (b) P(k < Z < -0.18) = 0.4197. 
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Example: 

Suppose Z~N(0,1). Find the 

value of k such that 

P(Zk)= 0.0207. 

Solution: 
.k = 2.04  

Z … 0.04 

:  :   

  

2.0    0.0207  

:  

Example 6.2: Reading assignment 

Example 6.3: Reading assignment  

Probabilities of X~N(,): 
 

    Result:   X ~N(,)  
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4) P(X=a)=0 for every a. 

5) P(X) = P(X)=0.5 

Example 6.4: Reading assignment 

Example 6.5: Reading assignment 

Example 6.6: Reading assignment  
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Example: 
Suppose that the hemoglobin level for healthy adults males has a normal distribution 

with mean =16 and variance 2=0.81 (standard deviation =0.9).  

(a) Find the probability that a randomly chosen healthy adult male has hemoglobin 

level less than 14. 

(b) What is the percentage of healthy adult males who have hemoglobin level less than 

14? 

Solution: 
Let X = the hemoglobin level for a healthy adult male 

X ~ N(,)= N(16, 0.9). 
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1614
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14
ZP)14 P(X = P(Z 2.22)=0.0132 (a)  

(b) The percentage of healthy adult males who 

have hemoglobin level less than 14 is 

P(X 14)  100% = 0.01320 100%  =1.32% 

Therefore, 1.32% of healthy adult males have 

hemoglobin level less than 14. 
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Example: 

Suppose that the birth weight of Saudi babies has a normal distribution with mean =3.4 and 

standard deviation =0.35. 

(a) Find the probability that a randomly chosen Saudi baby has a birth weight between 3.0 and 

4.0 kg. 

(b) What is the percentage of Saudi babies who have a birth weight between 3.0 and 4.0 kg? 

Solution: 

X = birth weight of a Saudi baby 

 = 3.4  = 0.35  (2  = 0.352 = 0.1225) 

X ~ N(3.4,0.35 ) 

(a)   P(3.0<X<4.0)=P(X<4.0)P(X<3.0) 
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= P(Z1.71)  P(Z  1.14) 

=  0.9564  0.1271 

= 0.8293 

(b) The percentage of Saudi babies who have a birth weight 

between 3.0 and 4.0 kg is  

P(3.0<X<4.0)  100%= 0.8293 100%= 82.93% 
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Notation: 

P(Z ≤ ZA) = A 

 

Result:  

ZA =  Z1A                Z1A = - ZA  

Example: 

Z ~ N(0,1) 

P(Z ≤ Z0.025) = 0.025  

P(Z  Z0.95)  = 0.25  

P(Z  Z0.90)  = 0.10  
 

Example: 

Z ~ N(0,1) 

Z0.025  = - Z0.975  =  -1.96 

Z0.95    = 1.645 

Z0.90   =  1.285 

 

Z … 0.06 

:  :   

  

1.9   0.975 

20 
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Example 6.10:  Gauges are use to reject all components where a certain dimension is not 

within the specifications 1.50±d. It is known that this measurement is normally distributed 

with mean 1.50 and standard deviation 0.20. Determine the value d such that the specifications 

cover 95% of the measurements. 

Solution:  =1.5,   =0.20,   X= measurement,   X~N(1.5, 0.20) 

Z … 0.06 

:  :   
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-1.9   0.025 
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d
P(Z
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The specification limits are: 1.5 ± d 

x1=Lower limit=1.5d,  x2=Upper limit=1.5+d 

P(X> 1.5+d)= 0.025   P(X< 1.5+d)= 0.975 

P(X< 1.5d)= 0.025 
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The specification limits are: 

x1=Lower limit=1.5d = 1.5  0.392 = 1.108 

x2=Upper limit=1.5+d=1.5+0.392= 1.892 

Therefore, 95% of the measurements fall within 

the specifications (1.108, 1.892).  
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Moment Generating Function, Mean and Variance of Normal Distribution 
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Normal Approximation to Binomial 

1- Determine the 

lower or upper 

limit. 

2- Using + ½ with 

upper limit or  –½ 

with lower. 

lower limit=  upper limit 

P(Z≤ a) =     (a) 
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•Let X be the number of times that a fair coin when flipped 40 times lands on head. 

Find the prob. that  it will be equal to 20. 

Example of Approximating binomial 

Solution 

20 20 



 

Exercise  
6.1 

 Given a standard normal distribution, find the normal curve area under the curve which lies 

          (a) to the left of a = 1.43; 

          (b) to the right of z = -0.89: 

          (c) between z = —2.16 and z = — 0.65; 

          (d) to  the left of z = -1.39; 

          (e) to the: right of z = 1.90: 

          (f) between z = -0.48 and z = 1.74. 

 Solution 
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6.2 Find the value of z if the area under a standard normal curve 

(a) to the right, of z is 0.:3022; 

(b) to the left of z  is 0.1131 

(c) between 0 and z, with z > 0, is 0.4838; 

(d) between —z and z, with z > 0, is 0.9500. 

Solution 
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Solution 
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6.9 A soft-drink machine is regulated so that it discharges an average of 200 milliliters per 

cup. If the amount of drink is normally distributed with a standard deviation equal to 15 

milliliters, 

(a) what fraction of the cups will contain more than 224 milliliters? 

(b)   what is the probability that a cup contains between 191 and 209 milliliters? 

(c)   how many cups will probably overflow if 230-milliliter cups are used for the next 1000 

drinks? 

(d)   below what value do we get the smallest 25% of the drinks? 

Solution 
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Approximation to the binomial 

Solution 
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Solution 

Solution 
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Solution 
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Exponential Distribution 

Some Continuous Probability Distributions: 
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 Usually, exponential distribution is used to describe the time 

or distance until some event happens. 

 It is in the form of:  

 

 

 

 where x ≥ 0 and μ>0. μ is the mean or expected value. 
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e = 2.71828 
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In this case,  

 

Then the mean or expected value is  

 

 

( ) xf x e  
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

•The exponential distribution has a number of useful applications. For 

example, we can use it to describe arrivals at a car wash or the time it 

takes to load a truck. 

• For example, the exponential random variable is used to measure the 

waiting time for elevator to come. 
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Where x0 is some specific value of x 

 E(X)= μ or 

 

 Var(X)= μ2  or 

1



2

1


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We use CDF to find probabilities under exponential 

distribution. 

 

 

Or 
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  The time between arrivals of cars at Al’s full-service gas 

pump follows an exponential probability distribution with a 

mean time between arrivals of 3 minutes.  Al would like to 

know the probability that the time between two successive 

arrivals will be 2 minutes or less. 

Example:  Al’s Full-Service Pump 

x 

f(x) 

.1 

.3 

.4 

.2 

 1    2    3    4    5    6    7    8    9   10 
Time Between Successive Arrivals (mins.) 

 P(x < 2) = 1 - 2.71828-2/3 = 1 - .5134 =   .4866 
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 That is a very interesting and useful property for exponential 

distribution.  

 It is called “Memorylessness” or simply “Lack of 

memory”. 

 In mathematical form:  

 Therefore, P(wait more than 10 minutes| wait more than 3 

minutes)=P(wait more than 7+3 minutes| wait more than 3 

minutes)=P(wait more than 7 minutes) 

 

( | ) ( )P X s t X s P X t    
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 On average, it takes about 5 minutes to get an elevator at stat 

building. Let X be the waiting time until the elevator arrives. 

(Let’s use the form with μ here) 

 Find the pdf of X. 

  What is the probability that you will wait less than 3 minutes? 

  What is the probability that you will wait for more than 10 minutes? 

 What is the probability that you will wait for more than 7 minutes? 

 Given that you already wait for more than 3 minutes, what is the 

probability that you will wait for more than 10 minutes? 

 

 

 

 

Example 
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The Poisson distribution 
provides an appropriate description 

of the number of occurrences 
per interval 

The exponential distribution 
provides an appropriate description 

of the length of the interval 
between occurrences 
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 If we know that there are on average 10 customers visiting a 

store within 2-hour interval, then the average time between 

customers’ arrival is: 120/10=12 minutes. 

 Therefore, the time interval between customer visits follows an 

exponential distribution with mean=12 minutes. 
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