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Rotations and flips form the symmetry group of a great icosahedron
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ment, since a * 1 = al = a = la = 1 * a for every a € G. So we are three-
fourths of the way to proving that G is a group. All we need is inverses for
the elements of G, relative to *, to lie in G. But this just isn’t so. Clearly, we
cannot find an integer b such that 0 * b = 0b = 1, since 0b = O for all b. But -
even other integers fail to have inverses in G. For instance, we cannot find an
integer b such that 3 * b = 1 (for this would require that b = 3, and 3 is not
an integer).

2. Let G be the set of all nonzero real numbers and define, fora, b € G,a* b
= a*b; thus 4 * 5 = 4*(5) = 80. Which of the group axioms hold in G under
this operation * and which fail to hold? Certainly, G is closed under *. Is *
associative? If so, (a * b) * ¢ = a * (b * ¢), that is, (a * b)’*c = a*(b * c), and
so (a*b)’c = a*(b*c), which boils down to @*> = 1, which holds only for
a = *1. So, in general, the associative law does not hold in G relative to *.
We similarly can verify that G does not have a unit element. Thus even to
discuss inverses relative to * would not make sense.

3. Let G be the set of all positive integers, under * where a * b = ab, the
ordinary product of integers. Then one can easily verify that G fails to be a
group only because it fails to have inverses for some (in fact, most) of its ele-
ments relative to *.

We shall find some other nonexamples of groups in the exercises.

PROBLEMS

Easier Problems

1. Determine if the following sets G with the operation indicated form a
group. If not, point out which of the group axioms fail.

(a) G = set of all integers,a *b =a — b.

(b) G = set of all integers,a*b =a + b + ab.

(¢) G = set of nonnegative integers,a *b = a + b.

(d) G = set of all rational numbers # —1,a*b =a + b + ab.

(e) G = set of all rational numbers with denominator divisible by 5 (writ-
ten so that numerator and denominator are relatively prime), a * b =
a+b.

(f) G aset having more than one element,a * b = aforalla, b € G.

2. In the group G defined in Example 6, show that the set H = {T,, |a = *1,
b any real} forms a group under the * of G.

3. Verify that Example 7 is indeed an example of a group.
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7.
8.
9.
10.

11.

12.
13.
14.

15.
16.

17.
*18.

19.

20.

Prove that K defined in Example 8 is an abelian group.

In Example 9, prove that g * f = f* g”!, and that G is a group, is non-
abelian, and is of order 8.

Let G and H be as in Examples 6 and 7, respectively. Show that if
T.,€G,thenT,,*V*T_ } €EHifVEH.

Do Problem 6 with H replaced by the group K of Example 8.
If G is an abelian group, prove that (a * b)" = a" * b” for all integers n.
If G is a group in which a® = e for all a € G, show that G is abelian.

If G is the group in Example 6, find all T, , € Gsuch that T, , * T, , =
T,,*T,,forall real x.

In Example 10, for n = 3 find a formula that expresses ( f'h’) * ( f*h") as
f*h®. Show that G is a nonabelian group of order 6.

Do Problem 11 for n = 4.

Show that any group of order 4 or less is abelian.

If G is any group and a, b, ¢ € G, show thatifa *x b = a * ¢, then b = c,
andif b *a = c * a, then b = c.

Express (a * b)”"'in terms of a~! and b™".

Using the result of Problem 15, prove that a group G in which a = a™!

for every a € G must be abelian.
In any group G, prove that (a™!)"! = aforalla € G.

If G is a finite group of even order, show that there must be an element
a # e such that a = a~!. (Hint: Try to use the result of Problem 17.)

In S;, show that there are four elements x satisfying x> = e and three ele-
ments y satisfying y> = e.
Find all the elements in S, such that x* = e.

Middle-Level Problems

21.
22.

23.

24.

Show that a group of order 5 must be abelian.

Show that the set defined in Example 10 is a group, is nonabelian, and
has order 2n. Do this by finding the formula for ( f'A’) * (f*h") in the
form feh®.

In the group G of Example 6, find all elements U € G such that
UxT,,=T,,*UforeveryT,, € G.

If G is the dihedral group of order 2n as defined in Example 10, prove that:
(a) Ifnisoddanda € Gissuchthata*xb =b*aforallb € G, thena = e.
(b) If nis even, show that thereisana € G,a # e,suchthata*xb = b *a

forall b € G.
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(¢) If n is even, find all the elements a € G such thata * b = b * a
for all b € G.

25. If G is any group, show that:

(a) eis unique (i.e., if f € G also acts as a unit element for G, then f = e).
(b) Givena € G, thena™! € G is unique.

*26. If G is a finite group, prove that, given a € G, there is a positive integer

n, depending on a, such that a” = e.

*27. In Problem 26, show that there is an integer m > 0 such thata” = e

forall a € G.

Harder Problems

28.

29.

30.

31.

Let G be a set with an operation * such that:

1. G is closed under *.

2. * is associative.

3. There exists an element e € G such that e * x = x for all x € G.

4. Given x € G, there existsay € G such thaty * x = e.

Prove that G is a group. (Thus you must show that x *e = xandx *y = ¢
for e, y as above.)

Let G be a finite nonempty set with an operation * such that:

1. G is closed under *.

2. * 1s associative.

3. Givena,b,c € Gwitha*b =a *c,thenb = c.

4. Givena, b,c, € Gwithb *a =c *a,then b = c.

Prove that G must be a group under *.

Give an example to show that the result of Problem 29 can be false if G
1s an infinite set.

Let G be the group of all nonzero real numbers under the operation *

which is the ordinary multiplication of real numbers, and let H be the

group of all real numbers under the operation #, which is the addition of

real numbers.

(a) Show that there is a mapping F: G — H of G onto H which satisfies
F(a*b) = F(a)#F(b) for alla, b € G [i.e., F(ab) = F(a) + F(b)].

(b) Show that no such mapping F can be 1-1.

2. SOME SIMPLE REMARKS

In this short section we show that certain formal properties which follow from
the group axioms hold in any group. As a matter of fact, most of these results
have already occurred as problems at the end of the preceding section.
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We promised to list a piece of the argument given above as a separate
lemma. We keep this promise and write

Lemma 2.2.2. In any group G and a, b, c € G, we have:

(a) Ifab = ac, then b = c.
(b) If ba = ca, then b =c.

Before leaving these results, note that if G is the group of real
numbers under +, then Part (c) of Lemma 2.2.1 translates into the familiar
—(—a) = a.

There is only a scant bit of mathematics in this section; accordingly,
we give only a few problems. No indication is given as to the difficulty of these.

PROBLEMS

1. Suppose that G is a set closed under an associative operation such that
1. givena,y € G, there is an x € G such that ax = y, and
2. givena, w € G, there is a u € G such that ua = w.
Show that G is a group.

*2. If G is a finite set closed under an associative operation such that ax = ay
forces x = y and ua = wa forces u = w, for every a, x, y, u, w € G, prove
that G is a group. (This is a repeat of a problem given earlier. It will be
used in the body of the text later.)

3. If G is a group in which (ab)’ = a'b’ for three consecutive integers i, prove
that G is abelian.

4. Show that the result of Problem 3 would not always be true if the word
“three” were replaced by “two.” In other words, show that there is a
group G and consecutive numbers i, i + 1 such that G is not abelian but
does have the property that (ab)’ = a'b’ and (ab)'*! = a'*'b"*! for all
a,bin G.

5. Let G be a group in which (ab)?® = a*b* and (ab)® = a°b’ for all a, b € G.
Show that G is abelian.

6. Let G be a group in which (ab)” = a"b" for some fixed integer n > 1 for
alla, b € G. For all a, b € G, prove that:

(a) (ab)n—l — b"_lan_l.

(b) anbn—l —_ bn-—lan.

(¢) (aba b~ 1"l =g,

[Hint for Part (c): Note that (aba™')" = ab’a™! for all integers r.]
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12. Let G be any group and H a subgroup of G. For a € G, let a”'Ha =
{a”'ha|h € H)}. We assert that a”'Ha is a subgroup of G. If x = a~'h ,a and
y = a 'hya where hy, h, € H, then xy = (a 'h,a)(a 'h,a) = a ' (h,h,)a
(associative law), and since H is a subgroup of G, h,h, € H. Therefore,
a '(hh,)a € a~'Ha, which says that xy € a"'Ha. Thus a”'Ha is closed.
Also, if x = a”'ha € a™'Ha, then, as is easily verified, x ™' = (¢ 'ha)™' =
a”'h™'a € a~'Ha. Therefore, a ' Ha is a subgroup of G.

An even dozen seems to be about the right number of examples, so we
go on to other things. Lemma 2.3.1 points out for us what we need in order
that a given subset of a group be a subgroup. In an important special case we
can make a considerable saving in checking whether a given subset H is a
subgroup of G. This is the case in which H is finite.

Lemma 2.3.2. Suppose that G is a group and H a nonempty finite sub-
set of G closed under the product in G. Then H is a subgroup of G.

Proof. By Lemma 2.3.1 we must show that a € H impliesa™ ' € H. If
a =e,thena ! = e and we are done. Suppose then that a # e ; consider
the elements a, a2, ..., a"*! where n = |H|, the order of H. Here we
have written down n + 1 elements, all of them in H since H is closed, and H
has only n distinct elements. How can this be? Only if some two of the ele-

ments listed are equal; put another way, only if ' = a’ for some 1 = i <

j <= n + 1. But then, by the cancellation property in groups, a’~ ' = e. Since
j—i=1,a""' € H,hence e € H. However,j —i —1=0,s0a’" "' € H
and aa’~ 7! = a/~' = ¢, whence a~! = a/~'"! € H. This proves the
lemma. (]

An immediate, but nevertheless important, corollary to Lemma 2.3.2 is the

Corollary. If G is a finite group and H a nonempty subset of G closed
under multiplication, then H is a subgroup of G.

PROBLEMS
Easier Problems

1. If A, B are subgroups of G, show that A N B is a subgroup of G.

2. What is the cyclic subgroup of Z generated by —1 under +?

3. Let S, be the symmetric group of degree 3. Find all the subgroups of §;.
4. Verify that Z(G), the center of G, is a subgroup of G. (See Example 11.)
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s.

10.

*11.

*12.
13.
14.
15.

If C(a) is the centralizer of a in G (Example 10), prove that Z(G) =
NaecC(a).

Show that a € Z(G) if and only if C(a) = G.

In S5, find C(a) for eacha € S ;.

If G is an abelian group and if H = {a € G |a® = e}, show that H is a
subgroup of G.

Give an example of a nonabelian group for which the H in Problem 8 is
not a subgroup.

If G is an abelian group and n > 1 an integer, let A, = {a"|a € G}.
Prove that A, is a subgroup of G.

If G is an abelian group and H = {a € G | a"® = e for some n(a) > 1 de-
pending on a}, prove that H is a subgroup of G.

We say that a group G is cyclic if there exists an a € G such that
every x € G is a power of a, that is, x = a’ for some j. In other words, G
is cyclic if G = (a) for some a € G, in which case we say that a is a gen-
erator for G.

Prove that a cyclic group is abelian.
If G is cyclic, show that every subgroup of G is cyclic.
If G has no proper subgroups, prove that G is cyclic.

If G is a group and H a nonempty subset of G such that, givena, b € H,
then ab™! € H, prove that H is a subgroup of G.

Middle-Level Problems

*16.

17.

18.

19.

20.

21.

*22.

If G has no proper subgroups, prove that G is cyclic of order p, where p
is a prime number. (This sharpens the result of Problem 14.)

If G is a group and a, x € G, prove that C(x 'ax) = x~'C (a)x. [See Ex-
amples 10 and 12 for the definitions of C (b) and of x ~'C (a)x.]

If S is a nonempty set and X C S, show that T(X) = {f€ A(S) | f(X) C
X'} is a subgroup of A(S) if X is finite.

If A, B are subgroups of an abelian group G, let AB = {ab|a € A, b € B}.
Prove that AB is a subgroup of G.

Give an example of a group G and two subgroups A, B of G such that
AB is not a subgroup of G.

If A, B are subgroups of G such that b"'Ab C A for all b € B, show that
AB is a subgroup of G.

If A and B are finite subgroups, of orders m and n, respectively, of the

abelian group G, prove that AB is a subgroup of order mn if m and n are
relatively prime.
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23. What is the order of AB in Problem 22 if m and n are not relatively prime?

24, If H is a subgroup of G, let N = N,¢;x ~'Hx. Prove that N is a subgroup
of G such that y~!Ny = N for every y € G.

Harder Problems

25. Let S, X, T(X) be as in Problem 18 (but X no longer finite). Give an ex-
ample of a set § and an infinite subset X such that T(X) is not a sub-
group of A(S).

*26. Let G be a group, H a subgroup of G. Let Hx = {hx | h € H}. Show that,
givena, b € G, then Ha = Hb or Ha N Hb = @.

*27. If in Problem 26 H is a finite subgroup of G, prove that Ha and Hb have
the same number of elements. What is this number?

28. Let M, N be subgroups of G such that x 'Mx C M and x " !Nx C N for
all x € G. Prove that MN is a subgroup of G and that x ~'(MN)x C MN
forallx € G.

*29. If M is a subgroup of G such that x " !Mx C M for all x € G, prove that
actually x 'Mx = M.

30. If M, N are such that x " !Mx = M and x !Nx = N for all x € G, and if
M N N = (e), prove that mn = nm for any m € M, n € N. (Hint: Con-
sider the element m~'n"'mn.)

4. LAGRANGE’S THEOREM

We are about to derive the first real group-theoretic result of importance.
Although its proof is relatively easy, this theorem is like the A-B-C’s for fi-
nite groups and has interesting implications in number theory.

As a matter of fact, those of you who solved Problems 26 and 27 of Sec-
tion 3 have all the necessary ingredients to effect a proof of the result. The
theorem simply states that in a finite group the order of a subgroup divides
the order of the group.

To smooth the argument of this theorem—which is due to Lagrange—
and for use many times later, we make a short detour into the realm of set
theory.

Just as the concept of “function” runs throughout most phases of math-
ematics, so also does the concept of “relation.” A relation is a statement aRb
about the elements a, b € S. If S is the set of integers, a = b is a relation
on S. Similarly, a < b is arelation on S, asis a =< b.



Sec. 4 Lagrange’s Theorem 63

An immediate consequence of Theorems 2.4.7 and 2.4.5 is a famous re-
sult in number theory.

Theorem 2.4.8 (Euler). If a is an integer relatively prime to n, then
a*" =1 mod n.

Proof. U, forms a group of order ¢(n), so by Theorem 2.4.5, a*"™ = ¢
for all a € U,,. This translates into [a*‘"] = [a]*" = [1], which in turn trans-
lates into n | (a*™ — 1) for every integer a relatively prime to p. In other
words, a*"” = 1 mod n. (]

A special case, where n = p is a prime, is due to Fermat.

Corollary (Fermat). If p is a prime and p | a, then
a?~!' =1 mod p.
For any integer b, b = b mod p.

Proof. Since ¢(p) = p — 1, if (a, p) = 1, we have, by Theorem 2.4.8,
that a” ~' = 1(p), hence a' - a?~! = a(p), so that a” = a(p). If p| b, then
b =0(p) and b? = 0(p), so that b? = b (p). I

Leonard Euler (1707-1785) was probably the greatest scientist that Switzerland
has produced. He was the most prolific of all mathematicians ever.

Pierre Fermat (1601-1665) was a great number theorist. Fermat’s Last The-
orem—which was in fact first proved in 1994 by Andrew Wiles—states that the
equation a" + b" = c" (a, b, ¢, n being integers) has only the trivial solution where
a=0orb=0orc=0ifn>2.

One final cautionary word about Lagrange’s Theorem. Its converse in
general is not true. That is, if G is a finite group of order n, then it need not
be true that for every divisor m of n there is a subgroup of G of order m. A
group with this property is very special indeed, and its structure can be
spelled out quite well and precisely.

PROBLEMS

Easier Problems

1. Verify that the relation ~ is an equivalence relation on the set S given.
(a) S = Rreals,a ~ bifa — b is rational.
(b) S = C, the complex numbers, a ~ b if |a| = |b].
(c) S = straight lines in the plane, a ~ b if a, b are parallel.
(d) S = set of all people, a ~ b if they have the same color eyes.
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2. The relation ~ on the real numbers R defined by a ~ b if both a > b and
b > a is not an equivalence relation. Why not? What properties of an
equivalence relation does it satisfy?

3. Let ~ be a relation on a set S that satisfies (1) a ~ b implies that b ~ a
and (2) a ~ b and b ~ c implies that a ~ ¢. These seem to imply that
a~a.Forifa~ b,thenby (1),b ~a,soa~b,b~a,soby(2),a~a.lf
this argument is correct, then the relation ~ must be an equivalence rela-
tion. Problem 2 shows that this is not so. What is wrong with the argu-
ment we have given?

4. Let S be a set, {S,} nonempty subsets such that § = U,S, and S, N S =
@ if a # B. Define an equivalence relation on § in such a way that the §,
are precisely all the equivalence classes.

* 5. Let G be a group and H a subgroup of G. Define, fora, b € G,a ~ b if

a~'b € H. Prove that this defines an equivalence relation on G, and show
that [a] = aH = {ah|h € H}. The sets aH are called left cosets of H
in G.

. If Gis S; and H = {i, f}, where f:S — S is defined by f(x,) =

Xy, f(x,3) = xq, f(x3) = x3, list all the right cosets of H in G and list all
the left cosets of H in G.
In Problem 6, is every right coset of H in G also a left coset of H in G?

If every right coset of H in G is a left coset of H in G, prove that
aHa ! = Hforalla € G.

. In Z,,, write down all the cosets of the subgroup H = {[0], [4], [8]. [12]}.

(Since the operation in Z, is +, write your coset as [a] + H. We don’t
need to distinguish between right cosets and left cosets, since Z, is
abelian under +.)

10. In Problem 9, what is the index of H in Z,4? (Recall that we defined the

11.

13.
14.

*16

17

index i;(H) as the number of right cosets in G.)

For any finite group G, show that there are as many distinct left cosets of
H in G as there are right cosets of H in G.

. If aH and bH are distinct left cosets of H in G, are Ha and Hb distinct

right cosets of H in G? Prove that this is true or give a counterexample.

Find the orders of all the elements of U,g. Is U,z cyclic?

Find the orders of all the elements of U,,. Is U, cyclic?

. If p is a prime, show that the only solutions of x> = 1 mod p are x =
1 mod p or x = —1 mod p.

. If G is a finite abelian group and a,, ..., a, are all its elements, show
that x = a,a, - - - a, must satisfy x*> = e.

. If G is of odd order, what can you say about the x in Problem 16?
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18.

19.

20.

21.

22.
23.

24.

25.

Using the results of Problems 15 and 16, prove that if p is an odd prime
number, then (p — 1)! = —1 mod p. (This is known as Wilson’s Theo-
rem.) It 1s, of course, also true if p = 2,

Find all the distinct conjugacy classes of S5.

In the group G of Example 6 of Section 1, find the conjugacy class of the
element T, ,. Describe it in terms of a and b.

Let G be the dihedral group of order 8 (see Example 9, Section 1). Find
the conjugacy classes in G.

Verify Euler’s Theorem for n = 14 and a = 3, and forn = 14 and a = 5.

In U,;, show that there is an element a such that [a]*> = [—1], that is, an
integer a such that a*> = —1 mod 41.

If p is a prime number of the form 4n + 3, show that we cannot solve
x?= —1modp

Hint: Use Fermat’s Theorem thata”? "' = 1 mod p if p  a.
pup

Show that the nonzero elements in Z, form a group under the product
[a][b] = [ab] if and only if n is a prime.

Middle-Level Problems

26.

27.
28.

29.

30.
*31.
32.

33.

4.

Let G be a group, H a subgroup of G, and let S be the set of all distinct
right cosets of H in G, T the set of all left cosets of H in G. Prove that there
is a 1-1 mapping of S onto 7. (Note: The obvious map that comes to mind,
which sends Ha into aH, is not the right one. See Problems 5 and 12.)

If aH = bH forces Ha = Hb in G, show that aHa™' = H for everya € G.

If G is a cyclic group of order n, show that there are ¢ (n) generators for
G. Give their form explicitly.

If in a group G, aba™! = b', show that a’ba™" = b"" for all positive inte-
gers r.
Ifin Ga®=eandaba ! = b?, find o(b) if b # e.

If o(a) = m and a* = e, prove that m | s.

Let G be a finite group, H a subgroup of G. Let f(a) be the least positive
m such that a™ € H. Prove that f(a) | o(a).

If i # f € A(S) is such that f» = i, p a prime, and if for some
s €S, fi(s) = s for some 1 = j < p, show that f(s) = s.

If f € A(S) has order p, p a prime, show that for every s € S the orbit of
s under f has one or p elements. [Recall: The orbit of s under f is

{f'(s)| j any integer}.]
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If f € A(S) has order p, p a prime, and S is a finite set having » elements,
where (n, p) = 1, show that for some s € §, f(s) = s.

Harder Problems

36.

37.

38.
39.

40.

41.

42.

43.

In

If a > 1 is an integer, show that n|¢(a” — 1), where ¢ is the Euler
¢-function. [Hint: Consider the integers mod(a” — 1).]

In a cyclic group of order n, show that for each positive integer m that di-
vides n (including m = 1 and m = n) there are ¢(m) elements of order m.
Using the result of Problem 37, show that n = X, |, @ (m).

Let G be a finite abelian group of order n for which the number of solu-
tions of x™ = e is at most m for any m dividing n. Prove that G must be
cyclic. [Hint: Let s (m) be the number of elements in G of order m. Show
that ¢ (m) = ¢ (m) and use Problem 38.]

Using the result of Problem 39, show that U,, if p is a prime, is cyclic.
(This is a famous result in number theory; it asserts the existence of a
primitive root mod p.)

Using the result of Problem 40, show that if p is a prime of the form
p = 4n + 1, then we can solve x> = —1 mod p (with x an integer).

Using Wilson’s Theorem (see Problem 28), show that if p is a prime of
the form p = 4n + 1 and if

- 1.9. ...p—1=p-11
y=1-2-3 5 (2>.,

then y> = —1 mod p. (This gives another proof of the result in Problem
41.)
Let G be an abelian group of order n, and ay, ..., a, its elements. Let

X = aa, - -a,.Show that:

(a) If G has exactly one element b # e such that b* = e, then x = b.
(b) If G has more than one element b # e such that b*> = e, then x = e.
(¢) If nis odd, then x = e (see Problem 16).

HOMOMORPHISMS AND NORMAL SUBGROUPS

a certain sense the subject of group theory is built up out of three basic

concepts: that of a homomorphism, that of a normal subgroup, and that of
the factor or quotient group of a group by a normal subgroup. We discuss the
first two of these in this section, and the third in Section 6.

Without further ado we introduce the first of these.
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4. If G is any group, Z(G), the center of G, is a normal subgroup of G (see
Example 11 of Section 3).

5.1f G = S, G has the elements i, f, g, &, fg, and gf, where f(x,) = x,,
f(xy) = xy, f(x3) = x3 and g(x,) = x;, g(x;) = x3, g(x3) = x,. We claim
that the subgroup N = {i, g, g’} < S;. As we saw earlier (or can compute
now), fof =g =&, f8'f ' =g (fe) g(fe)' = fegg T\ = fof ' =
g%, and so on. So N < S, follows.

The material in this section has been a rather rich diet. It may not seem
so, but the ideas presented, although simple, are quite subtle. We recom-
mend that the reader digest the concepts and results thoroughly before going
on. One way of seeing how complete this digestion is, is to take a stab at
many of the almost infinite list of problems that follow. The material of the
next section is even a richer diet, and even harder to digest. Avoid a mathe-
matical stomachache later by assimilating this section well.

PROBLEMS

Easier Problems

1. Determine in each of the parts if the given mapping is a homomorphism.
If so, identify its kernel and whether or not the mapping is 1-1 or onto.
(@) G = Zunder +,G' = Z,, ¢(a) = [a] fora € Z.

(b) G group, ¢ : G — G defined by ¢(a) = a ! fora € G.

(c) G abelian group, ¢ : G — G defined by ¢ (a) = a” ! fora € G.

(d) G group of all nonzero real numbers under multiplication, G’ =
{1, =1}, ¢ (r) = 1 if ris positive, ¢(r) = —1if r is negative.

(e) G an abelian group, n > 1 a fixed integer, and ¢ : G — G defined by
¢(a) =a"fora € G.

2. Recall that G = G’ means that G is isomorphic to G'. Prove that for all

groups G, G,, Gj:

(@ G,=0G,.

(b) G, = G, implies that G, = G,.

(¢) G, = G,, G, = G;implies that G; = G;.

3. Let G be any group and A(G) the set of all 1-1 mappings of G, as a set,
onto itself. Define L,: G — G by L,(x) = xa™'. Prove that:

(a) L, € A(G).

(b) LaLb = Lab'

(¢) The mapping ¢: G — A(G) defined by ¢(a) = L, is a monomor-
phism of G into A(G).
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In Problem 3 prove that for alla, b € G, T,L, = L,T,, where T, is de-
fined as in Example 8.

In Problem 4, show that if V € A(G) is such that T,V = VT, for all
a € G,then V = L, for some b € G. (Hint: Acting on e € G, find out
what b should be.)

Prove that if ¢ : G — G’ is a homomorphism, then ¢ (G), the image of G,
is a subgroup of G'.

Show that ¢ : G — G', where ¢ is a homomorphism, is a monomorphism
if and only if Ker ¢ = (e).

Find an isomorphism of G, the group of all real numbers under +, onto
G', the group of all positive real numbers under multiplication.

Verify that if G is the group in Example 6 of Section 1, and H =
{T, , € G| arational}, then H < G, the dihedral group of order 8.
Verify that in Example 9 of Section 1, the set H = {i, g, g*, g°} is a nor-
mal subgroup of G, the dihedral group of order 8.

Verify that in Example 10 of Section 1, the subgroup

H={ih K, .. ., ¢

is normal in G.
Prove that if Z(G) is the center of G, then Z(G) < G.

If G is a finite abelian group of order n and ¢: G — G is defined by
¢(a) = a™ for all a € G, find the necessary and sufficient condition that
¢ be an isomorphism of G onto itself.

If G is abelian and ¢ : G — G’ is a homomorphism of G onto G', prove
that G’ is abelian.

If G is any group, N < G, and ¢: G — G’ a homomorphism of G onto
G', prove that the image, ¢ (), of N is a normal subgroup of G".

If N<Gand M < G and MN = {mn|m € M, n € N}, prove that MN is

a subgroup of G and that MN < G.

If MG, N<G,prove that M N N 1 G.

If H is any subgroup of G and N = N, a”'Ha, prove that N < G.

If H is a subgroup of G, let N(H) be defined by the relation N(H) =

{a € G|a 'Ha = H}. Prove that:

(a) N(H) is a subgroup of G and N(H) D H.

(b) HIN(H).

(¢) If K is a subgroup of G such that H < K, then K C N(H). [So N(H)
is the largest subgroup of G in which H is normal.]

If M I{G,N<G,and M N N = (e), show that form € M,n € N, mn = nm.
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21. Let S be any set having more than two elements and A(S) the set of
all 1-1 mappings of § onto itself. If s € S, we define H(s) =
{fE€ A(S) | f(s) = s}. Prove that H(s) cannot be a normal subgroup of A(S).

22. Let G = §;, the symmetric group of degree 3 and let H = {i, f}, where
f(x1) = xa, f(x3) = x1, f(x3) = x3.
(a) Write down all the left cosets of H in G.
(b) Write down all the right cosets of H in G.
(c) Is every left coset of H a right coset of H?

23. Let G be a group such that all subgroups of G are normal in G. If
a, b € G, prove that ba = a’b for some j.

24. If G, G, are two groups, let G = G, X G,, the Cartesian product of G,
G, [i.e., G is the set of all ordered pairs (a, b) where a € G, b € G,].
Define a product in G by (a,, b,)(a,, b,) = (a1a,, b\b,).

(a) Prove that G is a group.

(b) Show that there is a monomorphism ¢; of G, into G such that
¢,(G,) < G, given by ¢,(a;) = (a,, e,), where e, is the identity ele-
ment of G,.

(¢) Find the similar monomorphism ¢, of G, into G.

(d) Using the mappings ¢;, ¢, of Parts (b) and (c), prove that
01(G)e,(G,) = G and ¢,(G,) N ¢,(G,) is the identity element of G.

(e) Prove that G; X G, = G, X G,.

25. Let G be a group and let W = G X G as defined in Problem 24. Prove that:
(a) The mapping ¢ : G — W defined by ¢ (a) = (a, a) is a monomorphism

of G into W.

(b) The image ¢(G) in W [i.e., {(a, a) | a € G}] is normal in W if and only

if G is abelian.

Middle-Level Problems

*26. If G is a group and a € G, define 0,: G — G by 0,(g) = aga™'. We saw
in Example 9 of this section that o, is an isomorphism of G onto itself, so
o, € A(G), the group of all 1-1 mappings of G (as a set) onto itself. De-
fine : G — A(G) by y(a) = o, for all a € G. Prove that:
(a) ¢ is a homomorphism of G into A(G).
(b) Ker ¢ = Z(G), the center of G.

27. If 6is an automorphism of G and N < G, prove that §(N) < G.

28. Let 0, ¢ be automorphisms of G, and let 6y be the product of 6 and ¢ as
mappings on G. Prove that 6y is an automorphism of G, and that 67 ' is
an automorphism of G, so that the set of all automorphisms of G is itself
a group.
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*29. A subgroup T of a group W is called characteristic if ¢(T) C T for all au-
tomorphisms, ¢, of W. Prove that:
(a) M characteristic in G implies that M < G.
(b) M, N characteristic in G implies that MN is characteristic in G.
(¢) A normal subgroup of a group need not be characteristic. (This is
quite hard; you must find an example of a group G and a noncharac-
teristic normal subgroup.)

30. Suppose that |G| = pm, where p|m and p is a prime. If H is a normal
subgroup of order p in G, prove that H is characteristic.

31. Suppose that G is an abelian group of order p”"m where p | m is a prime.
If H 1s a subgroup of G of order p”, prove that H is a characteristic sub-
group of G.

32. Do Problem 31 even if G is not abelian if you happen to know that for
some reason or other H < G.

33. Suppose that N <{ G and M C N is a characteristic subgroup of N. Prove
that M < G. (It is not true that if M << N and N < G, then M must be
normal in G. See Problem 50.)

34. Let G be a group, A (G) the group of all automorphisms of G. (See Prob-
lem 28.) Let I(G) = {o,|a € G}, where o, is as defined in Problem 26.
Prove that I(G) < A(G).

35. Show that Z(G), the center of G, is a characteristic subgroup of G.
36. If N < G and H is a subgroup of G, show that H N N < H.

Harder Problems

37. If G is a nonabelian group of order 6, prove that G = §;.

38. Let G be a group and H a subgroup of G. Let S = {Ha|a € G} be the
set of all right cosets of H in G. Define, forb € G, T,:S — S by T,(Ha)
= Hab™'.

(a) Prove that T,T, = T,, for all b, ¢ € G [therefore the mapping
Y : G — A(S) defined by ¢ (b) = T, is a homomorphism].

(b) Describe Ker ¢, the kernel of ¢: G — A(S).

(c¢) Show that Ker ¢ is the largest normal subgroup of G lying in H
[largest in the sense that if N <\ G and N C H, then N C Ker ¢].

39. Use the result of Problem 38 to redo Problem 37.

Recall that if H is a subgroup of G, then the index of H in G, iz(H), is
the number of distinct right cosets of H and G (if this number is finite).

40. If G is a finite group, H a subgroup of G such that n{i;(H)! where n =
|G|, prove that there is a normal subgroup N # (e) of G contained in H.
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41. Suppose that you know that a group G of order 21 contains an element a

of order 7. Prove that A = (a), the subgroup generated by a, is normal in
G. (Hint: Use the result of Problem 40.)

42. Suppose that you know that a group G of order 36 has a subgroup H or
order 9. Prove that either H <1 G or there exists a subgroup N < G,
NCH,and |N| = 3.

43. Prove that a group of order 9 must be abelian.

44. Prove that a group of order p®, p a prime, has a normal subgroup of
order p.

45. Using the result of Problem 44, prove that a group of order p?, p a
prime, must be abelian.

46. Let G be a group of order 15; show that there is an element a # ein G
such that a®> = e and an element b # e such that b° = e.

47. In Problem 46, show that both subgroups A = {e, a, a*) and B =
{e, b, b*, b* b*} are normal in G.

48. From the result of Problem 47, show that any group of order 15 is cyclic.
Very Hard Problems

49. Let G be a group, H a subgroup of G such that i; (H) is finite. Prove that
there is a subgroup N C H, N < G such that i; (N) is finite.

50. Construct a group G such that G has a normal subgroup N, and N has a
normal subgroup M (i.e., N < G, M < N), yet M is not normal in G.

51. Let G be a finite group, ¢ an automorphism of G such that ¢ is the iden-
tity automorphism of G. Suppose that ¢(x) = x implies that x = e. Prove
that G is abelian and ¢ (a) = a” ! for alla € G.

52. Let G be a finite group and ¢ an automorphism of G such that ¢(x) =
x ! for more than three-fourths of the elements of G. Prove that ¢(y) =
y forally € G, and so G is abelian.

6. FACTOR GROUPS

Let G be a group and N a normal subgroup of G. In proving Lagrange’s The-
orem we used, for an arbitrary subgroup H, the equivalence relation a ~ b if
ab™! € H. Let’s try this out when N is normal and see if we can say a little
more than one could say for just any old subgroup.

So,leta ~ bifab™! € N and let [a] = {x € G|x ~ a}. As we saw
earlier, [a] = Na, the right coset of N in G containing a. Recall that in
looking at Z, we defined for it an operation + via [a] + [b] = [a + b]. Why
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1. Let G = {T,,|a # 0, b real} (Example 6 of Section 1). Let N =
{T,,|breal} C G; we saw that N < G, so it makes sense to talk about G/N.
Now T, , and T, , are in the same left coset of N in G, so in G/N we are get-
ting an element by identifying T, , with T, ,. The latter element just depends
on a. Moreover, the T, , multiply according to T, ,7. ; = T,, 44+, and if we
identify T, , with T, o, T, ;4 with T, ,, then their product, which is 7, 4., is
identified with 7T,.,. So in G/N multiplication is like that of the group of
nonzero real numbers under multiplication, and in some sense (which will be
made more precise in the next section) G/N can be identified with this group
of real numbers.

2. Let G be the group of real numbers under + and let Z be the group of in-
tegers under +. Since G is abelian, Z < G, and so we can talk about G/Z.
What does G/Z really look like? In forming G/Z, we are identifying any two
real numbers that differ by an integer. So 0 is identified with —1, =2, =3, ...
and 1, 2, 3, ... ;3 is identified with 3, 3, —3, —3, .... Every real number a
thus has a mate, @, where 0 = g < 1. So, in G/Z, the whole real line has been
compressed into the unit interval [0, 1]. But a little more is true, for we have
also identified the end points of this unit interval. So we are bending the unit
interval around so that its two end points touch and become one. What do
we get this way? A circle, of course! So G/Z is like a circle, in a sense that
can be made precise, and this circle is a group with an appropriate product.

3. Let G be the group of nonzero complex numbers and let N =
{a € G | |a| = 1} which is the unit circle in the complex plane. Then N is a
subgroup of G and is normal since G is abelian. In going to G/N we are de-
claring that any complex number of absolute value 1 will be identified with the
real number 1. Now any a € G, in its polar form, can be written as a =
r(cos & + i sin §), where r = |a|, and |cos  + i sin ] = 1. In identifying
cos 6 + i sin 0 with 1, we are identifying a with r. So in passing to G/N every
element is being identified with a positive real number, and this identification
jibes with the products in G and in the group of positive real numbers, since
lab| = |a||b|. So G/N is in a very real sense (no pun intended) the group of
positive real numbers under multiplication.

PROBLEMS

1. If G is the group of all nonzero real numbers under multiplication and N
is the subgroup of all positive real numbers, write out G/N by exhibiting
the cosets of N in G, and construct the multiplication in G/N.

2. If G is the group of nonzero real numbers under multiplication and
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10.

11

12.

13.

14.

N = {1, —1}, show how you can “identify” G/N as the group of all
positive real numbers under multiplication. What are the cosets of
Nin G?

If G is a group and N < G, show that if M is a subgroup of G/N and M =
{a € G| Na € M}, then M is a subgroup of G, and M D N.

If M in Problem 3 is normal in G/N, show that the M defined is normal
in G.
In Problem 3, show that M/N must equal M.

Arguing as in the Example 2, where we identified G/Z as a circle, where
G is the group of reals under + and Z integers, consider the following:
let G = {(a, b) | a, b real}, where + in G is defined by (a, b) + (c, d) =
(a + ¢, b + d) (so G is the plane), and let N = {(a, b) € G| a, b are inte-
gers ). Show that G/N can be identified as a torus (donut), and so we can
define a product on the donut so that it becomes a group. Here, you may
think of a torus as the Cartesian product of two circles.

If G is a cyclic group and N is a subgroup of G, show that G/N is a cyclic
group.

If G is an abelian group and N is a subgroup of G, show that G/N is an
abelian group.

Do Problems 7 and 8 by observing that G/N is a homomorphic image
of G.

Let G be an abelian group of order p{'p52 - - - pik, where p|, p,, ..., D«
are distinct prime numbers. Show that G has subgroups S, S,, ..., S of
orders pi1, p5%2, ..., pi, respectively. (Hint: Use Cauchy’s Theorem and

pass to a factor group.) This result, which actually holds for all finite
groups, is a famous result in group theory known as Sylow’s Theorem.
We prove it in Section 11.

If G is a group and Z(G) the center of G, show that if G/Z(G) is cyclic,
then G is abelian.

If G is a group and N < G is such that G/N is abelian, prove that
aba 'b~' € Nforalla, b € G.

If G is a group and N <1 G is such that
aba”'b™' €N

for all a, b € G, prove that G/N is abelian.

If G is an abelian group of order p, p, - - - p,, where py, p,, ..., p, are
distinct primes, prove that G is cyclic. (See Problem 15.)
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Finally, we go on to the Third Homomorphism Theorem, which tells us
a little more about the relationship between N and N’ when N’ </ G'.

Theorem 2.7.4 (Third Homomorphism Theorem). If the map
¢: G — G’ 1s a homomorphism of G onto G' with kernel K then, if N' <G’
and N = {a € G| ¢(a) € N'}, we conclude that G/N = G'/N'. Equivalently,
G/N = (G/IK)/(NIK).

Proof. Define the mapping : G — G'/N' by ¢/(a) = N'¢(a) for every
a € G. Since ¢ is onto G' and every element of G'/N’ is a coset of the form
N'x',;and x" = ¢(x) for some x € G, we see that ¢y maps G onto G'/N’'.

Furthermore, ¢ is a homomorphism of G onto G'/N’, for ¢(ab) =
N'¢(ab) = N'¢(a)e(b) = (N'¢(a))(N'e(b)) = ¥(a)y(b), since N' 1 G".
What is the kernel, M, of y? If a € M, then ¢(a) is the unit element of
G'IN’', that is, ¢/(a) = N'. On the other hand, by the definition of ¢, ¥(a) =
N'¢(a). Because N'¢(a) = N’ we must have ¢ (a) € N’; but this puts a in N,
by the very definition of N. Thus M C N. That N C M is easy and is left to
the reader. Therefore, M = N, so ¢ is a homomorphism of G onto G'/N’
with kernel N, whence, by the First Homomorphism Theorem, G/N = G'/N'.

Finally, again by Theorems 2.7.1 and 2.7.2, G’ = G/K, N’ = N/K, which
leads us to G/N = G'/IN' = (G/K)/(NIK). [J

This last equality is highly suggestive; we are sort of “canceling out” the
K in the numerator and denominator.

PROBLEMS

1. Show that M DO N in the proof of Theorem 2.7.3.

2. Let G be the group of all real-valued functions on the unit interval [0, 1],
where we define, for f, g € G, addition by (f + g)(x) = f(x) + g(x) for
every x € [0, 1]. If N = {f € G| f(;) = 0}, prove that G/N = real num-
bers under +.

3. Let G be the group of nonzero real numbers under multiplication and let
N = {1, —1}. Prove that G/N = positive real numbers under multiplication.

4. If G,, G, are two groups and G = G; X G, = {(a, b)|a € G, b € G,},
where we define (a, b)(c, d) = (ac, bd), show that:
(@) N ={(a, e;) | a € G,}, where e, is the unit element of G,, is a normal
subgroup of G.
(b) N=G,.
(¢) G/N = G,.
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S. Let G be a group, H a subgroup of G, and N <1 G. Let the set HN =

{hn|h € H, n € N}. Prove that:
(@ HNN<JH.
(b) HN is a subgroup of G.
(¢c) NC HNand N < HN.
(d) (HN)/N = HI/(H N N).

*6. If G is a group and N < G, show that if a € G has finite order o(a), then
Na in G/N has finite order m, where m | o(a). (Prove this by using the
homomorphism of G onto G/N.)

7. If ¢ is a homomorphism of G onto G’ and N < G, show that ¢ (N) < G’.

8. CAUCHY’S THEOREM

In Theorem 2.6.4—Cauchy’s Theorem—we proved that if a prime p divides
the order of a finite abelian group G, then G contains an element of order p.
We did point out there that Cauchy’s Theorem is true even if the group is not
abelian. We shall give a very neat proof of this here; this proof is due to
McKay.

We return for a moment to set theory, doing something that we men-
tioned in the problems in Section 4.

Let S be a set, f € A(S), and define a relation on S as follows: s ~ ¢ if
t = fi(s) for some integer i (i can be positive, negative, or zero). We leave it
to the reader as a problem that this does indeed define an equivalence rela-
tion on S. The equivalence class of s, [s], is called the orbit of s under f. So S
is the disjoint union of the orbits of its elements.

When f is of order p, p a prime, we can say something about the size of
the orbits under f; those of the readers who solved Problem 34 of Section 4
already know the result. We prove it here to put it on the record officially.

[If f* (s) = s, of course f'*(s) = s for every integer . (Prove!)]

Lemma 2.8.1. If f € A(S) is of order p, p a prime, then the orbit of
any element of S under f has 1 or p elements.

Proof. Lets € S;if f(s) = s, then the orbit of s under f consists merely
of s itself, so has one element. Suppose then that f(s) # s. Consider the ele-
ments s, f(s), f2(s), ..., f?~'(s); we claim that these p elements are distinct
and constitute the orbit of s under f. If not, then fi(s) = f/(s) for some
0 <i<j=<p — 1, which gives us that f/~'(s) = s. Let m = j — i; then
0<m=p—1andf™(s) =s.But f?(s) = s and since p | m, ap + bm =1 for
some integers a and b. Thus f'(s) = f?2**"(s) = f*2(f*"(s)) = f%(s) = s,
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Before considering the more general case of groups of order pgq, let’s
look at a special case, namely, a group G of order 15. By Cauchy’s Theorem,
G has elements b of order 3 and a of order 5. By the Corollary to Lemma
2.83,b lab = a', where 0 < i < 5. Thus

b~2ab*> = b~ (b~ 'ab)b = b~ 'a'b = (b~ 'ab)’ = (a')' = 4"

and similarly, b=3ab® = a'’. But b® = ¢, so we get a’’ = a, whence a’’~! = e,
Since a is of order 5, 5 must divide i* — 1, that is, i* = 1(5). However, by Fer-
mat’s Theorem (Corollary to Theorem 2.4.8), i* = 1(5). These two equations
for i tell us that i = 1(5), so, since 0 < i < 5,i = 1. In short, b™lab = a' = q,
which means that ab = ba. Since a is of order 5 and b of order 3, by Lemma
2.8.4, ¢ = ab is of order 15. This means that the 15 powers e = ¢°, ¢, ¢?, . . .,
c'* are distinct, so must sweep out all of G. In a word, G must be cyclic.

The argument given for 15 could have been made shorter, but the form
in which we did it is the exact prototype for the proof of the more general

Theorem 2.8.5. Let G be a group of order pq, where p, g are primes
and p > q.If g/ p — 1, then G must be cyclic.

Proof. By Cauchy’s Theorem, G has an element a of order p and an
element b of order q. By the Corollary to Lemma 2.8.3, b !ab = a' for some i
with 0 < i < p. Thus b~"ab” = a'’ for all r = 0 (Prove!), and so b~ %ab? = a'’.
But b9 = e; therefore, a’* = a and so a’’~! = e. Because a is of order p, we
conclude that p|i? — 1, which is to say, i? = 1(p). However, by Fermat’s
Theorem, i?~! = 1(p). Since g/ p — 1, we conclude that i = 1(p), and since
0 <i<p,i=1follows. Therefore, b~'ab = a' = a, hence ab = ba. By
Lemma 2.8.4, ¢ = ab has order pq, so the powers of ¢ sweep out all of G.
Thus G is cyclic, and the theorem is proved. []

PROBLEMS
Middle-Level Problems

1. In the proof of Theorem 2.8.2, show that if some two entries in s =
(ay, a3, ... , a,) are different, then f(s) # s, and the orbit of s under f
has p elements.

2. Prove that a group of order 35 is cyclic.

3. Using the result of Problem 40 of Section 5, give another proof of
Lemma 2.8.3. (Hint: Use for H a subgroup of order p.)

4. Construct a nonabelian group of order 21. (Hint: Assume that @’ = e,
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b’ = e and find some i such that a”'ba = a' # a, which is consistent with
the relations a®> = b’ = e.)

5. Let G be a group of order p"m, where p is prime and p | m. Suppose that
G has a normal subgroup P of order p”". Prove that 6(P) = P for every
automorphism 6 of G.

6. Let G be a finite group with subgroups A, B such that |[A| > V|G| and
|B| > V/|G|. Prove that A N B # (e).

7. If G is a group with subgroups A, B of orders m, n, respectively, where
m and n are relatively prime, prove that the subset of G,
AB = {ab|a € A, b € B}, has mn distinct elements.

8. Prove that a group of order 99 has a nontrivial normal subgroup.

9. Prove that a group of order 42 has a nontrivial normal subgroup.

10. From the result of Problem 9, prove that a group of order 42 has a nor-
mal subgroup of order 21.

Harder Problems

11. If G is a group and A, B finite subgroups of G, prove that the set AB =
labla€ A,b € B} has (|A| |B|)/|A N B distinct elements.

12. Prove that any two nonabelian groups of order 21 are isomorphic. (See
Problem 4.)

Very Hard Problems

13. Using the fact that any group of order 9 is abelian, prove that any group
of order 99 is abelian.

14. Let p > g be two primes such that g |p — 1. Prove that there exists a
nonabelian group of order pq. (Hint: Use the result of Problem 40 of
Section 4, namely that U, is cyclic if p is a prime, and the idea needed to
do Problem 4 above.)

15. Prove that if p > g are two primes such that g | p — 1, then any two non-
abelian groups of order pq are isomorphic.

9. DIRECT PRODUCTS

In several of the problems and examples that appeared earlier, we went
through the following construction: If G, G, are two groups, then G =
G, X G, is the set of all ordered pairs (a, b), where a € G, and b € G, and
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Proof. This follows easily from the fact that ¢: Ny X N, — G, which is
given by ¢/(a,, a,) = aja,, is an isomorphism if and only if NN, = G and
N, N N,=(e).O

In view of the result of Theorem 2.9.4 and its corollary, we drop the ad-
jectives “internal” and “external” and merely speak about the “direct prod-
uct.” When notation G = N; X N, is used it should be clear from context
whether it stands for the internal or external direct product.

The objective is often to show that a given group is the direct product
of certain normal subgroups. If one can do this, the structure of the group
can be completely determined if we happen to know those of the normal
subgroups.

PROBLEMS

1. If G, and G, are groups, prove that G; X G, = G, X G;.

2. If G, and G, are cyclic groups of orders m and n, respectively, prove that
G, X G, is cyclic if and only if m and n are relatively prime.

3. Let Gbeagroup A=G X G.InAletT={(g,g) | g € G}.
(a) Prove that 7= G.
(b) Prove that T <1 A if and only if G is abelian.

4. Let G be an abelian group of order p{''p52 - - - pi’x, where py, po, ..., P
are distinct primes and m; > 0, m, > 0, ..., m, > 0. By Problem 10 of
Section 6, for each i, G has a subgroup P; of order p/™. Show that
G=P XP,X - XP,.

5. Let G be a finite group, N, N,, ..., N, normal subgroups of G such that
G = N\N,--- Nyand |G| = |N,| |N,| - - - |[N(|. Prove that G is the direct
product of N, N,, ..., N,.

6. Let G be a group, N, N,, ..., N, normal subgroups of G such that:

1. G=N;N,---N,.
2. Foreachi, NN (NN, -+ N;_|N;;, - Ny) = (e).
Prove that G is the direct product of N|, N,, ..., N,.

10. FINITE ABELIAN GROUPS (OPTIONAL)

We have just finished discussing the idea of the direct product of groups. If
we were to leave that topic at the point where we ended, it might seem like
a nice little construction, but so what? To give some more substance to it,
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For n = 4 we see the partitionsare 4 = 4,4 =3 + 1,4 =2+ 2 4 =
2+1+1,4=1+1+ 1+ 1, which are five in number. Thus there are five
nonisomorphic groups of order p*. Can you describe them via the partitions
of 4?

Given an abelian group of order n = p{!p45z- - - pi, where the p, are
distinct primes and the a; are all positive, then G is the direct product of its
so-called p;— Sylow subgroups (see, e.g., the Corollary to Lemma 2.10.1). For
each prime p; there are as many groups of order p{‘ as there are partitions of
a;. So the number of nonisomorphic abelian groups of order n = p§t - - - pi*
is f(ay)f(ay) - - - f(ay), where f(m) denotes the number of partitions of m.
Thus we know how many nonisomorphic finite abelian groups there are for
any given order.

For instance, how many nonisomorphic abelian groups are there of
order 144? Since 144 = 232, and there are five partitions of 4, two partitions
of 2, there are 10 nonisomorphic abelian groups of order 144.

The material treated in this section has been hard, the path somewhat
tortuous, and the effort to understand quite intense. To spare the reader too
much further agony, we assign only three problems to this section.

PROBLEMS

1. Let A be a normal subgroup of a group G, and suppose that b € G is an
element of prime order p, and that b & A. Show that A N (b) = (e).

2. Let G be an abelian group of order p”, p a prime, and let 2 € G have max-
imal order. Show that x°® = ¢ for all x € G.

3. Let G be a finite group, with N < G and a € G. Prove that:
(a) The order of aN in G/N divides the order of a in G, that is,
o(aN) | o(a).
(b) If (a) N N = (e), then o(aN) = o(a).

11. CONJUGACY AND SYLOW’S THEOREM (OPTIONAL)

In discussitig equivalence relations in Section 4 we mentioned, as an example
of such a relation in a group G, the notion of conjugacy. Recall that the ele-
ment b in G is said to be conjugate to a € G (or merely, a conjugate of a) if
there exists an x € G such that b = x "'ax. We showed in Section 4 that this
defines an equivalence relation on G. The equivalence class of a, which we
denote by cl(a), is called the conjugacy class of a.
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PROBLEMS

Easier Problems

1.

A M oB W

10.
11.

12.

13.

14.

15.

In S5, the symmetric group of degree 3, find all the conjugacy classes, and
check the validity of the class equation by determining the orders of the
centralizers of the elements of S;.

Do Problem 1 for G the dihedral group of order 8.

If a € G, show that C(x "lax) = x 7 'C(a)x.

If ¢ is an automorphism of G, show that C(¢(a)) = ¢(C(a)) fora € G.
If |G| = p® and | Z(G)| = p?, prove that G is abelian.

If P is a p-Sylow subgroup of G and P < G, prove that P is the only
p-Sylow subgroup of G.

If P ] G, P a p-Sylow subgroup of G, prove that ¢(P) = P for every
automorphism ¢ of G.

Use the class equation to give a proof of Cauchy’s Theorem.

If H is a subgroup of G, let N(H) = {x € G| x 'Hx = H)}. This does
not mean that xa = ax whenever x € N(H), a € H. For instance, if
H < G, then N(H) = G, yet H need not be in the center of G.

Prove that N(H) is a subgroup of G, H C N(H) and in fact H I N(H).
Prove that N(x " 'Hx) = x 'N(H)x.

If P is a p-Sylow subgroup of G, prove that P is a p-Sylow subgroup of
N(P) and is the only p-Sylow subgroup of N(P).

If P is a p-Sylow subgroup and a € G is of order p™ for some m, show
thatif a~'Pa = Pthena € P.

Prove that if G is a finite group and H is a subgroup of G, then the num-
ber of distinct subgroups x ~'Hx of G equals i (N(H)).

If P is a p-Sylow subgroup of G, show that the number of distinct x ' Px
cannot be a multiple of p.

If NG, let B(N) = {x € G|xa = ax for all a € N}. Prove that
B(N) < G.

Middle-Level Problems

16. Show that a group of order 36 has a normal subgroup of order 3 or 9.

(Hint: See Problem 40 of Section 5.)

17. Show that a group of order 108 has a normal subgroup of order 9 or 27.
18. If P is a p-Sylow subgroup of G, show that N(N(P)) = N(P).
19. If |G| = p", show that G has a subgroup of order p™ forall 1 = m = n.



Sec. 11 Conjugacy and Sylow’s Theorem (Optional) 107

20. If p™ divides |G|, show that G has a subgroup of order p”™.
21. If |G| = p" and H # G is a subgroup of G, show that N(H) 2 H.

22. Show that any subgroup of order p"~! in a group G of order p" is normal
in G.

Harder Problems

23. Let G be a group, H a subgroup of G. Define fora,b € G,a ~bif b =
h™'ah for some h € H. Prove that
(a) this defines an equivalence relation on G.

(b) If [a] is the equivalence class of a, show that if G is a finite group,
then [a] has m elements where m is the index of H N C(a) in H.

24. If G is a group, H a subgroup of G, define a relation B ~ A for sub-
groups A, B of G by the condition that B = h~'Ah for some h € H.

(a) Prove that this defines an equivalence relation on the set of sub-
groups of G. ,

(b) If G is finite, show that the number of distinct subgroups equivalent
to A equals the index of N(A) N H in H.

25. If P is a p-Sylow subgroup of G, let S be the set of all p-Sylow subgroups
of G. For Q,, @, € S define O, ~ Q, if O, = a~'Q,a with a € P. Prove,
using this relation, that if Q # P, then the number of distinct a™'Qa, with
a € P, is a multiple of p.

26. Using the result of Problem 25, show that the number of p-Sylow sub-
groups of G is of the form 1 + kp. (This is the third part of Sylow’s Theo-
rem.)

27. Let P be a p-Sylow subgroup of G, and Q another one. Suppose that
Q # x~'Px for any x € G. Let S be the set of all y"'Qy, as y runs over G.
For Q,, Q, € S define Q, ~ Q,if O, = a~'Q,a, where a € P.

(a) Show that this implies that the number of distinct y~'Qy is a multiple
of p.

(b) Using the result of Problem 14, show that the result of Part (a) can-
not hold.

(¢) Prove from this that given any two p-Sylow subgroups P and Q of G,
then Q = x ~'Px for some x € G.
(This is the second part of Sylow’s Theorem.)

28. If H is a subgroup of G of order p™ show that H is contained in some
p-Sylow subgroup of G.

29, If P is a p-Sylow subgroup of G and a, b € Z(P) are conjugate in G,
prove that they are already conjugate in N(P).



2

Groups
SECTION 1.

Easier Problems.
(j‘/ (a). G is not a group. The associative law fails to hold in G. Also G has
no identity element; although a*0 =aforainG, 0*a=-a=aif a=0.

(b). G is not agroup only because -1 fails to have an inverse with
regards to *. G is clearly closed under *, and O acts as the identity
element since 3a¥0=a +0+230 =aand0*a=0+a+0a=a The operation
* 15 associative for a*(b*c) =a +b*c + ab*c)=a+(b+c+bc) +alb+c+
bc)=a+b+c+ab+ac+abc, while(a*b)*c =a*b + c +(a*b)c=a+b+ab+
c+(@a+b+abc=as+b+c+ ac+bc+abc Ifa=-1 then,as is easily
verified, a*b = O where b = -a(1l + a)! However there is no b such that
(-1)%b = 0, since (-1)*b = =1 +b +(-1)b=-1 =0 for every b in G. S0 G
comes close to being a group but doesn’t quite make !t.

(c). Using the information obtained in Part (b) we see that G is not
a group for, not only does -1 fail to have an inverse relative to *, but this
is true for every nonzero element of G, since the inverse of a = -1 is
-a(1 + a)"! which is negative and not an integer so is not in G.

(d). G is agroup under * From what we have seen in Part (b) all
we really have to show to verify this 15 that G is closed under *, that is, if
a #-landb=-1thena*b = -1.But, if -1 =a*b =a+b ¢+ ab, we get that
(1 +a)(1 +b)=0 which isnot possible if a=~-| andb = -1,

(e). Gisnotagroup for 1/5 and 4/S are in G and (1/5)%(4/5) =
1/5 + 4/5 = 1 which is not in G. So G 15 not closed under *

(f). G is not agroup, although * is an associative operation
relative to which G is closed. However G has no identity element, for if e

were such then for b xe, eXb =e = b,
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"2, Aswe saw in the text, the rule for combining T's is given by
Ta,ch,d = Tac,ad‘b- Thus,ifa=+1andcC=z¢l, thenac = ¢1; therefore G is

closed under the product. Moreover H 1s a subset of the group in Example 6
S0 we know that the product in H is associative. The identity element Tio

isinHand since Typ™' =Tyt =1y anda™' =+1ifa=+1 we see that
every element in H has its inverse in H. Thus H 1s a group.

S.  Where does g*f map the point (x,y) 7 By definition (g*f)((x,y)) =
g(ri(x,yN) = g((-x,y) = (-y,-x), as is verified by a computation, g"((x.y)) =
(y,~x) therefore (1%g~ " )(x,y) = 1(g™ " ((x,yM = 1((y,=x) = (-y,~x). Thus
g*r=rxg”!

6. SinceH = (Tc,o € G| c rational, d any real), if Teg€Hand T, €6 tﬁen

Ta,ch,dTa,b-| *Tac,adeb’a!,-a b ~ Ta,ad-bceg SO 1S inH.

8. Ifn> 0 we proceed by induction onn. If n = | then certainly (a*0)! =
" a*b. Suppose that for some m we know that (a*b)m = a™*b™; then
(a*b)™* 1 = (a%b)*(a%p)™ = (a%b)*(aM*b™M) = ax(b*(aM*p™))
=a*((b*aM)*bM) =a%((2M*b)*b™) = a%(aM*(b*p™M)) = (a%aMp(b¥*p™) =
a™* 1p™* 1, having made use of the fact that G is abelian and * is
associative. This completes the induction and proves the result for all
positive integers n. By definition ao =e for all a in G so that (a"b)0 =g=
exe = a0%0 Finally, if n <0 thenn = -m where m > O and a" = (a~ )M,
since G is abelian, (a*0) ™' =2~ '*b™! so (a*b)" = ((a%b)"")M =

(@ 1% M = (a7 1yMx(p~1)y™ (by the result we proved for m > 0) = aM*p".

In future calculations we shall not be as formal as above and will use

the associative law freely, and avoid these long chains of equalities.

al

=
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9. Suppose al=efor every a in the group G. If a,b are in G then (a%b)? -
e, thus a*b*a*b = e; multiply both sides of this relation by a to obtain
alup*axp = a, and since al - e, b*a*b = a. Multiply both sides of this
relation on the left by b to obtain b2xaxp = b*a, and since b2 = e, we end
up with a*b = b*a. Thus G is abelian.
I'1. Since the * in the example is just the composition of mappings, for
ease of notation we drop it and write the product a*b simply as ab.
We are considering the elements t'nJ where 12 = h3 =e and fh = hlf

Thus fh2 = h™'fh = h™2f; so tht = h™Uf for all integers t, and htf= th™t Thus
(ERdenty = fien 1t = 1 Tht=T and (F'RIXORY) = FInJ*L. these two results
can be succinctly written as (r')rShY) = 130 where a = i + jand
b=t +(-1)%]. Thus G is closed under the product of mappings. Since
e f2n3, e is in G. Also, (') 1 =7 = 710 50 '3 in G, (Don't forget,
the exponent of f is calculated mod 2 and that of h i= nod 3.) Finally,since
we are talking about the product of mappings, the product is associative.
Thus G is a group

That G is of order 6 is easy since, in r‘nl, 1 has 2 pessibilities and j has
3, and these give rise to 6 distinct elements (Check it!) That G is
non-abelian is clear since fh = hf.
13.  Suppose that G has 4 elements; let e, 3, and b be 3 distinct elements
of G. Thus both a*b and b*a are in G, if they are not equal then b*a = e, 3,
or b. If a*b = e then we quickly get b*a = e and so a*b = b*a. If a*b = a then
b =eand if a%b=Db then a = e (see the next problem for this), both of which
are contradictions. So we get that a*b = b*a and G consists of e, a, b, and
a*b. To check that G is abelian one should also check that a(a*b) =(a*b)a
and b(a*b) = (a*b)b; we leave these to the reader.

14, See the proof of Lemma 2.2.2.
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16. Since a% = e for every a in G, by the definition of a~! we have that
a=a"l. Thus, if aand b are in G then a*b = (a%b) ™! = b~ !*a™! = bxa hence
G is abelian

18. Suppose that G is a finite group of even order; if a=za’! for every a
in G other than e, since a =(a”~ ! ) I we get an even number of elements
which are not e, together with e this would give G an odd number of

elements, contrary to our assumption.

Middle-Level Problems.

21. If Gisof order S, then for every element a in G there is a least
positive integer k, depending on a, such that a=e Ifk =5 then G must
consist merely of e, a, a2, a3, and a¢ ,Soisabehan Ifk=4andbinG is
not a power of a then a*b = al any isoe,a, az, a3, and a*b exhaust G; now
b*a is in G and is not a power of a, for if b*a = a! we 'mmediately get that
b= ai", a contradiction. Thus b*a is forced to equal 2*b, and so we see
that G is abelian. If k = 3, then e, a, a2 are already 3 distinct elements of
G.Let b in G not be a power of 3, then, 3as above, b * a*b, so the elements of
Garee, a, az, b, and a*b. What can b*a possibly be? As above we quickly
arrive at a*b = b*a So we are left with the only possibilty, namely that
every a in G satisfies al-e. By the result of Problem 9; G must be abelian.
In actual fact, as we shall see in Section 4, the first case, k =5, is the
only possibility if G has order S.

24, G is generated by 2 elements f and h satisfying f2=hN=gandfh=
n“r, and all the elements of G are of the unique form f'h) where i = O or |
and j can be any integer O < j <n-1.Suppose that a € G satisfies a*b =b*a
foralibeG,if a=f'n) then, since r*a=a*f we get f'* 'hJ = rrln) = f'nlf =

r‘rn‘l, by the formula for the product in G derived in Problem 11 (and

a4
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Problem 22). Thus h2) = e. Also a*h = h*a, which gives us that LR
t'hJh = ne'h) = tht!*) (the + if i =0 and the - if | = 1) according the the
formula obtained in Problem 11. This implies that i = 0, thus a = hJ where
h2) - e, (that is, aZ=¢). Thus if d is the greatest common divisor of n and
2),hd=¢

(a). 1f n is odd thend = (n,2j) = (n,j); thus d | j, hence a=h) = hkd = ¢

(b). If n is even then if a = V2, (/2 < n"V 2 2 WV 2f gince
K2 = "N2 pecause h" = e. From the form of the elements in G we get
that a*b = b*a for all b In G, _

(c). From the argument above, a = n2) where h2J = ¢; this tells us
that 2j =0 or nand so j = 0 or n/2. Thus the only possibilities for aare
a=eora=h"2
26 This problem was already done for S, the same oroof works for any

finite group. Let a € G, where G has aorder k; then a, 32 a3, ak° I arek+ 1

elements in 6, whch only has k elements. Thus 2 of a, a2, .., a%*!

are
equal, that is al= aj for some 1 <i <)<k + 1, and so al'l = e, where

0K i~k Letn=J-1i

Harder Problems.

28.  Let x € G and let y be such that y*x = e. Since y 15 in G there isa z in
G such that z¥y = e. Therefore z¥*e = z*(y*x) = (z*y)*x = e* x = x, which is
to say, z*e = x. Thus x*y = (z*e)Xy = z%(e*y) = 2%y = e Also, x*e = x*(y*x)
= (x*y)*x = e*x = x. Hence, for all x in G, x*e = e*x and there isay in G
such that x*y= y*x = e Since * is associative, G is a group.

29, LebO=(ay.... 3, - 1T b € G consider the elements a; ™o, ..., 3,*b;

these are all distinct, for 3,*b = a;*b implies that a; = a; by Hypothesis 3.
| ] U
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So these elements must be all the elements of G. Therefore b appears in

this list, that is, b = e*b for some e in G. Now consider the elements

b*a,, ..., ba, by Hypothesis 4 these are all distinct so must be all the
elements of G in some order. Thus, given x in G, x = b*ai for some i. Hence
e*x = e%(b%a;) = (e*b)*a; =b*a; = x Since e isinGanda,*b, .., 2,*b give
us all the elements of G, e = y*x for some y in G. By the result of Problem
28, G is a group.

31 (a) Let F(a) = logyg(labl); then F(a*b) = logy y(la*bl) = log; o(labl) =

log; ptialib) = log glal + log glbl = F(3) + F(b) = F(a)*F(b)

(b). Suppose that F is a mapping from G to H such that F(a*b) = F(a)*F(b).
Thus F(a) = F(1*a)) = F(1)*F(a) = F(1) + F(a), therefore F(1) = 0. But
0=F(i)=F((=1)2) = F(-1)*F(-1) = F(-1) + F(-1) =2F:-1), hence F(-1) =0 =
F(1), therefore F is not 1-1.

SECTION 2.

! Given a € G, by Hypothesis (a) there is an element e £ G such that

ae = 3. Furthermore, given w € G, by Hypothesis (b) there is an element u
In G such that w = ua. Thus we = (uale = u(ae) = ua = w. Also, by (a) there Is
an x In G such that ax = e. By Problem 28 of Section 2 (with things on the
right instead of the left) G 1s a group.

3. Thisis a tricky problem. Suppose that (ab)! = alb!, (ap)!* = a!* 1pi* !
and (ab)'* 2= a'*2p1*2 Therefore ab(ab)' = (ab)'* ! = a'* 'bi* ! since we are
ina group we can cancel a on the left and b on the right to obtain that
(ba)' = a'd' = (ab)' Since (ab)*'=a'* 1b1* ! ang (a0)1*2 = 21*2H1*2, the

e
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argument Just used gives us (ba)'*! = (ab)!* ! Therefore ba(ba)' = a!* Ip!*!
= (ab)'* ! = ab(ab)! = ab(ba)' ; cancelling the (ba)' from this we obtain that
ba = ab. Thus G is abelian.
S. By assumption (ab)? = a5bJ, s0, as in Problem 3, (ba)? = a2b2 and
(ab) = asbs, so (ba)4 = a%9 Thus a%4 - (ba)? = ((ba)2)2= a2b2a2y2
which gives us a2bZ = bZaZ Hence (ab)? = b2a2 = a%v?, cancellingan a
from the left and a b from the right yields ab = ba. Thus G is abelian.
6. (a). From (ba)" = b"a", cancelling b from the left and a from the right
gives us (ab)"~1 = pn=Ian- |

(). a"" = (ab)" = ab(ab)"! = apb" 121 from part (a); cancelling a
from the left and b from the right gives a"~!pf = pRaN=1

SECTION 3.
Easier Problems.
2. The cyclic subgroup generated in Z by ~1 is all of Z.

3. Syhastne 6 elementse, f, g, g2, fg, gf where (2 = g3 = ¢ and fg=

g™t The subgroups of Syare: (e, (ef), (e,fq), (e,gf), and (e, g, g2).

4 If abe2(G) then ax = xa and bx = xb for all x in G. Thus (ab)x = a(bx) =
a(xb) = (ax)b = (xa)b = x(ab). Therefore ab is in 2(G) Also, from ax = xa we
obtain that a™!(ax)a™! = a~!(xa)a™! which givesus a 'x=xa™! forall xin
G. Thus a™! is in Z(G) Thus Z(G) is a subgroup of G.

7 Using the notation of Problem 3, we see that C(f) = (e,f), C(frg) =(e,fg),
C(gN = (e,9f), C(g) = le,g,9%) = C(g?), and C(e) = S,

9. Ssis such an example for in it the elements satisfying x2 = e are €.
fg, gf (in the notation of Problem 3) and these do not form a subgroup of S

11, Suppose that a and b are in H; then a™ = e and b" = e for some
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positive integers m and n. Thus, since G is abelian, (ab)™" = gMNpMA _ o
which puts ab in H. Also, if ais inHand a™ = e then (a™ )M = (aM)~1 . ¢
thusa ! isinH SoH is a subgroup of G.

13. Let G be acyclic group and H a subgroup of G. Suppose that a in G is a
generator of G. If H = {e) then H is certainly cyclic, being generated by the
element e. Suppose, then, that H = (e); if x = e is in H then x = a', where

i =0.1f i <O then, since H is a subgroup of 6, x™ ! = a1 is in Hand -i » 0.
Therefore a to some positive power falls in H. Thus there is a smallest
positive power k such that a¥ is in H. Suppose that y is in H; then y = aM
for some m. By the Euclidean Algorithm, m = gk + r where O <r <k Now

y =aM = a8K*" = 38K and 50 a" = 27Ky is in H since both yand 2™ «
(@) % are inH. Since r <k, by the definition of k we cannot have that r > 0.
Therefore r = 0, hence m = gk. This shows that y = (a* 9. thusHis a cyclic
group with generator a.

14, Suppose that G has no proper subgroups. Let a = ¢ be in G and consider
H=(ali any integer). As is immediate, if x and y are in H then xy and x ™!
are InH. Thus H is a subgroup of G, and H = (e) since a = e is in H. Thus, by

hypothesis, H = G. Thus G is cyclic with a as generator.

Middle-Level Problems.

16. By the result of Problem 14 any element of G other than e generates
G. If ais inGand a = e then the group generated by a has 2 elements, that
is, G has 2 elements. If 32= e then every element of G is a power of a2; in
particular, a = (a2)m = a2m, hence aZm-l = e, for some integer m. Since
2m-1=0oneof 2m - 1>0o0r | - 2m> 0. At any rate we get that aP = e
for some smallest positive integer p. Thus G consists of the p distinct
elements e, a, az. e I we claim that pisaprime If p =uv where both

u>landv> | thenif b=a¥=e the subgroup T generated by b consists of

. vy
|~
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the v elements e, b, b2, .. .bY" ! sinceb¥=a" =aP =e But T =G,s0v=p
since v is the order of T, and p is that of G. But thenu = 1, contrary to

u> |. Thus p is a prime and Gl = p.

18. Since S is finite A(S) is a finite group. If f and g are in T(X) then
f(X) € X and g(X) € X; hence (fg)}(X) = f(g(X) € f(X) C X and so fg is in T(X).
Since A(S) is a finite group and T(X) is closed under the product of A(S),
T(X) is a subgroup of A(S).

19. Suppose that x =a b andy = ab, are in AB, where a;, 3 are in A
and by, by are in B. Since G is abelian, xy = a|b|a2b2 =ajapb by € AB, and
x'=@a;p)7=p,7'a; 7 =3, 7'b; 7! € AB. Thus AB is a subgroup of G.
22 and 23. We saw in Problem 19 that AB is a subgroup of G. How can

AB ={ab| a€ A, beB) fail to have mn distinct elements? Only if there is

some collapsing of these elements, that is, if and only if for some

distinct pairs (a;,by), (agbp) we have a by = aghy. But this implies that
az"a‘ = b2b|" and since the left side is in A and the right side is in B,
the elements on both sides are iInAnB. Thus a) =a,cand by = (o 'bz where
cisinAnB But,ifceAnBandifacA beBthena, =acisinAand
by=c 'bisinBandab = (ac)c” 'b) = ab. Thus there are exactly [A a8l

pairs giving rise to the same ab. Thus |AB| = mn/|A n Bl = |AlIBI/IA a Bl. This
solves Problem 23. However, to solve the present problem, we must show
that if |Al and |B| are relatively prime then A n B = (e] so that [An Bl = I

This is most easily done after we learn Lagrange’s Theorem. Note that the

arqument ysed for |ABI did not depend on G being abelian . Thig will be used
m imes in lems | r

24 That N is a subgroup follows because the intersection of any number
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of subgroups of G is a subgroup of G. (This is a slight generalization of the
result in Problem 1; the proof we gave there works in this more general
situation). If x,y € G theny~ ™ 'Hx)y = (xy)~ lH(xy) and as x runs over G
withy fixed then xy runs over all the elements of G. Thus y Nn(x |Hx))y =
n (xy)™'H(xy), as x runs over 6, =nx 'Hx, as x runs over G by the remark
above. Thus y~ 'Ny =N

Harder Problems.

25. Let S be the set of ali the integers and let X be the set of positive
integers. Let f be the 1-1 mapping of S onto itself defined by f(n)=n+ |
for every integer n. Then certainly f(X) C X, hence f ¢ T(X) but ! is not in

T(X) since ~1(1) = 0, which is not in X. Thus T(X) cannot be a subgroup of
A(S).

26.  See the proof of Lagrange's Theorem (Theorem Z 4.2) in the next
section.

28.  We rirst check that MN is a subgroup of G. If mn, m Ny are inMN,
where m, m, are inMand n, ny are in N then (mn)(m Ny = (mamn™! nn,
and by the hypothesis on ™, nmn™! is in M thus mnmn™" is in M, and nn; is
In N. Therefore (mn)Xm 1ny) is in MN, hence MN is closed under the product
inG. Also (mn)™! =n"Tm™! = (" Tm~'oon~! 5o is inMN sincen”'m~"nis in
Mandn™! isinN. Thus MN is a subgoup of G.

I x €G then x™ T (MN)x = (x™ TMx)(x™ 'Nx) € MN by our hypothesis on M and
N.

30. Consider the element a = mnm ™~ 'n~!; bracketing it one way,
a=(mnm "1 50 is in N since mnm™! and n”! are in N. On the other hand,

bracketing it another way, a = m(nm~'n"1) 50 is in M since m and nm~'n"!

-

&3
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are inM. Thus a¢MaN = (e). This tells us that e =a = mnm ™~ 'n" !, which

implies that mn = nm.

SECTION 4.
Easier Problems.

2. Therelation ~ definedon Rbya~Dbifbotha>bandb > asatisfies
the symmetry and transitivity properties but fails to satisfy a ~ a.
3. The argument starts with "if a ~b .. ", however there may be no

element b which satisfies this, as is exemplified in Problem 2. However, if

we insist that for every a there is some b such that a ~ b then the
argument is valid and ~ is then an equivalence relation.

4 Suppose that S Is the unlon of the mutually-disjoint, non-empty

subsets S. Thus, given s in S there Is one and only one S, such that s €5
so if we define a ~b if aand b lie in the same 5 then we easily see that ~

is an equivalence relation and the equivalence class of s is precisely that
S In which s lies.

8. Suppose every left coset of Hin G is aright coset of H in G. Thus, if 3
is in G, Ha must be a right coset of H in G, thus Ha = bH for some b in G. But
a is in Ha so a must be in bH; because a is in aH and, by Problem S, the
right cosets are equivalence classes, we have that bH = aH. Thus Ha = aH,
hence H = aHa™!

11, Let M be the set of all left cosets of Hin G and N the set of all right
cosets of H in G. Define the mapping F from M to N by F(Ha) = a~ TH. This 1s
clearly amapping of M onto N because, given the right coset xH, then
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xH=F(Hx" 1) IsF 1-12 Yes, because if F(Ha) = F(Hb) then 2™ 'H = b"H, and
50 H = ab™'H; this puts ab™! in H whence Ha = Hb. So, even for infinite
groups there is a 1-1 correspondence of M onto N: for finite groups this
translates into : M and N have the same number of elements. Thus there
are the same number of left cosets of H in G as there are right cosets of H
inG

12, The answer is no. For instance if G = S3 andH is the subgroup in
Problem 6, then Hg = (g, fg) and Hrg = (fg, f2q = g) = Hg, while gH = (g, gf)
and fgH = (fg, ffg =g). Because fg = gf we see that fgH = gH yet Hfg = Hg.
13. The elements of U, g are (1], (S, (7], [11), [13], [17]). The orders of
these are: o[1]) = 1, o([S]) = 6, o((7]) = 3, o([1 1)) = 6, o[ 13)) = 3,0((17]) = 2.
We verify one of them, namely that o((7]) = 3; the other verifications are
similar. (7]'=(7), (7)2 = [49) = (13], (713 = (7)13] = (91] = [1] Thus the order
of [7] is 3 since that is the first positive power of [7] which is the

identity element of Uy g The group is cyclic since o([S]) = 6, so the powers
of [S) sweep out all of Uig

1S. Ifx2a mod p menpl(x2 = 1)=(x~-1)x+ 1). Since p is a prime
this tells us that eitherp|(x - 1) or pl(x + 1). The first of these yields
that x m | mod p and the second yields x = -1 mod p.

16, For every ain G there is an inverse a™! inG; if a = 2™ then in the

product a;a,..a,, a cancels against a™! since G is abelian. Thus the only
terms remaining uncancelled in a,..3, are those elements of G which are

their own inverses. Since each such element has square equal to e, we get,

again using that G is abelian, that (3132-'-3n)2 = e

o
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20. Recall the basic multiplication rule: Ty pTe 4= Toe a4.p frOm which
we saw that Tc,d.l =Tcml ¢~ 1g Thus Tc,d—lTa,ch,d " Tc,d-lTac,ad'b -
Tl - 'qTac,adeb = Ta,c™'(ad+b) - ¢ 'd ™ Tax Where x = ¢ ld@-1)n);
by choosing appropriate appropriate ¢ and d we can realize any x in the
above form provided that not botha= 1 andb = 0. Thus, if Ta,b =T 0 the
identity map, then the conjugacy class of Ta,b = {Ta,x | all x).

21. The dihedral group of order 8 is the group generated by f and h where
2=n% eand fh=h"'r (= hr). A computation shows that there are 4
conjugacy classes, namely cl(e) = (e], ci(h) = (™1, cith?) = (h2),

ci(f) = (1,n21), and cI(fh) = (Th,hr).

24, If p is aprime of the form 4n + 3 then UD is agroup of orderp - | =

4n + 2 50 its order is not divisible by 4 However, if 22 = -1 mod p then (a]

p’
there is no such a.

has order 4 in U, which would force 4 to divide lUDI, a contradiction. So

Middle-Level Problems.

27. Suppose that aH = bH forces Ha = Hb; but if h is inH then aH = ahH,
thus Ha = Hah, and so H = Haha™', that is, aha™' € H for all h ¢ H and all
a€G. Thus aHa™! C H for all a in G; by Problem 29 of Section 3 we get that
aHa ! =H forallainG.

28. Let G be acyclic group of order n and a a generator of G. when is
b=a'alsoa generator of G, that is, when is b of order n?2if(in)=d=1
then b™ 9 = (31)/9 = ¢ since d | i . On the other hand, if (i,n) = 1 then if

bK = a'K = e then n| ik (see Problem 31 below), because (i,n) = | we must
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have that n | k, hence k » n, and 0 k = n. Thus a' has order n if and only if i
and n are relatively prime (and 0 < i <n); thus the number of generators of
G equals the number of positive integers less than n and relatively prime
ton, that is, ¢(n).

29, Suppose that aba™! = b! Then a2ba~2 - aaba™ha! « apla~! -
(@a™")! = (" = b™ where m = 2. Continue in this way, or use induction,
to prove that a"ba™" = bX where k = i

32. Suppose that o(a) = qf(a) + r where 0 <r < f(a): then e = 20(@) «
aA(@)*r - 501(@)5" hence af = (a7(@)0 g0 s in H since af(@) is in H.
Because r < (a), by our definition of f(a) we must have r = 0. Thus o(a) =
af(a) hence f(a) | o(a).

33. Suppose that H = (g € A(S) | g(s) = s); H is a subgroup of A(S) and by
assumption rJ(s) = s, that is, fleH By the result of Problem 32, j must
divide o(f) = p, since p is a prime and 1 L] <pweget that )= 1, that is,
feH Thus f(s) = s,

35. The orbits of the elements of S under f are the equivalence classes
of an equivalence relation so are equal or disjoint. If f has order p and
f(s) =s for every s in S then each such orbit has p elements by the result
of Problem 34. But then n = kp where k is the number of distinct orbits
under f. This says that p | n, contrary to (n,p) = 1.

Harder Problems.

36. Letm =a"- | and consider Um. the positive Integers less than m and
relatively prime to m. Thus Uyl = @(m) = @@" - 1) Since a is relatively

prime to a" - 1, [a] is in Upy,, moreover, {al" = (1] and [al) = [11for0¢jcn
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Thus o(fal) = n hence n | Uy = @(@" - 1).

38.  Every element of G has order m, for some divisor m of n, and for
every such divisor m of n there are «(m) elements of order m Thus in
forming Ze(m) over all the divisors of n we account for each element of G
once and only once. Thus n = 3v/(m) where m runs over all divisors of n.
39 Let w(d) be the number of elements of order d in G, where d is a
divisor of n = |Gl. If G has no elements of order d then w(d) = 0. If G does
have an element a of order d then e, a9, a2Vd _ 5(d-1)/dgre g
distinct elements in G satisfying xd = e, thus by hypothesis, these are all
isfying x4 = e. Of these only @(d) have order d, namely the
aKN/d where (k,d) = 1. Thus if a has an element of order d it must have «(d)
elements of order d, thus w(d) = (d) in this case. Thus for all divisors d of
n = 1Gl, w(d) ¢ (d). However, every element of G has order d for some
divisor d of n thus in forming sw(d), where this sum runs over the divisors
of n, accounts for every element of G once and only once. Thus Zw(d) = n.
However w(d) < o(d) and n = Zw(d) ¢ Ze(d) = n (by Problem 38) where these
sums run over all divisors of n. The upshot of all this is that ¥(d) = ¢(d)
for all d dividing n. Thus w(n) = @(n) = 0. But this says that G has an
element of order n =/Gl. Thus G is cyclic. Note that we did not yse that G
was abelian in the argument, thys the resylt holds for all finite groups.

40. Let p be a prime and consider the group Up. Wwe will show that for any
integer d 2 | the number of solutions of x3=[1]in Up is at most d. The

most natural way to go about this is to show that any polynomial of degree

d with coefficients in Zp has at most d roots in Zp. However these things

are of ficially studied in Chapters 4 and 5, so we do it from scratch here.

We prove by induction the number of [u ] 1n Z such that u satisfies the
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relation q(x) = x9 + a'xd'l + 32)<d'l *..* 34 = 0modp, where the a; are
integers, is at most d.

Ifd=1thenq(x)=x+ 3 and the only solution of this in Zp is
u =[-2;] So the result is correct in this case.

Suppose that for a given k we know that such a congruence has at

most k solutions in Z,, Consider q(x) = ke a|xk * oo * 3y, 17 no integer
u satisfies uk*! « a,uk * .. * 3, ®0modp, then the assertion we are
trying to prove fs trivially true. Suppose, then, that the Integer u satisfies
q(u) =kl a,uk * . * 3, =0 mod p. However, since q(x) - qu) =

(K- kel al(xk -k . ~+3(x - ), and since, for any integer i 2 0,

xV =l = (k- udxi=t o 17250 0173024 o xu'"2 « 41~ 1) (check thish we

obtaln that q(x) - q(u) = (x - Wt(x) = (x - u(xK + b,x"'I * ..+ by), where
the bj are integers and where t(x) = xK + b,xk“' * .. * D Thus if v is such

that q(v) s Omod p and [v] = [u), then (v - u)t(v) = q(v) = 0 mod p, which
tells us that p [ (v - u)t(v). However [v] = [u), thus p does not divide v - y; in
consequence, p | t(v), hence t(v) = 0 mod p. So the v's that satisfy

q(v) = 0 mod p and are such that [v] = (u) must satisfy t(v) = 0 mod p. By
the form of t(x) and the induction hypothesis there are at most k such [vl
These, together with [u], then give us all the solutions of q(r) = 0 mod p,
thus their number is at most k + |. This completes the induction and thus

proves our claim.

The relation x9 = (1]in Up thus has at most d solutions in Zp and so,

Dy the result of Problem 39, Up i5 a cyclic group.

42, Wilson's Theorem (Problem 28) states that (p-1)! m -1 mod p. Thus

i
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1-2-(p-1)/2(p+1)/2-(p-1) = (p-1)' = -1 mod p. If y = 1:2=(p-1)/2 then,
since p-1=-1modp, p-2=-2modp,..,(p*1)/2 = (p-1)/2modp we
get z = (pe 11/2(p-1) = (- NP1V 21:2(p-1)/2 1 (- 1)1/ 2y mog p.
Thus -1 = (p-1) myz = (-1)P"12yZ mod p. If p = dne+ 1 then (p-1)/2 = 2n
is even, hence (-1)P~1)/2 2 | The net result of this is that y2 = -] mod p.

43. (a). We saw in Problem 16 that 3 a;..3,, Is the product of those

elements of G which are their own inverses. Since e and b are the only
elements of G with this property, we have that a,a,..a, =eb =b.

(b) Letb=zeandc =e b=c, besuchthatb?=c?=e; then (bc)? =
b2c2 = e Thus any such pair b, ¢ gives rise to the triple b, ¢, bc of
elements which are their own inverses. Morever, bc(bc) =b2¢2 = e In the

product 3;2,..a,, which reduces to the product of the elements of G which
are their own inverses, every pair b, ¢ with b2=c2=e gives rise to the

triple a, b, bc such that be(bc) = e. Thus ay35..3, =

(c). If n =16l is odd, by Part (a), we have x = e, since x2=e.

SECTION 5.

Easier Problems.

1. (a). The mapping ® is a homomorphism of G onto G’ since «(a * b) =
[a+ bl =(a] + [b] = @((a]) + «([b]). It is not 1-1 since, for instance, o(1) =
o(n+ 1)=[1]

(b). In any group G, (a)~' =b7 12 Tthus e(a) = a~! for ain G satisfies
@(ab) = @(b)e(2). Thus ¢ Is not a homomorphism. Such a map is called an
anti-homomorphism.

(c). If G is abelian then the mapping in Part (b) is @ homomorphism

since o(ab) = o(b)e(a) = @(a)e(b). Moreover it is onto, for, given a In G,
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then a=(a"')"! = w(a™'). It isalso I-1, for if ¢(a) = e(b) then 2~ = b~
soa=~b.

(d). That ¢ is a homomorphism is a consequence of: positive times
positive is positive, negative times negative is positive, and negative
times positive is negative in the real numbers. The mapping ¢ is onto since
@(1)= 1 and @(-1) = -1. It isnot I-1; for instance @(2) = @(26.51) = |.

(e). Since G is abelian, (ab)" = a"b" for all a, b in G. Thus @(ab) =
@(a)e(b). Whether or not it is onto or 1-1 depends on G and n. For instance,
if G is a cyclic group of order n > Ithen @(a) = e for all a in G, hence in this
Ccase ¢ is neither 1-1 nor onto. If G is a cyclic group of order 3 and n = 2
then, as is easily checked, ¢ is both 1-1 and onto.

f"(x)r"(y) ; therefore ™! Is an isomorphism of G onto Gy, thus G, = 6,.
3. (a). Givenx inG thenx =(xa)a~!, sox = La(xa), hence L, is onto.
Moreover, if L(x) = L,(y) then xa !« ya'I sothat x=y. Thus L, is 1-1.
Therefore L, € A(G).

(). If x 15 in G then (LyLp)x) = LylLy(x) = Lyxd™ 1) = (xb™1ha™! =
x(b~'a™!) = x(@) ™! = Ly (x); thus Ly = Ly, -

(€). W(@b) = Ly, =L Ly = w(a)w(b), by Part(b). If w(a) = w(b) then
Ly=Lp hencea™'= Lae) = Lp(e) =b™', thus a = b. So w is a monomorphism

of G into A(G).
5. Suppose that V € G satisfies VT, =T,V for all a In G. Let ¢ = V(e);

then (VT )e) = V(T (e)) = V(x) for all x in G. Also (T, V)(e) = T (V(e)) =

'Y if
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Ty(c) = xc. Since VT, =T,V for all x in G we get that V(x) = xc = Lyg(x)
whered=c™! Thus Vv = Ly

6. Let (G) be the image of G in G, if x, y are in «(G) then x = ¢(a) and

y = «(b) for some a, b in G, hence xy = @(a)e(b) = ¢(ab) so is in ¢(G), as is
@@ =(a™!) in ¢(G). Thus «(G) is a subgroup of G'.

8. Define f from G to G by f(a) = 22; then f(a + b) = 23*0 = 232D = r(a)¢(p)
so that f is a homomorphism of G into G'. It is 1-1 because 22 = 2 implies

that a = b. Finally, if ¢ = log, (2) then f(c) = 2¢ = a; therefore f is onto G,
10. Computing, fgf~! =fgf =g~ 'rr =g7! = g3, (rgh)g(rg")™" = rqlggir"!
= fgr" = g3, and gjgg‘J =gare all inH Soaga™! is in H for all a in G; thus
(aga") = ag‘a" is also in H for every i. Hence H is a normal subgroup of G.
13, We already know that ¢ is a homomorphism of G into itself by (e) of
Problem 1. The kernel of ¢ is the set of all the elements a in G such that
a™ = e. Thus this kernel consists of e alone only if a™ = e forces a = e. This
happens if and only if m and n are relatively prime.

16.  This problem occurred as Problem 28 in Section 3, see the solution
there.

21. Lets, t, and v be 3 distinct elements of S. There exists an f in A(S)
such that f(s) = s and f(t) = v; also there exists a g in A(S) such that

g(s) = t. Thus (g™ ' fg)s) = g™ (r(g(s)) = g7 (r(t) = g™ ' (v) = s because

g (t) = 5. Thus, although f is in H(S), g™'fg is not in H(S); thus H(S) cannot

be normal in G.

24 (@) Gisclearly closed under the product. Also (e ,e5), where e is

the unit element of G1 and e that of 62 IS the unit element of G since

(g,,gz)(el,ez) = (glel '9292) = (g,,gz), and, similarly (e,,ez)(glgz) =
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(91.92). A similar verification shows that (g, ™',g,7!) acts as the inverse

0f (g,97). The associative law easily checks out as a consequence of the
fact that the associative law holdsin G and Go. Thus G is a group.

(b). The mapping ¢ defined by @ (a;) = (a;,e,) is I1-1. Also @(aay)
=(aj2y,e7) = (a),e9)ap,e5) = ¢ (a, )e(a), hence | is a homomorphism,
thus fs a monomorphism.

(). Trivially the similar argument works for G,.

(d). Given(a),a,) in G then (aj,3) = (ay.ep)ey,a5), and (aj,ep) isin
©1(Gy) and (ey,a5) is in @p(Gy). If (@),37) isine(G))n ®2(G5) then

a; =e;and ap = €9, so this intersection consists of the identity element

of G.

Middle-Level Problems.

26 (a). Ifa,bare inG then, for all g in 6, (30p)g) = o(bgd™ ')
=abgb™a™! = (ab)g(ab)™! = o3h(Q). Therefore o4y = 0401, whence w(ab) =
%ab = 030 = W(2)w(b), so w is a homomorphism of G into A(G).

(0. 1 2€ Z(G) then 05(9) = 2g2™' = g for all g In G; thus o s the
identity mapping on G, hence z is in Ker . Therefore Z(G) C Ker w. For the
other direction note that if a € Ker ¢ then 03 = ¥(a) = identity mapping on
G, hence g = 0,(g) = aga", from which we get that ga = ag for all g in G.
This puts a in Z(G). Therefore Ker ¥ C Z(G). Thus we get that Z(G) = Ker ¢.

27. 11 gisiInG the, since 8 Is onto, g = 8(a) for some a in G. Thus g"e(N)g
= 8(a)”'8(N)8(a) = 8(a”e(N)e(a) = 8(a” 'Na) 8(N), since N Is normal In G.
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Thus 8(N) is normal in G. (the result is also a consequence of the result in
Problem 15).

29. (a). The mapping o, defined by o,(x) =a" 'xa is an automorphism of
G, thus if M is a characteristic subgroup of G then a” IMa = o4(M) €M for

all ain G. Thus M is normal in G.

(b). Since M and N are normal in G we already know that MN is a
(normal) subgroup of G. If @ is an automorphism of G then, since (M) CM
and @(N) € N, we get that o(MN) = e(M)e(N) CMN. Thus MN is a
characteristic subgroup of G

(c). Let G be the group of order 4 having the elements e, 3, b, ab
where 32 - b2= e, and where ab = ba. Since the group G is abelian, every
subgroup of G is normal in G, thus A = (e,al is a norma! subgroup of G. The
mapping ¢ defined on G by w(e) = e, @(a) = b, o(b) = a, and e(ab) = ab can be
seen to be an automorphism of G. But ®(A) = (e,b] is not contained in A.
Thus A is not a characteristic subgroup of G.

3 Since H is of order p and is normal in G, If @ is an automorphism of G
and if @(H) = H then He(H) is a subgroup of G and is of order 02 . (See
Problem 16 to see that He(H) is a subgroup of G; to see why it has order p2
see the argument given in Problem 22 of Section 3). Thus p2 = [He(H)l must
divide |G| = pm, by Lagrange’'s Theorem, Thus p21pm, and so p | m, contrary
to assumption. Thus H is a characteristic subgroup of G.

33, If Nis normal in G then, for a in G, 6, defined by o4(x) =a" Ixa is an
automorphism of G and ca(N) C Nsince N 1s normal in G. Thus o, induces

(gives rise to) an automorphism of N, hence takes I into itself because M
is a characteristic subgroup of N. Which 1s to say o,(M) = a~'MacMforall

ain G. Thus M is normal in G.
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34, Let 8 be an automorphism of G and consider 03, the automorphism of
G defined by o5(x) = a™ 'xa for all x in G. Then (8a48™ ! )(x) = 80,871 (x)) =

8(a”'o71(x)a) = 8(a) ' xg(a) = og(a)(x), hence 808~ ! = ag(a) SO is in 1(G).
Thus I(G) Is normal 1nQG).

Harder Problems.

37. Let G be a non-abelian group of order 6. (f every element were of
order 2 then, by Problem 9 of Section 1, G would be abellan. Also, If there
were an element of order 6 in G then G would be cyclic. Since G Is of even
order it has an element a = e such that a2 =e_ |f b =einG isof not of
order 2, by what we said above and Lagrange’s Theorem, b has order 3. By
the result of Problem 30 the subgroup B = (e, b, 02] 13 normal in G. Now,
since G is non-abelian, ab = ba, yet aba” lis in B sinc= B is normal in G.

Thus aba™! =b™! Since 22 = b3=eandab=b" 'a the mapping of G onto S3

which sends a to f and b to g, where f2 = 93 =eandfg=g!f gives an

Isomorphism of G onto Ss.
38, (a). (TyT)Ha) = Tp(T(Ha)) = Ty(Hac™") = Hac™ b1 = Ha(pe)™! -
Tpc(Ha) for every a in G. Thus Toe = TpTe

(b). Suppose u i3 in K(w); thus T, - w(u) - 15 Thua, far every a in G,
Hau = T\(Ha) = Ha, and s Haua™' = Ha Therefore aya™ is 1pH for every a

in G. Conversely, if aua™! is inH for every a in G the argument reverses to

show that T, = w(u) = ig. Thus K(¥) = (u€ 6 | aua™! ¢ H for every a in G).

This tells us that if u is in K(w) then u is in every a"Ha, from this we get
that K(w) is the intersection of all a~ 'Ha as aruns over G.

ad
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(c). K(w) is anormal subgroup of G, being the kernel of a homomor-

phism of G, and lies in H since aua”!

1s in H for every a in G, S0 in
particular, for 3 = e. Thus K(¥) € H. Suppose that N C H is a normal
subgroup of G; then aNa™ ! € N C H, hence N C K(w).

40. Suppose that H is a subgroup of G, IGl = n, and that n does not divide

ig(H) IT S 1s as In Problem 38, A(S) has elements has 1(H)! elements, so,

by Lagrange's Theorem, has no subgroup of order n. Thus the mapping ¥ of
Problem 38 cannot be an isomorphism. Therefore K(y) = (e) is a normal
subgroup of G contained In H.

41. I7[Gl =21 and H is a subgroup of order 7, then ig(H) = 3, and since 7

does not divide 3! = 6, H contains a normal subgroup N = (e) of G. But, since
the only subgroup of H which is different from (e) is H itself, we conclude
that N = H Hence H is normal in G

43, 44, and 45. Let G be a group of order p2 where p is aprime. If G is
cyclic them we are done, for then G is abelian. So if a = e is in G then

o(a) = p, and the subgroup A = (a) is of order ! Thus ig(A) = pz/p =p, and p2

doe not divide p!, G has anormal subgroup T = (e) contained in A. Hence

T =Aand A isnormal in G. So if b is in G then bab~! = a' since A is normal
and generated by a, From this, since b = e, we get that a = bPap™P = a™
where m = iP. (See Probiem 29 of Section 4 for the kind of argument
needed for this last step) Since a™! = e and a is of order p, p must divide
m - 1 = iP - 1, however by Fermat's theorem, iP = i mod p. The outcome of
all this is that 1 = | mod p. Hence a' =aand sobab™! = a, that is ab = ba
for all b in G This argument held for any a = e in G. Thus all elements of G
are in 2(G). So G is abelian. Note, for Problem 44, that if G is cyclic and
generated by a then aP generates a subgroup of order p; If G Is not cyclic
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then every a = e In G s of order p, so generates a subgroup of order p. At
any rate, G must have a subgroup of order p, and it is normal since G iIs
abelian. If G is of order 9 thenp = 3, and G is abelian.
46. I G is cyclic with a as generator then a’ has order S and a° has
order 3, and we would be done. So suppose that G is not cyclic. Every
non-identity element has order a divisor of 15, so has order 3 or D!
Suppose that there aren't elements of both orders 3 and 5. So every
element has order S or every element has order 3. If a and b are of order 5
and b is not a' for any i, then the elements ajbk, where j, k take on all
values between 0 and 4 give us 25 distinct elements-- far too many for G
which only has 15 elements.

Suppose then that every element in G other than e has order 3. If a =
e is in G and ba = ab we claim that b = a' for some i. If not, since the
subgroups B = (b) and A = (a) satisfy AB = BA, ABis a subgroup of G of
order 9, and since 9 does not divide 15 this is not possible. Suppose that ¢
is not in A, thus the 3 elements c, aca", a%ca™2 = a lca are distinct, so ¢
gives rise to a triple of distinct elements in this way. If d is not e nor any
of ¢, aca” ', a~'ca then d, ada” ', a lda give us 3 new elements. For, if
ada"', say, 1s one of these earlier elements then ada™! = a'ca", leading to
the contradiction that d = a''ca™(I=1). continue this way to get k
distinct triples. These together with e exhaust G so the number of
elements in G is 3k + 1 = 1S, which implies that 3| 14 which is false. So

not every element of G can have order 3.

Very Hard Problems.
49.  We first show that if ig{A) and i(B) are finite for the subgroups A

and B of G then ig(A n B) is also finite. Let Auy, AUy, ., Aup, be all the

I~
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distinct left cosets of A in G, and Bv, Bvy, ..., Bv,, those of B in G. Since

An B is asubgroup of B, B is the (possibly infinite) union of left cosets

(A n B )w, where the w. are inB. We claim that there are at most m
distinct left cosets of AnB inB. For suppose w, .., W, giveus m¢+l
such distinct cosets. Since G is the union of the Au; each wy = agu; where
the 3, are in A Since the number of u; is m, we must have that for two
different k, g the same i appears for wy and Wo that is wy = 3yu; and

Wq = 3gY; But these imply that wkwq" = akaq" S0 is in A, but wkwq"
is in B since each of wy and w is. Thus wkwq'| 1S in A n B, contrary to

the fact that they give distinct left cosets of An B inB. Thus B is the

union of at most m left cosets (A nB)wp, hence By iz the union of
(AN B)wrv], and so G is the union of the (A n B)wrvj, which are at most mn
in number Thus ig(An B) is finite.

By induction we easily then get that if G, G, .., Gg are of finite

index InG then Ay nAyn..n Ag is of finite index in G If H is of finite
index In G we claim that there are only a finite number of distinct a"Ha
in G. By the result of Problem 19, N(H) = (a € Gl 2~ 'Ha = H) is a subgroup of

G and contains H, so is of of finite index in G, in fact ig(N(H)) < ig(H). Also
the number of distinct @~ 'Ha equals i{N(H)) (Prove!) Hence there are only

a finite number of distinct a lHa in G. Each of these is of finite index In G
(Prove!) , so their intersection N is of finite in G. By Problem i8, N is
normal inG.

50 Letaandbbesucnthatazﬂ)?=eanda = exbh,anda=b, and
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ab = ba. The group, N, they generate (e, 3, b, ab) is abelian, hence all its
subgroups are normal. Let G be generated by 3, b, and g where g2 =@,

ga = bg, gb = ag, and gab = abg. Then N is normal in G but M =(e,a) which is
normal in N is not normal in G, for gag'| =bisnot inM,

S1. Let f be the mapping defined by f(x) = @(x)x™!; if f(x) = f(y) then
()X~ = alyly™!, so X1y = o(x)" laly) = @(x”Ty). By our hypothesis on ¢

we must have x~ ly =eandsox =y Thus f is I-1, hence maps G onto itself.

Therefore, given a in G, then a = o(x)x~ ! for some x in G, thus e(a) =
@2)e(x" 1) = xe(x) =2 I, since 92 is the identity automorphim of G
Thus b™'a™! = (ab) ™! = g(ab) = e(a)e(b) = a~'b™!, whence G is abelian

S2. LetA={a€Glel(a)=a"'), and suppose that b € A Thus both A and Ab
have more than 3/4 of the elements of G, hence A n Ab has more than half

the elements of G If x is in A n Ab then x = ab, where a is also in A, and

@) =x1=b71a™! But e(x) = e(a)e(d) = a~'b7!, cor:sequently ab = ba
follows. So whenever ab 15 in A we must have that at = ba. The number of
such a is more than half the elements in G, so the subgroup

C(b) = {x €B | xb = bx) has order greater than |Gl/2 yet divides G| by
Lagrange’s Theorem. Hence C(b) = G. So b € Z(G); thus A C Z(G). Therefore
Z(G) has order larger than 3|G|/4, so must be all of G. Therefore G is
abelian. Because G is abelian, A becomes a subgroup of G, and since its
order is larger than 3I6l/4, A = G. Thus @(x) = x"V for all x in 6.

SECTION 6.

2. If aisareal number identify Na with |al; since the cosets of N in G
multiply via NaNb = Nab which jibes with the fact that [abl = |allbl.

4. If gisinG then, since M is normal in G/N, if X = Ng then X~ l|“1X M,
this gives us that Ng~ 'Mg CM,andso g IMg C ™M Thus M is normal in G.
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6. Every point in the plane has a mate in the unit square where 0 ¢ x ¢ |
and 0 <y < 1. So G/Z is the set of points in this unit square where the left
hand edge and the right hand edge of this square are identified, and the top
edge and bottom edge are identified. Identifying the side edges means
folding this square around so that these edges become identical; this gives
us a cylinder. Identifying the top edge with the bottom one identifies the
top surface of this cylinder with its bottom surface. So we are bending
this cylinder around to glue the bottom surface to the top one. Thus we get
a torus.

7. If Gis cyclic and generated by a then every element x in G i3 of the
form a' Every element Nx in G/N is then of the form Nx = Na' = (Na)! Thus
G/N is cyclic with Na as generator.

10. By Cauchy's Theorem there exists an element a = e of order p = P
let P; be the set of elements of G of order some power of p. By Problem 11
of Section 3, P; is a subgroup of G. By Cauchy’'s Theorem |P;| = p™ for some
m. We claim that m = 3, certainly m ¢ a; since pm, as the order of P‘, must
divide |Gl =p @1 p, 2. Suppose that m < a,; then [G/P,| = IGI/1P| is
divisible by p, so, by Cauchy's Theorem has an element P;q = P; satisfying
(Pig)P=P;, hence P;gP = P, and thus gP is in P; and g is not in P;. Therefore
(@PIPIl = e, and since IP;| = p™ we have that g = e where k = p™*! But
this puts g In Py, contrary to assumption. Thus m = a; and P; Is the sought-
after subgroup S; of order p;2i.

11 If G/Z(G) is cyclic, suppose that Z(G)a is a cyclic generator of G/2(G)
Thus, for any g in G, 2(G)g = (2(6)a)' = Z(G)a' for some i This tells us that
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g= za for some z in 2(G). If h is in G then h = 2'a) for some integer j and
some 2" In 2(G). Thus gh = za'z'a) = a!*J2z' = alza! = hg because both 7 and
Z" are in 2(G). Thus G/Z(G) is abelian.

13. Ifaba "o isinNforalla, binG thenNaba 'b™! =N, from which
we get that Nab = Nba. But NaNb= Nab = Nba =NbNa; thus G/N is abelian.

14 By the result of Problem 1S, if a of order m and b of order n are in
the abelian group G then ab is of order mn. By induction this easily extends

to:if a; isof order my, for 1 < 1 <randforall i = j we know that

mj and m; are relatively prime, then ¢ = a,a,..3. is of order m |Mo...me.. By
Cauchy's theorem, the group G of order p;..py, where the pj are distinct
primes, has elements a; of order p; for each 1 < i < k. By the remark above,
€ =23 isof order p;.p, =Gl Thus G is cyclic.

IS, Let A=(a)and B = (b) where a is of order m and b is of order n, where
m and n are relatively prime. |A n Bl, as a subgroup of both A and B, must
divide both m = Al and n = IBI; because m and n are relatively prime we get
that [An Bl =1, hence AnB = (e). If ¢ = ab and a%bS = (ab)S = ¢S = ¢ then
a®=b"SisinAnB=(e), hence a®= e andb™S = e (0 bS = e). Therefore

m =0(3) | s and n = o(b) | n, and since m and n are relatively prime, mn | s,
hence s 2mn. But (ab)™ = aMNp™N = ¢ Thus mn is the smallest positive
integer k such that K= e, whence o(ab) = mn.

17. (@) By Problem 11 of Section 3, M is a subgroup of G.

(b). Suppose that (Mx)™ =M in G/M; thus x™ is in M. On the other
hand, since X" = xI61 = ¢, (Mx)" = Me = M, hence x" 1s In M. Since m and n are
relatively prime, um + vn =1 for some integers u and v. Thus x = xUM*VN -
xUMxYM §s 1n M since both x™ and x" are in M. Hence Mx = M, the identity

element of G/M
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SECTION 7.

1. IfaisinNthen ¥(2) = N'e(a) = N since ¢(3) € N' by the definition of N.
Hence a € Ker ¢ = M. Therefore NC M.

2 Let ybe defined from G to the real numbers R under + by the rule
W(f(x)) = f(1/4). The mapping ¥ is a homomorphism of G into R because
W((x) + g(x)) = f(174) + g(1/4) = (f(x)) + ¥(g(x)) for f and g in G. Since the
function h(x) =r is in G for any real number r, and w(h(x)) = h(1/4) =r, we
get that ¢ is onto R. Finally, what is Ker ¢ ? We know that ¢(f(x)) = O if
and only if f(1/4) = 0; thus Ker ¢ = N. By the First Homomorphism Theorem
we get that R = G/N.

3. Define the mapping f of G onto the positive reals by f(r) = ri for every
non-zero real number. Clearly f is a homomorphism since f(rs) = |rils| =
f(r)f(s). AlsoKer f =(r|lrl=1) soKer f={(1,-1} =N Thus by the First
Homomorphism Theorem G/N = positive reals under rruitiplication.

S (a IfheHthenh '(HaNmhch THhCHandh™ (HaNhch INhCN
so h™(HnN)h CHaN; thus H N is normal in H.

(b). Since N is normal in G, HN = NH; but this is the criterion that HN
be a subgroup of G.

(c). N =eNC HN, and since g 'Ng € N for all g in G, it is certainly
true if g 1s in HN. Thus N is normal in HN.

(d). Define the mapping f: G » G/N by f(g) = Ng; since f is a
homomorphism of G onto G/N with kernel N, if we look at g: H» HN/N
defined by g(h) = Nh for h inH then Ker g =H n Ker f = H a N, so the image
of Hunder g is 1somorphic to H/(H n N). The image of H under g, g(H), is the

normal in G'
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SECTION 8.

Middle-Level Problems.

2 If G is of order 35 then, by Cauchy's Theorem it has an element a of
order S and an element b of order 7. If B = (b) then B is a subgroup of order
7 and, for g in G, C = gBg~ I is also a subgroup of order 7. If B = C then BC
has 49 distinct elements (Prove!), which is impossible since |Gl = 35. Thus
ng'l =B for all g in G. Thus B is normal in G. Therefore, since aba~! isin
B, aba~! =b! Therefore b = a%ba> = bK where k = i9, and so bK~! = e This
implies that 7 | (2 - 1), and since, by Fermat's Theorem, 7 | (8- 1) we
get that 7| (i - 1). But this says that b' = b, and 50 ab = ba. But then ¢ = ab
is of order 57 = 35, hence G 1s cyclic.

4. Let G be generated by a and b where ad=b’ =eand aba~! =b2 The
21 distinct elements b'aj, where 0 ¢ j<3and 0 ¢ i< 7, form.a group for,
as can be verified from the relations between a and b, (b'a™)(bJaM) = b7aS
wherer=1+2Mjands=m+n.

S.  Suppose that |Gl = pnm where p does not divide m, and suppose that P
is a normal subgroup of order p" If 8 is an automorphism of G then

Q= 8(P) is a subgroup of order p and PQ has IPIIQI/IP n 0l = p2"/IP n Ol
elements Thus, if P = Q, then [PQl = p%, where s 2 n + 1 But p® does not
divide p"m since p does not divide m. With this contradiction we get that
8(P) = P, hence P 15 a characteristic subgroup of G.

6  Since |AB| = |AlIBI/IA n Bl <|Gl, |A n Bl 2 |AlIBI/IGI 2 YIG| YIGIZIGI > 1. Thus
AnB =(e)

{An Bl =1, hence AB has |AllBl = mn distinct elements

8. By Cauchy's Theorem G has an element a of order 11. Thus for the

subgroup A = () of order 11, ig(A) =S and 11 does not divide 9!, hence, by

Problem 40 of Section S, A is a normal subgroup of G

L

i
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10. By Problem 9, G has a normal subgroup of N of order 7; thus Gy = G/N

is a group of order 6. As such, G, has a normal subgroup T,of order 3. By

the Second Homomorphism Theorem (Theorem 2.7.2) the subgroup

T =(aeG|NaeT,) isanormal subgroup of G and T/N=T,.Since T; =T/

= [TIZINI, we get that [Tl =IT (IINl = 37 = 21.

Harder Problems.

12, Since G is a group of order 21 it has an element 3 of order 7 and an
element b of order 3 The subgroup A = (a) of order 7 is normal in G since 7
does not divide ig(A)! = 3! = 6. Therefore bab™ ! = al Since G is non-abelian,
| = 1 But since b3 = e we get that a = &K where k = 13, thus 13 - 1 is
divisible by 7 This gives us that i =2 0r 4 If 1 =2 then p2ab~2 = a4, so in

all circumstances G has an element ¢ such that cac™’ = a4 If Gl is another

non-abelian group of order 21, the same argument shows that G has

elements u and v such that u‘ = v3 = e and vuv'I = u“. Define the mapping f

of G 1o Gy by f(a) = uand () =v and f(a'c)) = u'v). This mapping Is an

isomorphism of G onto 6.

Very Hard Problems.
13 By Cauchy's Theorem G has an element a of order 11, and since A = (a)

is a subgroup of order 11, ig(A) = 9; because 11 does not divide 9! we have
that A is a normal subgroup of G. We claim that A € Z(G); for if g is inG
then gag™' = al since it is in A, hence g' 'ag™! ! = a™ where m = i gy

Fermat's Theorem , il - imod ! 1; thus am = ai‘ The net result of all this
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Is that g' ’ag'I -l gag", from which we get that g'oa = ag'o. ;Since
10 does not divide 99 = |GI, we easily get from this that ga = ag. Thus
a € Z2(G), hence A = (3) C 2(G).

Also G/A is of order 9, hence is abelian. Thus if u and v are in G then
wu v lisin A (see Problem i2 in Section 6). Hence uv = zvu where 7 is
in A, thus in 2(G), and 2!« e Thus u2v = uluv) = uzvu = zZuvy = zvu2, since
z is in Z(G). Continuing this way we get that ulv=zvi! In particular, if

ae we getul v =wu!! Thus if u is of order 3 we get

i=11,since z
thatu' ' =u2=0u"" soulv=w ! foralivinG In short, u must be in
Z(G). Thus Z(6) has order at Icast 33 since it contains an element of order
I'1, namely 3, and an element of order 3, namely u. Thus the order of G/2(G)
is 1 or 3; at any rate, G/Z(G) is cyclic. By Problem 11 of Section 6, G must
be abelian.

14, Consider the group generated by the two elemerts a and b where we
impose the conditions that aP = b9=e and bab™' = a' what value should
we assign to 1 in order to get consistency with the relations aP = pd = ¢
and to insure that the group so obtained is a non-abelian group of order pq?
As we have done many times, this implies that b'ab™" = a™ where m = i
Thus if r = q, since b9 = e we get a=2a™, and so a™~! = e This would
require that g1 (m - 1) = (i%- 1) and (since we want G non-abelian) q does

not divide i - 1. Can we find such anr ? Yes, since UD 15 a cyclic group and
ql(p -1) there is an element [i] = (1] in Up such that (119={1), that is, an

integer i, where | <i <psuch that p|(i%- 1) and p does not divide i - 1.
Pick such an | and let G consist of the distinct elements alY where
O<ugp-1,and 0 < v<qg-1, which are pq 1n number. Motivated by the
desired relations a = b%= e and bab™! = a', we find that these elements

ab¥ multiply according to the rule (a%V)(a™b%) = a'vW where w = v + s and

)
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t =u + riV. Using this rule, G is clearly closed under this product,
e = a9, and, as we can check, (a¥b¥)"! = a"bS where s = p - v and
r=(p - wWiTV which is in G. We leave the checking of the associative law

to the reader. So G is a non-abelian group of order pq.

15, LetGand G| be two non-abellan groups of order pq. AS we saw In

Problem 14, G is generated by a and b where aP = b9 = e and bab™! = 2!

where i%9 = 1 modp and i % | mod p. Similarly, G, is generated by two

elements ¢ and d such that cP = d9 = e and ded™! = cj, where jq = | modp

and j # | mod p. Since [i] and (j] are of order q in Up. (1= (i1 for some

positive integer t such that 0 <t <q Thus j = it mod p, hence btab~t = g
where m = i', and since i' = jmodp, a™=a). If we let h=bt thenhd = ¢

and hah™! = al, the mapping f : 6 » G defined by f(aYh¥) = cUd" is then an

isomorphism of G onto G,.

SECTION 9.

2. If mandnare relatively prime and 6, and G, cyclic groups of orders
m and n respectively, if a generates G and b generates G, then the
elements (3,e5) and (e,b) In Gy x G, are of orders m and n respectively.

Thus, because m and n are relatively prime, (a,b) = (a,e2)(e 1,0 is of order

mn. On the other hand, if d = | is the greatest common divisor of m and n

then the elements (a™'/d p"/9) where 0 < i,j < d-1 give us d2 solutions

of the equation xd = (e,,ez) inGx Gy But in a finite cyclic group the

number of solutions of x4 = e is at most d, and since d2 > d, we get that

(Gy,69) cannot be cyclic
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4 Since P, and P, are of relatively prime orders, the subgroup Py !;2 is
of order p;™1p,M2. Continuing by induction we get that P, P,..P, is of
order p;™1p,M2..p, Mk = [GI. Thus G = P{P,..Py. Moreover every element g
in G has a unique representation in the form g = a135..3, where each 3; is
in Py, because, if a3 = blbz---bk are two such representations of g
then b,a," i bz...bka,"l..ak" = (bzaz' ! )...(bkak"), S0 by a," is in
Pz...Pk. But, since bla," isin PI its order is a power of Py the subgroup
Po..Py 1s of order p,™2.p, ™k and since py does not divide p,M2..p, Mk
we get that b a, “I= e, hence a; =b,. Similarly we get that aj = b; for all

the i's. Thus g has a unigue representation in the form g = a,...a,. By the

definition of internal direct product, G is the internal direct product of

Py, .., Py thus by Theorem 294, G& Py x Py x .. Xx P
S.  The order of NyN,..N, is at most IN; lIN,L.IN,I = [G; if for any two
different products nyno..ng =m mo..my where each of m; and n; are in Ny,

for every i, then we cannot achieve this maximum for the number of

elements in N,..N,. Thus every element of G = N\N,..N, has a unique
representation in the form n ny..ny. By the definition of internal direct
product and Theorem 2.9.4 we get G is the direct product of N, No, .. , Ny.

6. Toshow that G Is the direct product of Ny, N5, ..., N, given (a) and (b)

we merely must show that each g in G has a unique representation in the

form g = n..n, where each n; 1s in N;. From the hypothesis (b) we have

that Nja Nj = (e)If i = jsince Nj ©Ny.Ni-Nio Ny and, since the Ny are
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normal In G, we get that ninj =njn; and njm; =m;n;. In consequence, If

g = nj..ng =my..my where each m; is also in N; then we obtain that
nimi" . ml‘--mi—lmiol~~mk"k-l'--"i-l-'"iolQl--‘nl-l '(mlnl)‘"(mk"k-')

S0 nimi" is in Njn (N .Nj_(Njy 1 -Ny) = (e). Thus nj = m; for each i,

whence g has a unique representation in the form g = n;..n,. Therefore G is

the direct product of Ny, N2, o Nk~

SECTION 11.

Earier Problems.

1. The conjugacy classes in Sy are (e), (f,fg, gf), and (g,g2), where f and
g generate Ss, and (2= g3 =eandfg-= g"r (See Problem 19 (n Section 4).
Also C(e) = Sy, C(f) = (e,f) and C(q) = (e.g.92) so IC(M)I = 2 and IC(g)l = 3, and
IS3I/1C(eN = 1, 1S5I/IC(F = 2 and IS31/IC(Ql =2 ,and 1 + 2+ 3 =6 is the
check on the class equation

2. The dihedral goup of order 8 is generated by a and b where a2=pd=e
and ab = b~ 'a. The conjugate classes are (e), (b2), (b,63), (a,ab?), (ab,ab3)
and C(e) = G, C(b2) = G, C(b) =(e,b,b2,3), C(a) = (e,a,ab2,b2). Therefore
IGIZICCe)l = 1, IGI/IC(B2) = 1, IGI/IC(D) = 2, IGI/IC(a)l = 2, and IGI/IC(ab)| = 2
thus the class equation checksoutas 1 + 1 +2+2+2 =8,

6. If Piisnormal inG and Q = P is a p-Sylow subgroup of G of order p"
then PQ = QP, 0 PQ is a subgroup of G and [PQl = PIQAI/IP a QI =p2™V/IPaal 2
p™* 'must divide IGl. Since |G| = p"m whe (m,p) =1, this is not possible. Thus
P =Q and P is the only p-Sylow subgroup of G.
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8. We proceed by induction on |Gl to prove that if the prime p divides |G]
then G has an element of order p.

IT1GI = p the result is trivially true since every a = e inG is of order
P. Suppose that the theorem is true for all groups H such that [H| < [G]. Let
Z(G) be the center of G with |Z(G) =z 2 1. If p | Hl for any subgroup H = G of
G then, by our induction hypothesis, H has an element of order p, and so the
result is correct in this instance. So we may assume that p does not divide
the order of any proper subgroup of G. Thus, if a is not in Z(G) then C(a) = G
1s a proper subgroup, hence p does not divide IC(a)l. But then p does divide
IGIZIC(2)l. The class equation tells us that |G| = z + ZIGI/IC(a) where the sum
Z runs over one element from each conjugacy class of the elements of G
which are not in Z(G). For each |GI/IC(a)l which appears in the sum £ we
know that p | IGI/IC(a)l, hence p | ZIGI/IC(a)l. Since p also divides |G| we get
that p | z. But we already have proved Cauchy's Theorem for abelian groups
in Theorem 2.6.4. Since Z(G) is an abelian group and p | Z(G)I, Z(G) has an
element of order p. This completes the induction and proves the theorem.
11 Since P is 2 p-Sylow subgroup of G and P C N(P), P is also a p-Sylow
subgroup of N(P). But P is normal in N(P), thus, by the result of Problem 6,
P is the only p-Sylow subgroup of N(P)
12. Let|P| =p" If ais of order pMand if a 'pa=p then, if A = (a) we
have A is of order p™ and that AP = PA is a subgroup of G. But |AP| =
IAlIPI/IA a Pl = pMp"/IA 0 Pl = p™“"/]A Bl If aisnot in P then An P = A,
solAn Pl = p" where r <m. Thus IAP| = p™* " andsincem -r» 1, the
integerm+n-r2n+ 1,50 p™* " goes not divide |G|. But since AP is a
subgroup of G, |AP| = p™*N"" myst divide IGl. With this contradiction we
obtain that a is in P,

w4

o
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14 Since P C N(P), we know that p" = [Pl must divide IN(P), thus
IN(P)I = pk and S0 i(N(P)) = IGI/IN(P)| = p"m/p"k = m/K, an integer; since p

does not divide m we get that p does not divide ig(N(P)). Since the number

of distinct x™ 'Hx equals iG(N(P)) we have established the result.

Middle-Level Problems.
16. Let S be the 3-Sylow subgroup of G of order 9. Thus i5(S) = 4and

since 9 does not divide 4! = 24, by the result of Problem 40 of SectionS, S
contains a normal subgroup N = (e). Since N is a subgroup of S, INl = 3 or 9.
17. iGl =108 = 3322 Since the 3-Sylow T subgroup of G has order 27,

i5{T) = 4 By the argument used in solving Problem 40 of Section S there is
a homomorphism'y of G into S4, which is of order 24, such that Ker ¢ is

contained in T. Thus 108/[Ker ¢l = [GI/IKer w| =[G/Ker ¢| < 24, hence
IKer | 2 108/24 > 4. Since it is a subgroup of T and |T| = 27, IKer | is a
subgroup of T, its order must divide 27 We thus have that |Ker ¢| =9 or 27.
18. Let abe in N(N(P)); thus a~ 'N(P)a € N(P), and since P < N(P), a”'Pa
is contained In N(P). But then a™'Pa Is a p-Sylow subroup of N(P). By the
result of Problem 6 we know that P Is the only p-Sylow subgroup in N(P).
Thus a~'Pa = P, whence a € N(P) ; therefore N(N(P)) C N(P). Since N(P) C
N(N(P)) (since H € N(H) for any sugroup H of G), N(N(P)) = N(P).
19 We go by Induction on n. For any n =1 3 group of order p has an
element of order p, thus a subgroup of order p. Thus the result is correct
forn=1,

Suppose that any group G of order p™ has a subgroup of order p™ for
all 0 <m ¢ n. Let G be a group of order p™* ! Since 1G] = p"* ! then by
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uPu™!, from which we get that (u™'x)P (u™'x)™! = P, Thus v = y~ Ix is in
N(P). However vav™! = u™Txax™Tu = u™Tbu = b since ub = bu. Thus a and b
are conjugate in N(P).



