

GE 201 Statics Second Semester 1433-34 H

Monday: 6-5-1434 Time: 90 Min

FIRST MID TERM EXAM (SOLUTION)

Section / Instructor:

Q. No.	Max. Marks	Marks Obtained
1	10	
2	10	
3	10	
Total	30	

Question # 1(a) (5 Marks)

Determine the magnitude of force T_A and its direction θ so that the resultant force is directed along the positive x axis and has a magnitude of 1250 N.

Solution

The force T_A can be obtained by applying the cosine law on ΔOAC :

$$c = \sqrt{\left(a^2 + b^2 - 2ab\cos C\right)}$$

$$\Rightarrow T_A = \sqrt{\left(800^2 + 1250^2 - 2 \times 800 \times 1250 \times \cos 30^\circ\right)}$$

$$\Rightarrow T_A = 685.9 \text{ N} \quad Ans.$$

Applying the sine law on $\triangle OAC$, we have

$$\frac{\sin(90-\theta)}{800} = \frac{\sin 30^{\circ}}{685.9} \Rightarrow \sin(90-\theta) = 0.583 \Rightarrow \theta = 54.33^{\circ} \quad Ans.$$

Alternatively,

Note
$$R_y = 0$$
 and $R_x = R$

$$\uparrow R_y = \sum F_y = -800 \sin 30^\circ + T_A \cos \theta = 0 \implies T_A = \frac{400}{\cos \theta}$$

$$\rightarrow R_x = \sum F_x = T_A \sin \theta + 800 \cos 30^\circ = 1250$$

$$\Rightarrow \frac{400}{\cos \theta} \sin \theta + 692.82 = 1250 \implies 400 \tan \theta = 557.18$$

$$\Rightarrow \theta = 54.33^{\circ}$$
 and $T_A = \frac{400}{\cos \theta} = 685.9 \text{ N}$ Ans.

Student name	Marks obtained	page 2/4
Student number	for Q.1	

Question # 1(b) (2.5 Marks)

Calculate the value of the force P that makes the resulting moment equals to zero.

Solution

The given four forces form the two couples.

$$M_t = 10 \times 1 \tan 60^\circ - P \times 1 = 0$$

 $\Rightarrow P = 10 \tan 60^\circ = 17.3 \text{ kN}$ Ans.

Question # 1(c) (2.5 Marks)

Determine the scalar projection of the force $\mathbf{F} = -10\mathbf{i} - 8\mathbf{k}$ kN on the x-, y- and z-axes.

Solution

Projection of the force on x - axis = F_x = $\mathbf{F}.\mathbf{i}$ = $-10 \, \mathrm{kN}$ Ans. Projection of the force on y - axis = F_y = $\mathbf{F}.\mathbf{j}$ = $-0 \, \mathrm{kN}$ Ans. Projection of the force on z - axis = F_z = $\mathbf{F}.\mathbf{k}$ = $-8 \, \mathrm{kN}$ Ans.

Question $\neq 2$ (10 Marks)

For the force-system shown in the figure:

- i. Replace the two forces and one couple by an equivalent force-couple system (*R* and *M*) at point *O*.
- ii. Determine the direction of *R*.
- iii. Sketch the single resultant force *R* that prepresents the force-couple system alone and find its intersection with the *x* and *y*-axes.

Solution

$$\cos \alpha = 4/5 = 0.8$$

 $\sin \alpha = 3/5 = 0.6$

$$\stackrel{+}{\to} R_x = \sum F_x = 200\cos\alpha - 75\sin 30^\circ = 200 \times 0.8 - 75\sin 30^\circ = 122.5 \text{ N} \rightarrow$$

$$\uparrow^{+} R_{y} = \sum F_{y} = 200 \sin \alpha + 75 \cos 30^{\circ} = 200 \times 0.6 + 75 \cos 30^{\circ} = 184.9 \text{ N} \uparrow$$

Therefore,
$$R = \sqrt{R_x^2 + R_y^2} = \sqrt{(122.5)^2 + (184.9)^2} = 221.8 \text{ N}$$
 Ans

$$CCW(+)M_O = 75 \times \cos 30^{\circ} \times (0.5 + 1.5\cos 40^{\circ} + 0.35) + 75\sin 30^{\circ} \times 1.5\sin 40^{\circ}$$

$$+200\sin\alpha \times (0.5+1.5\cos 40^{\circ}+0.35)-200\cos\alpha \times 1.5\sin 40^{\circ}-200$$

$$\Rightarrow M_O = 51.6 \text{ kN.m} (CCW)$$
 Ans.

$$\theta = \tan^{-1} \left(\frac{R_y}{R_x} \right) = \tan^{-1} \left(\frac{184.9}{122.5} \right) = 56.5^{\circ}$$
 Ans.

(iii)

$$x - \text{intercept}, x = \frac{M_O}{R_v} = \frac{51.6}{184.9} = 0.28 \text{ m}$$

y-intercept,
$$y = -\frac{M_O}{R_x} = -\frac{51.6}{122.5} = -0.42 \text{ m}$$

x

Student name	Marks obtained	page 4/4
Student number	for Q.3	

Question #3 (10 Marks)

The force F = 976 N is acting along the line AB as shown in the figure. Determine the following:

- (i) The *magnitude* of the moment about line OC (M_{OC}), and express it in vector form (M_{OC}).
- (ii) The moment about point *B*.

Solution

The coordinates of points O, A, B and C are: O(0, 0, 0); A(0.35, 0.4, 0); B(0, 0.1, 0.16) and C(0.35, 0, 0.16)

(i)
$$\vec{M}_O = \vec{r}_{OB} \times \vec{F}$$
, where

$$\vec{r}_{OB} = (0-0)\vec{i} + (0.1-0)\vec{j} + (0.16-0)\vec{k} = 0.1\vec{j} + 0.16\vec{k}$$

$$\vec{F} = 976\vec{n}_{AB} = 976 \left(\frac{(0 - 0.35)\vec{i} + (0.1 - 0.4)\vec{j} + (0.16 - 0)\vec{k}}{\sqrt{(0 - 0.35)^2 + (0.1 - 0.4)^2 + (0.16 - 0)^2}} \right) = -700\vec{i} - 600\vec{j} + 320\vec{k} \text{ N}$$

Therefore,

$$\vec{M}_O = \vec{r}_{OB} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0.1 & 0.16 \\ -700 & -600 & 320 \end{vmatrix} \Rightarrow \vec{M}_O = 128\vec{i} - 112\vec{j} + 70\vec{k} \text{ N.m}$$

 $M_{OC} = \vec{M}_O \cdot \vec{n}_{OC}$, where \vec{n}_{OC} is the unit vector along the line OC.

$$\vec{n}_{OC} = \frac{(0.35 - 0)\vec{i} + (0 - 0)\vec{j} + (0.16 - 0)\vec{k}}{\sqrt{((0.35 - 0)^2 + (0 - 0)^2 + (0.16 - 0)^2)}} = \frac{0.35\vec{i} + 0.16\vec{k}}{\sqrt{0.35^2 + 0.16^2}} = 0.91\vec{i} + 0.42\vec{k}$$

Therefore,
$$M_{OC} = \vec{M}_O \cdot \vec{n}_{OC} = (128\vec{i} - 112\vec{j} + 70\vec{k}) \cdot (0.91\vec{i} + 0.42\vec{k}) = 145.9 \text{ N.m}$$
 Ans.

The above moment can be expressed in a vector form as

$$\vec{M}_{OC} = M_{OC} \vec{n}_{OC} = 145.9 (0.91\vec{i} + 0.42\vec{k}) = 132.8\vec{i} + 61.3\vec{k} \text{ N.m}$$
 Ans.

(ii) Since the line of action of the force is passing through the point B, the moment of the force about point B will be zero. That is, $M_B = 0$ Ans.