King Saud University College of Engineering Department of Civil Engineering

GE 201 Statics First Semester 1433-34 H Monday: 27-12-1433 Time: 90 Min

FIRST MID TERM EXAM

		O. No.	Max. Marks	Marks Obtained
Name (in Arabic):	Madal	1	10	
Student No.:	Solution	2	10	
Section / Instructor:		3	10	
L		Total	30	

Question # 1(a) (6 Marks)

The cables AB and AC are attached to the top of the transmission tower as shown in the figure. If the tension in cable AB is 8 kN, determine

- a) The required tension T in the cable AC such that the resultant (R) of the two cable tensions is along *y*-axis.
- b) The magnitude of the resultant force R.

Solution

The angles α and β can be obtained from the above figure as

$$\alpha = \tan^{-1} \left(\frac{40}{50} \right) = 38.7^\circ; \text{ and } \beta = \tan^{-1} \left(\frac{50}{30} \right) = 59^\circ$$

The angle $\gamma = 180^\circ - (\alpha + \beta) = 180^\circ - (38.7^\circ + 59^\circ) = 82.3$
Applying sine law on the second figure yields,
 $T = \frac{R}{8} = \frac{8}{3} = \frac{T}{8} = \frac{R}{8} = \frac{8}{3}$

$$\overline{\sin \alpha} = \overline{\sin \gamma} = \overline{\sin \beta} \Longrightarrow \overline{\sin 38.7^{\circ}} = \overline{\sin 82.3^{\circ}} = \overline{\sin 59^{\circ}}$$
$$\Rightarrow \frac{T}{\sin 38.7^{\circ}} = \frac{8}{\sin 59^{\circ}} \Longrightarrow T = 5.83 \text{ kN} \qquad Ans.$$
Similarly, $\frac{R}{\sin 82.3^{\circ}} = \frac{8}{\sin 59^{\circ}} \Longrightarrow R = 9.25 \text{ kN} \qquad Ans.$

Alternatively,

Note
$$R_x = 0$$
; and $R_y = R$
 $\stackrel{+}{\rightarrow} R_x = \sum F_x = T \sin \beta - 8 \sin \alpha = T \sin 59^\circ - 8 \sin 38.7^\circ = 0$
 $\Rightarrow T = 5.83 \text{ kN}$ Ans.
 $\stackrel{+}{\uparrow} R_y = \sum F_y = -T \cos \beta - 8 \cos \alpha = -5.83 \cos 59^\circ - 8 \cos 38.7$
 $\Rightarrow R = R_y = -9.25 \text{ kN}$ Ans.

8 kN 🗸

R

x

Student name		Marks obtained	page 4/4
Student number	Marka		
A force of 5 is shown in the final (i) The momer (ii) The momer (iii) The momer (iii) The mome	(<u>NUARKS</u>) kN is acting along the line <i>BC</i> as gure. Determine the following: at about point $O(M_O)$. at about line $OA(M_{OA})$. at about line $CD(M_{CD})$.	<i>z</i> <i>A</i> <i>B</i> <i>x</i> <i>x</i>	C 2.5 m $D \rightarrow y$
<u>Solution</u>			
The coordinates of (i) $\vec{M}_{O} = \vec{r}_{OB} \times \vec{F}$, Therefore, $\vec{M}_{O} =$ And the magnitud (ii) $M_{OA} = \vec{M}_{O} \cdot \vec{u}$ $\vec{u}_{OA} = \frac{\vec{r}_{OA}}{ \vec{r}_{OA} } = \frac{\vec{i} + 1}{\sqrt{1^{2}}}$ Therefore, $M_{OA} =$ The above mome $\vec{M}_{OA} = M_{OA}\vec{u}_{OA} =$	of points <i>O</i> , <i>A</i> , <i>B</i> and <i>C</i> are: <i>O</i> (0, 0, 0); <i>A</i> (1, 0) where $\vec{r}_{OB} = \vec{i}$ and $\vec{F} = 5\vec{u}_{BC} = 5\left(\frac{-\vec{i}+3\vec{j}}{\sqrt{(-1)^2+(3)^2}}\right)$ $\vec{r}_{OB} \times \vec{F} = \vec{i} \times (-1.24\vec{i}+3.72\vec{j}+3.1\vec{k}) = -3.1\vec{j}$ de of \vec{M}_O is, $M_O = \vec{M}_O = \sqrt{(-3.1)^2+(3.72)^2}$ \vec{v}_{OA} , where \vec{u}_{OA} is the unit vector along the lin $\frac{2.5\vec{k}}{+2.5^2} = 0.371\vec{i} + 0.928\vec{k}$ $= \vec{M}_O \cdot \vec{u}_{OA} = (-3.1\vec{j}+3.72\vec{k}) \cdot (0.371\vec{i}+0.928\vec{k})$ ent can be expressed in a vector form as $3.45(0.371\vec{i}+0.928\vec{k}) = 1.28\vec{i}+3.20\vec{k}$ kN.m	(a), 2.5); $B(1, 0, 0)$ and $C(0, 3, 2.5)$ $\left[\frac{1}{2} + 2.5\vec{k} + 2.5\vec{k}\right] = -1.24\vec{i} + 3.72\vec{j} + 3.1$ $\vec{k} + 3.72\vec{k}$ kN.m Ans. (a) = 4.84 kN.m Ans. (b) e OA. (c) $\vec{k} = 3.45$ kN.m Ans. (c) m Ans.	(1 mark) \vec{k} kN 2 marks) (2 marks) (1 mark) (2 marks)
(iii) Since the lin <i>CD</i> will be zero.	the of action of the force is passing through the transformation $M_{CD} = 0$ Ans.	he line <i>CD</i> , the moment of the for	ce about line 2 marks)