King Saud University
College of Engineering
GE 201 Statics
Department of Civil Engineering
First Semester 1433-34 H
Monday: 27-12-1433
Time: 90 Min

FIRST MID TERM EXAM

Name (in Arabic):
Student No.:
Section / Instructor:

Question \# 1(a) (6 Marks)

The cables $A B$ and $A C$ are attached to the top of the transmission tower as shown in the figure.
If the tension in cable $A B$ is 8 kN , determine
a) The required tension T in the cable $A C$ such that the resultant (R) of the two cable tensions is along y-axis.
b) The magnitude of the resultant force R.

Q. No.	Max. Marks	Marks Obtained
1	10	
2	10	
3	10	
Total	30	

Solution

The angles α and β can be obtained from the above figure as
$\alpha=\tan ^{-1}\left(\frac{40}{50}\right)=38.7^{\circ}$; and $\beta=\tan ^{-1}\left(\frac{50}{30}\right)=59^{\circ}$
The angle $\gamma=180^{\circ}-(\alpha+\beta)=180^{\circ}-\left(38.7^{\circ}+59^{\circ}\right)=82.3^{\circ}$
Applying sine law on the second figure yields,
$\frac{T}{\sin \alpha}=\frac{R}{\sin \gamma}=\frac{8}{\sin \beta} \Rightarrow \frac{T}{\sin 38.7^{\circ}}=\frac{R}{\sin 82.3^{\circ}}=\frac{8}{\sin 59^{\circ}}$
$\Rightarrow \frac{T}{\sin 38.7^{\circ}}=\frac{8}{\sin 59^{\circ}} \Rightarrow T=5.83 \mathrm{kN} \quad$ Ans.
Similarly, $\frac{R}{\sin 82.3^{\circ}}=\frac{8}{\sin 59^{\circ}} \Rightarrow R=9.25 \mathrm{kN} \quad$ Ans.
Alternatively,
Note $R_{x}=0$; and $\quad R_{y}=R$
$\xrightarrow{+} R_{x}=\sum F_{x}=T \sin \beta-8 \sin \alpha=T \sin 59^{\circ}-8 \sin 38.7^{\circ}=0$
$\Rightarrow T=5.83 \mathrm{kN}$ Ans.
$\stackrel{\dagger}{\uparrow} R_{y}=\sum F_{y}=-T \cos \beta-8 \cos \alpha=-5.83 \cos 59^{\circ}-8 \cos 38.7^{\circ}$
$\Rightarrow R=R_{y}=-9.25 \mathrm{kN}$ Ans.

(3 marks)
(3 marks)

Student name		Marks obtained for Q. 1	page 2/4
Student number			
Question \# 1(b) (2 Marks)			
Replace th single for which the passes.	force-couple system at point O by a Specify the y-coordinate through ne of action of this single force		

Solution

$$
y_{A}=-\frac{M}{R_{x}}=-\left(\frac{-1}{-4}\right)=-0.25 \mathrm{~m} \quad \text { Ans. }
$$

Question \# 1(c) (2 Marks)

Compute the moment of the two $10-\mathrm{kN}$ forces about the
a) Point O; and
b) Point A.

Solution

The two $10-\mathrm{kN}$ forces are forming a couple. As couple moment is independent of the moment centers, the moment produced by the two $10-\mathrm{kN}$ forces about points O and A will be the same.

Therefore, $M_{O}=M_{A}=F d=-10 \times 8=-80 \mathrm{kN} . \mathrm{m}(\mathrm{CW}) \quad$ Ans.
(2 marks)

Student name		Marks obtained for Q.2	page 3/4
Student number			

Question $=2$ (10 Marks)

For the force-system shown in the figure:
i. Replace the three forces and one couple by an equivalent force-couple system (R and M) at point O.
ii. Determine the direction of R.
iii. Sketch the single resultant force R that represents the force-couple system and find its intersection with the x - and y-axes.

Solution

(i)

$\rightarrow R_{x}=\sum F_{x}=2 \cos 70^{\circ}+1.2 \cos \theta=2 \cos 70^{\circ}+1.2 \times(4 / 5)=1.64 \mathrm{kN} \rightarrow$
(1 mark)
$\stackrel{\dagger}{\uparrow} R_{y}=\sum F_{y}=-5+2 \sin 70^{\circ}-1.2 \sin \theta=-5+2 \sin 70^{\circ}-1.2 \times(3 / 5)=-3.84 \mathrm{kN} \downarrow$
(1 mark)
Therefore, $R=\sqrt{R_{x}^{2}+R_{y}^{2}}=\sqrt{(1.64)^{2}+(-3.84)^{2}}=4.18 \mathrm{kN} \quad$ Ans.
(1 mark)
$C C W(+) M_{O}=-5 \times 0.25-2 \cos 70^{\circ} \times 0.3+2 \sin 70^{\circ} \times 1.0-1.2 \sin \theta \times 0.5-\left(\frac{500}{1000}\right)$
(3 marks)
$\Rightarrow M_{o}=-1.25-0.205+1.879-1.2 \times(3 / 5) \times 0.5-0.5=-0.44 \mathrm{kN} . \mathrm{m}(\mathrm{CW})$ Ans.
(ii)
$\theta=\tan ^{-1}\left(\frac{R_{y}}{R_{x}}\right)=\tan ^{-1}\left(\frac{-3.84}{1.64}\right)=-66.9^{0} \quad$ Ans.
(iii)
$\left|M_{o}\right|=R d \Rightarrow d=\frac{\left|M_{O}\right|}{R}=\frac{0.44}{4.18}=0.10 \mathrm{~m}$
x-intercept, $x=\frac{M_{O}}{R_{y}}=\frac{-0.44}{-3.84}=0.11 \mathrm{~m} \quad$ Ans.
(1 mark)

Ans.

Student name		Marks obtained	page 4/4
Student number		for Q.3	

Question \# 3 (10 Marks)

A force of 5 kN is acting along the line $B C$ as shown in the figure. Determine the following:
(i) The moment about point $O\left(\boldsymbol{M}_{\mathbf{O}}\right)$.
(ii) The moment about line $O A\left(\boldsymbol{M}_{O A}\right)$.
(iii) The moment about line $C D\left(\boldsymbol{M}_{C D}\right)$.

Solution

The coordinates of points O, A, B and C are: $O(0,0,0) ; A(1,0,2.5) ; B(1,0,0)$ and $C(0,3,2.5)$
(i) $\vec{M}_{O}=\vec{r}_{O B} \times \vec{F}$, where $\vec{r}_{O B}=\vec{i}$ and $\vec{F}=5 \vec{u}_{B C}=5\left(\frac{-\vec{i}+3 \vec{j}+2.5 \vec{k}}{\sqrt{(-1)^{2}+(3)^{2}+(2.5)^{2}}}\right)=-1.24 \vec{i}+3.72 \vec{j}+\frac{3.1 \vec{k} \mathrm{kN}}{(2 \text { marks) }}$

Therefore, $\vec{M}_{O}=\vec{r}_{O B} \times \vec{F}=\vec{i} \times(-1.24 \vec{i}+3.72 \vec{j}+3.1 \vec{k})=-3.1 \vec{j}+3.72 \vec{k}$ kN.m Ans.
And the magnitude of \vec{M}_{O} is, $M_{O}=\left|\vec{M}_{O}\right|=\sqrt{(-3.1)^{2}+(3.72)^{2}}=4.84 \mathrm{kN} . \mathrm{m} \quad$ Ans.
(ii) $M_{O A}=\vec{M}_{O} \cdot \vec{u}_{O A}$, where $\vec{u}_{O A}$ is the unit vector along the line $O A$.
$\vec{u}_{O A}=\frac{\vec{r}_{O A}}{\left|\vec{r}_{O A}\right|}=\frac{\vec{i}+2.5 \vec{k}}{\sqrt{1^{2}+2.5^{2}}}=0.371 \vec{i}+0.928 \vec{k}$
Therefore, $M_{O A}=\vec{M}_{O} \cdot \vec{u}_{O A}=(-3.1 \vec{j}+3.72 \vec{k}) \cdot(0.371 \vec{i}+0.928 \vec{k})=3.45 \mathrm{kN} . \mathrm{m} \quad$ Ans.
The above moment can be expressed in a vector form as
$\vec{M}_{O A}=M_{O A} \vec{u}_{O A}=3.45(0.371 \vec{i}+0.928 \vec{k})=1.28 \vec{i}+3.20 \vec{k} \mathrm{kN} . \mathrm{m} \quad$ Ans.
(iii) Since the line of action of the force is passing through the line $C D$, the moment of the force about line $C D$ will be zero. That is, $M_{C D}=0 \quad A n s$.

