Dr. Borhen Halouani

King Saud University College of sciences Department of mathematics Second semester 1431/1432 H

Solution First Midterm Exam Math 580 (Theory Measure I)

Exercise 1:(4 points)

By definition, $\limsup B_n = \bigcap_n \left(\bigcup_{k \ge n} B_k\right)$ and $\liminf B_n = \bigcup_n \left(\bigcap_{k \ge n} B_k\right)$. As

$$\bigcup_{k \ge n} B_k = \left(\bigcup_{k \ge n,k \text{ even}} B_k \right) \cup \left(\bigcup_{k \ge n,k \text{ odd}} B_k \right)$$
$$= \left[-1; 2 + \frac{1}{n^2} \left[\cup \right] - 2 - \frac{1}{n}; 1 \right]$$
$$= \left] -2 - \frac{1}{n}; 2 + \frac{1}{n^2} \left[. \right]$$

Then $\bigcap_{n\geq 1} \left[-2 - \frac{1}{n}; 2 + \frac{1}{n^2} \right] = [-2, 2]$. So $\limsup B_n = [-2; 2]$. Similarly,

$$\bigcap_{k \ge n} B_k = \left(\bigcap_{k \ge n, k \text{ even}} B_k \right) \cap \left(\bigcap_{k \ge n, k \text{ odd}} B_k \right)$$
$$= [-1; 2] \cap [-2; 1]$$
$$= [-1, 1]$$

Then $\liminf B_n = [-1; 1]$. Exercise 2:(4 points)

 $\overline{\mathcal{F}} = \{A = [0; 2], B = [1, 3]\}$. We have: $A \cap B = [1; 2], A \cup B = [0; 3], B \setminus A = [2; 3], A \setminus B = [0; 1[. A \cap B, A \setminus B, B \setminus A \text{ and } (A \cup B)^c = [0; 3]^c \text{ form a partition of } \mathbb{R}$. Then the σ -algebra \mathcal{A} generated by \mathcal{F} has $2^4 = 16$ elements. So

$$\mathcal{A} = \{ \emptyset, \mathbb{R}, A, A^c, B, B^c, A \cup B, (A \cup B)^c, A \cap B, (A \cap B)^c, A \setminus B, (A \setminus B)^c, B \setminus A, (B \setminus A)^c, A \Delta B, (A \Delta B)^c \}.$$

Exercise 3:(5 points)

• $\mu(\emptyset) = 0$ because \emptyset is a countable set.

- Let $A, B \in \mathcal{A}$ such that $A \subset B$.
- If B is a countable set then also A is countable. It follows

$$0 = \mu(A) \le \mu(B) = 0.$$

- If B is uncountable then $\mu(B) = 1$. As $\mu(A) \leq 1$ then $\mu(A) \leq \mu(B)$.

• Let $(A_n)_{n\geq 1}$ be a disjoint sequence of elements of \mathcal{A} .

- If for all $n \ge 1$, A_n is a countable set, then $A := \bigcup_n A_n$ is also countable. We have: $\mu(A) = 0$ and $\mu(A_n) = 0$, $\forall n$. So $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$. - If there exists $n_0 \ge 1$ such A_{n_0} is uncountable then $A = \bigcup_n A_n$ is also uncountable. As $A_{n_0} \in \mathcal{A}$ then $A_{n_0}{}^c$ is countable set by definition of \mathcal{A} . So $\forall n \ne n_0, A_n \subset A_{n_0}{}^c$. As A_n is countable for every $n \ne n_0$ then $\mu(\bigcup_n A_n) = 1$, $\sum_{n \ne n_0} \mu(A_n) = 0$ and $\mu(A_{n_0}) = 1$. Hence we get: $\mu(\bigcup_n A_n) = \sum_n \mu(A_n)$. We deduce that μ is a measure on \mathcal{A} . **Exercise 4:(7 points)**

1. As \mathcal{A} is a σ -algebra then for all $n \geq 1$, $B_n := \bigcap_{k \geq n} A_k \in \mathcal{A}$. But for every $k \geq n$, $B_n \subset A_k$. By monotonicity of the measure m on \mathcal{A} , we have: for $k \geq n$, $m(B_n) \leq m(A_k)$. It follows that

$$m(B_n) \le \inf_{k \ge n} m(A_k).$$

2. For every $n \ge 1$, we have: $B_n = A_n \cap B_{n+1}$. So $B_n \subset B_{n+1}$. Also

$$b_n := \inf_{k \ge n} m(A_k) = \min \{m(A_n), b_{n+1}\} \le b_{n+1}$$

3. $\bigcup_{n\geq 1} \left(\bigcap_{k\geq n} A_k\right) = \bigcup_n B_n$ is the union of an increasing sequence of elements of \mathcal{A} . By the continuity of the measure, we get:

$$m(\bigcup_{n\geq 1}B_n) = \lim_{n\to\infty} m(B_n) \le \lim_{n\to\infty} b_n = \sup_{n\geq 1} \inf_{k\geq n} m(A_k).$$

4. By definition of limit, $\liminf_{n \to \infty} m(A_n) = \sup_{n \to \infty} \inf_{k \ge n} m(A_k)$, we deduce from 3.:

$$m(\liminf_n A_n) \le \liminf_n m(A_n)$$