Solution First Midterm Exam Math 580 (Theory Measure I)

Exercise 1:(4 points)

$\overline{\text { By definition, } \lim \sup B_{n}}=\bigcap_{n}\left(\bigcup_{k \geq n} B_{k}\right)$ and $\liminf B_{n}=\bigcup_{n}\left(\bigcap_{k \geq n} B_{k}\right)$. As

$$
\begin{aligned}
\bigcup_{k \geq n} B_{k} & =\left(\bigcup_{k \geq n, k \text { even }} B_{k}\right) \cup\left(\bigcup_{k \geq n, k \text { odd }} B_{k}\right) \\
& =\left[-1 ; 2+\frac{1}{n^{2}}[\cup]-2-\frac{1}{n} ; 1\right] \\
& =]-2-\frac{1}{n} ; 2+\frac{1}{n^{2}}[.
\end{aligned}
$$

Then $\left.\bigcap_{n \geq 1}\right]-2-\frac{1}{n} ; 2+\frac{1}{n^{2}}\left[=[-2,2]\right.$. So $\lim \sup B_{n}=[-2 ; 2]$. Similarly,

$$
\begin{aligned}
\bigcap_{k \geq n} B_{k} & =\left(\bigcap_{k \geq n, k \text { even }} B_{k}\right) \cap\left(\bigcap_{k \geq n, k \text { odd }} B_{k}\right) \\
& =[-1 ; 2] \cap[-2 ; 1] \\
& =[-1,1]
\end{aligned}
$$

Then $\liminf B_{n}=[-1 ; 1]$.
Exercise 2:(4 points)
$\overline{\mathcal{F}}=\{A=[0 ; 2], B=[1,3]\}$. We have: $A \cap B=[1 ; 2], A \cup B=[0 ; 3]$, $B \backslash A=] 2 ; 3], A \backslash B=\left[0 ; 1\left[. A \cap B, A \backslash B, B \backslash A\right.\right.$ and $(A \cup B)^{c}=[0 ; 3]^{c}$ form a partition of \mathbb{R}. Then the σ-algebra \mathcal{A} generated by \mathcal{F} has $2^{4}=16$ elements. So

$$
\begin{aligned}
\mathcal{A}= & \left\{\emptyset, \mathbb{R}, A, A^{c}, B, B^{c}, A \cup B,(A \cup B)^{c}, A \cap B,(A \cap B)^{c}, A \backslash B,(A \backslash B)^{c},\right. \\
& \left.B \backslash A,(B \backslash A)^{c}, A \Delta B,(A \Delta B)^{c}\right\} .
\end{aligned}
$$

Exercise 3:(5 points)

- $\mu(\emptyset)=0$ because \emptyset is a countable set.
- Let $A, B \in \mathcal{A}$ such that $A \subset B$.
- If B is a countable set then also A is countable. It follows

$$
0=\mu(A) \leq \mu(B)=0
$$

- If B is uncountable then $\mu(B)=1$. As $\mu(A) \leq 1$ then $\mu(A) \leq \mu(B)$.
- Let $\left(A_{n}\right)_{n \geq 1}$ be a disjoint sequence of elements of \mathcal{A}.
- If for all $n \geq 1, A_{n}$ is a countable set, then $A:=\cup_{n} A_{n}$ is also countable. We have: $\mu(A)=0$ and $\mu\left(A_{n}\right)=0, \forall n$. So $\mu\left(\cup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)$.
- If there exists $n_{0} \geq 1$ such $A_{n_{0}}$ is uncountable then $A=\cup_{n} A_{n}$ is also uncountable. As $A_{n_{0}} \in \mathcal{A}$ then $A_{n_{0}}{ }^{c}$ is countable set by definition of \mathcal{A}. So $\forall n \neq n_{0}, A_{n} \subset A_{n_{0}}{ }^{c}$. As A_{n} is countable for every $n \neq n_{0}$ then $\mu\left(\cup_{n} A_{n}\right)=1$, $\sum_{n \neq n_{0}} \mu\left(A_{n}\right)=0$ and $\mu\left(A_{n_{0}}\right)=1$. Hence we get: $\mu\left(\cup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right)$. We deduce that μ is a measure on \mathcal{A}.

Exercise 4:(7 points)

1. As \mathcal{A} is a σ-algebra then for all $n \geq 1, B_{n}:=\bigcap_{k \geq n} A_{k} \in \mathcal{A}$. But for every $k \geq n, B_{n} \subset A_{k}$. By monotonicity of the measure m on \mathcal{A}, we have: for $k \geq n, m\left(B_{n}\right) \leq m\left(A_{k}\right)$. It follows that

$$
m\left(B_{n}\right) \leq \inf _{k \geq n} m\left(A_{k}\right)
$$

2. For every $n \geq 1$, we have: $B_{n}=A_{n} \cap B_{n+1}$. So $B_{n} \subset B_{n+1}$. Also

$$
b_{n}:=\inf _{k \geq n} m\left(A_{k}\right)=\min \left\{m\left(A_{n}\right), b_{n+1}\right\} \leq b_{n+1}
$$

3. $\bigcup_{n \geq 1}\left(\bigcap_{k \geq n} A_{k}\right)=\bigcup_{n} B_{n}$ is the union of an increasing sequence of elements of \mathcal{A}. By the continuity of the measure, we get:

$$
m\left(\cup_{n \geq 1} B_{n}\right)=\lim _{n \rightarrow \infty} m\left(B_{n}\right) \leq \lim _{n \rightarrow \infty} b_{n}=\sup _{n \geq 1} \inf _{k \geq n} m\left(A_{k}\right) .
$$

4. By definition of liminf, $\liminf _{n} m\left(A_{n}\right)=\sup _{n} \inf _{k \geq n} m\left(A_{k}\right)$, we deduce from 3.:

$$
m\left(\liminf _{n} A_{n}\right) \leq \liminf _{n} m\left(A_{n}\right)
$$

