Current and Voltage

The fundamental concepts of current and voltage requires knowledge of the atom and its structure.

- Nucleus, heavy it contains:
 - protons positively charged
 - neutrons with no charge
- Orbiting negatively charged electrons

The copper atom.

One electron in outer most shell it is almost free: with very small energy it becomes **free electron**.

In one cm³ of copper there is 8.54×10^{22} such free electrons,

2.2 CURRENT

No external forces applied:

At room temperature there exists a random motion of the free electrons created by the thermal energy.

Atoms losing their electron become: **positive ions**

The free electrons are able to move within these positive ions.

The positive ions can only oscillate around their fixed position.

The free electron is the charge carrier in a copper wire or any other solid conductor of electricity.

No External force

With no external forces applied, the net flow of charge in a conductor in any one direction is zero.

Battery: Use chemical energy to put:

- + charge at one terminal
- - charge at the other

Light bulb: emit light when electrons pass through its filament.

When the circuit is closed:

- Free e drift toward (+) terminal.
- The (-) terminal is a supply of e
- Chemical activity of the battery:
 - Absorb e at (+) terminal
 - o Supply e at (-) terminal

Basic electric circuit.

When 6.242×10^{18} e⁻ drifts through the imaginary cross section in 1 s the flow of charge (current) is 1 Ampere (A).

1 Coulomb (C) = the charge of 6.242×10^{18} e⁻

One e has a charge of:

$$Q_e = \frac{1 C}{6.242 \times 10^{18}} = 1.6 \times 10^{-19} C$$

The current is:

$$I = \frac{Q}{t}$$

$$I = Amperes (A)$$

$$Q = Coulomb (C)$$

$$t = second (s)$$

$$Q = It$$
 $t = \frac{Q}{I}$

Conventional flow: The direction of *I* (direction of positive charges)

Electrons flow: Inverse of conventional flow of current

Basic electric circuit.

EXAMPLE 2.1 The charge flowing through the imaginary surface of Fig. 2.7 is 0.16 C every 64 ms. Determine the current in amperes.

Solution: Eq. (2.2):

$$I = \frac{Q}{t} = \frac{0.16 \text{ C}}{64 \times 10^{-3} \text{ s}} = \frac{160 \times 10^{-3} \text{ C}}{64 \times 10^{-3} \text{ s}} = 2.50 \text{ A}$$

EXAMPLE 2.2 Determine the time required for 4×10^{16} electrons to pass through the imaginary surface of Fig. 2.7 if the current is 5 mA.

Solution: Determine *Q*:

$$4 \times 10^{16} \text{ electrons} \left(\frac{1 \text{ C}}{6.242 \times 10^{18} \text{ electrons}} \right) = 0.641 \times 10^{-2} \text{ C}$$

= 0.00641 C = 6.41 mC

Calculate t [Eq. (2.4)]:

$$t = \frac{Q}{I} = \frac{6.41 \times 10^{-3} \,\mathrm{C}}{5 \times 10^{-3} \,\mathrm{A}} = 1.282 \,\mathrm{s}$$

2.3 VOLTAGE

A potential difference of 1 volt (V) exists between two points if 1 joule (J) of energy is exchanged in moving 1 coulomb (C) of charge between the two points.

The unit of measurement is the **Volt**

Voltage is an indication of how much energy is involved in moving a charge between two points in an electrical system.

A potential difference or voltage is always measured between two points in the system. Changing either point may change the potential difference between the two points under investigation.

$$V = \frac{W}{Q}$$
 (Volts, V)
$$W = QV$$
 (Joules, J)
$$Q = \frac{W}{V}$$
 (Coulombs, C)

EXAMPLE 2.3 Find the potential difference between two points in an electrical system if 60 J of energy are expended by a charge of 20 C between these two points.

Solution: Eq. (2.6):

$$V = \frac{W}{Q} = \frac{60 \text{ J}}{20 \text{ C}} = 3 \text{ V}$$

EXAMPLE 2.4 Determine the energy expended moving a charge of 50 μ C through a potential difference of 6 V.

Solution: Eq. (2.7):

$$W = QV = (50 \times 10^{-6})$$
C $)(6)$ V $) = 300 \times 10^{-6}$ J $= 300$ μ J

Distinguish between sources of voltage (batteries and the like) and losses in potential across dissipative elements:

- *E* for voltage sources (volts)
- V for voltage drops (volts)

<u>Potential:</u> The voltage at a point with respect to another point in the electrical system. Typically the reference point is ground, which is at zero potential.

<u>Potential difference:</u> The algebraic difference in potential (or voltage) between two points of a network.

Voltage: When isolated, like potential, the voltage at a point with respect to some reference such as ground (0 V).

Voltage difference: The algebraic difference in voltage (or potential) between two points of the system. A voltage drop or rise is as the terminology would suggest.

Electromotive force (emf):

The force that establishes the flow of charge (or current) in a system due to the application of a difference in potential. This term is not applied that often in today's literature but is associated primarily with sources of energy.

2.4 FIXED (dc) SUPPLIES

 $dc \equiv direct current \implies the flow of charge only in one direction$

⇒ current only in one direction

dc Voltage Sources

Dc voltage sources can be divided into three broad categories:

- (1) batteries (chemical action),
- (2) generators (electromechanical), and
- (3) power supplies (rectification).

Symbol for a dc voltage source.

FIG. 2.15

Rechargeable nickel-cadmium batteries. (Courtesy of Eveready Batteries.)

- (1) Battery is a source of electrical energy developed through the conversion of chemical or solar energy
 - a. Primary type
 - b. Secondary type (rechargeable)

Each battery has: "+" and "-" electrode and an electrolyte:

Ampere-Hour Rating

Batteries have a capacity rating given in ampere-hours (Ah) or (mAh).

A battery with 100 Ah rating will theoretically provide steady current of:

1 A for 100 h, or

2 A for 50 h, or

10 A for 10 h,

and so on, as determined by the following equation:

Life (hours) =
$$\frac{\text{ampere-hour rating (Ah)}}{\text{amperes drawn (A)}}$$

The rating is affected by two factors:

- 1) Temperature
- 2) Rate of discharge (current)

The capacity of a dc battery decreases with an increase in the current demand

The capacity of a dc battery decreases at relatively (compared to room temperature) low and high temperatures.

The terminal voltage of a dc battery decreases with the length of the discharge time at a particular drain current.

Generators \Rightarrow 120 V or 240 V

FIG. 2.20 dc generator.

Power supplies

From (AC outlet) \Rightarrow rectification and filtering \Rightarrow dc

FIG. 2.21 dc laboratory supply. (Courtesy of Leader Instruments Corporation.)

They must provide three connections: "+" and "-" and "ground"

FIG. 2.22

dc laboratory supply: (a) available terminals; (b) positive voltage with respect to (w.r.t.) ground; (c) negative voltage w.r.t. ground; (d) floating supply.

dc Current Sources

 $\frac{dc \ voltage}{current \ drawn} \Rightarrow fixed \ voltage for \ any$

the current source will supply, ideally, a fixed current to an electrical system, even though there may be variations in the terminal voltage as determined by the system,

FIG. 2.23
Terminal characteristics: (a) ideal voltage source; (b) ideal current source.

CONDUCTORS AND INSULATORS

Conductors

are those materials that permit a large flow of electrons with very little external force (voltage) applied.

Good conductors typically have only one electron in the valence (most distant from the nucleus) ring.

Insulators

are those materials that have very few free electrons and require a large applied potential (voltage) to establish a measurable current level.

Insulator will break down (permit charge to flow through it) if a sufficiently large potential is applied across it.