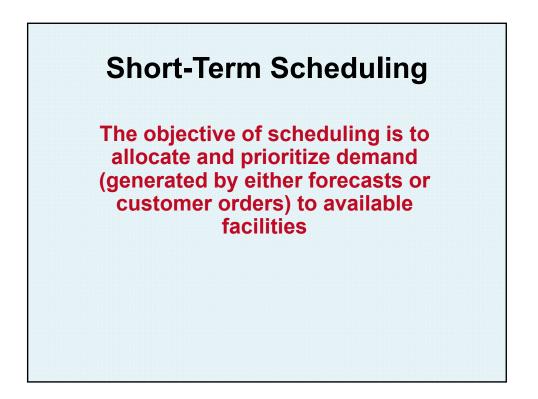
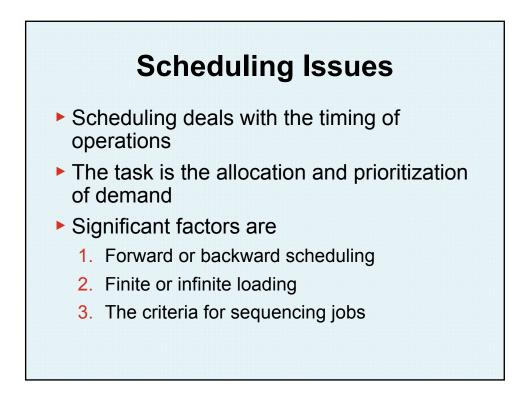


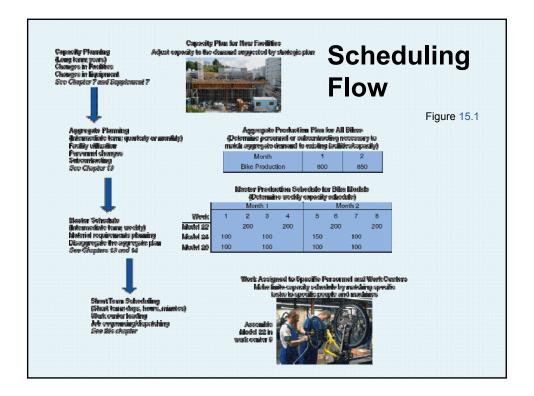
Outline - Continued

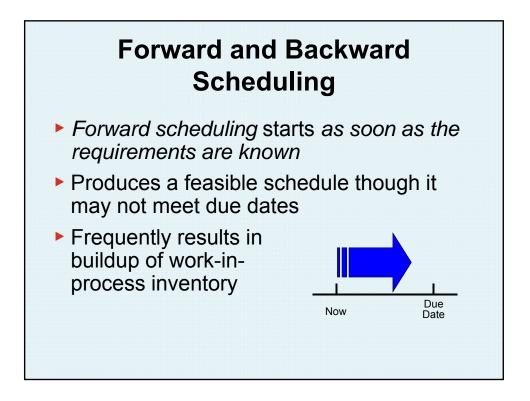

- Loading Jobs
- Scheduling Jobs
- Finite Capacity Scheduling (FCS)
- Scheduling Services

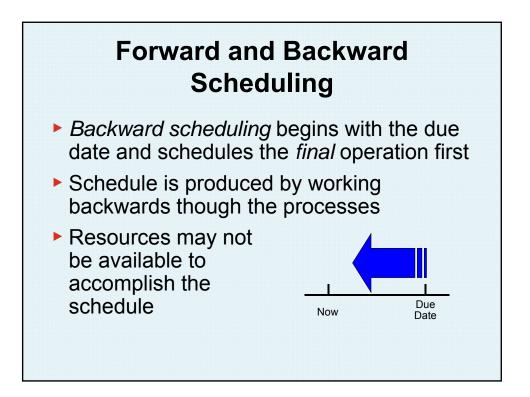
Learning Objectives

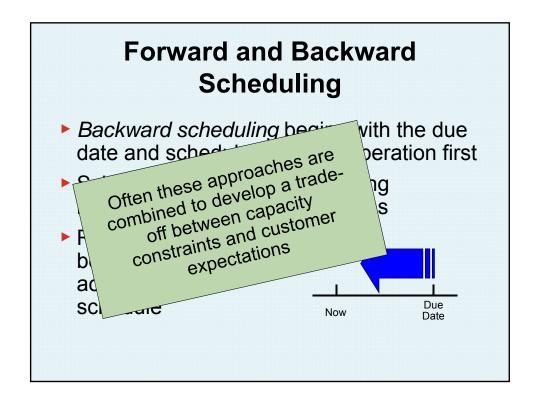
When you complete this chapter you should be able to:

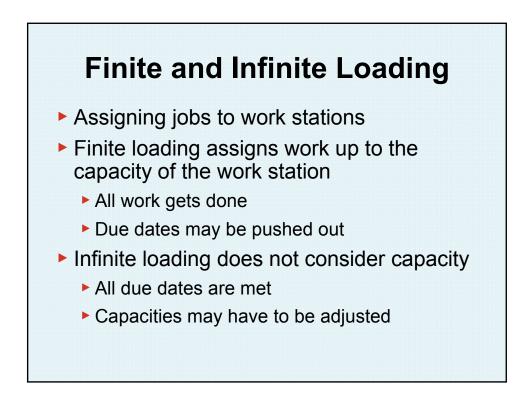

- 1. Explain the relationship between short-term scheduling, capacity planning, aggregate planning, and a master schedule
- 2. Draw Gantt loading and scheduling charts
- 3. Apply the assignment method for loading jobs
- Name and describe each of the priority sequencing rules
- 5. Use Johnson's rule
- 6. Define finite capacity scheduling
- 7. Use the cyclical scheduling technique

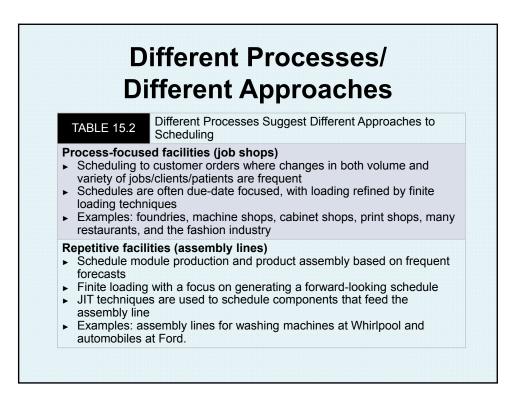



Importance of Short-Term Scheduling


- Effective and efficient scheduling can be a competitive advantage
 - Faster movement of goods through a facility means better use of assets and lower costs
 - Additional capacity resulting from faster throughput improves customer service through faster delivery
 - Good schedules result in more dependable deliveries




TABLE 15.1 Sched	uling Decisions
ORGANIZATION	MANAGERS SCHEDULE THE FOLLOWING
Delta Air Lines	Maintenance of aircraft Departure timetables Flight crews, catering, gate, ticketing personnel
Arnold Palmer Hospital	Operating room use Patient admissions Nursing, security, maintenance staffs Outpatient treatments
University of Alabama	Classrooms and audiovisual equipment Student and instructor schedules Graduate and undergraduate courses
Amway Center	Ushers, ticket takers, food servers, security personnel Delivery of fresh foods and meal preparation Orlando Magic games, concerts, arena football
Lockheed Martin Factory	Production of goods Purchases of materials Workers



Scheduling Criteria

- 1. Minimize completion time
- 2. Maximize utilization of facilities
- 3. Minimize work-in-process (WIP) inventory
- 4. Minimize customer waiting time

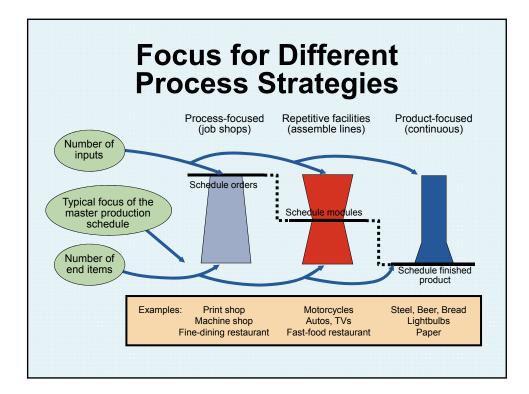
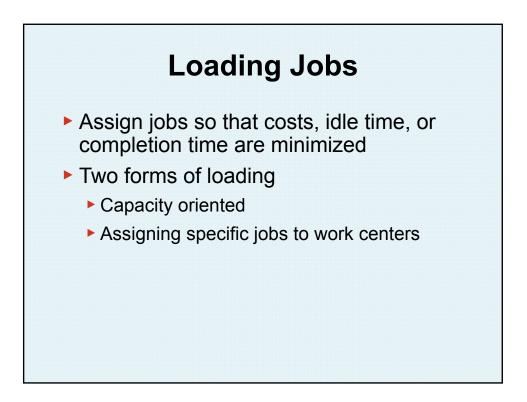
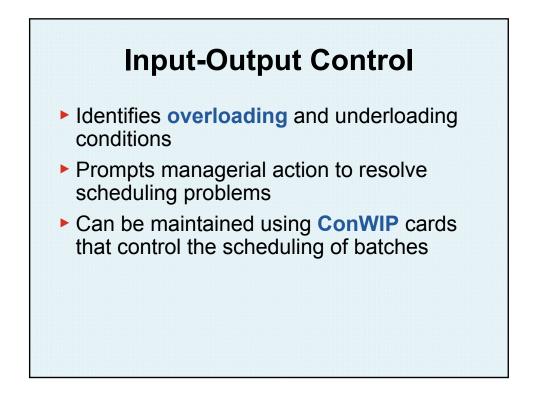
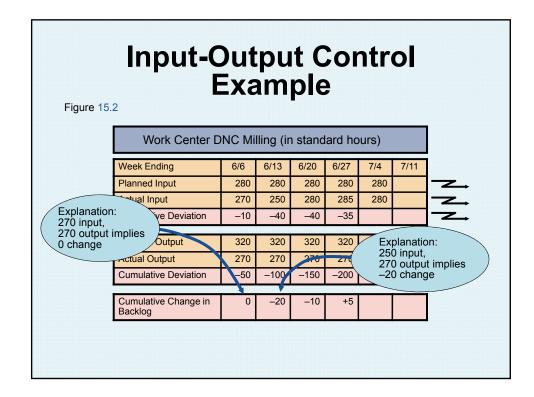

Different Processes/ Different Approaches

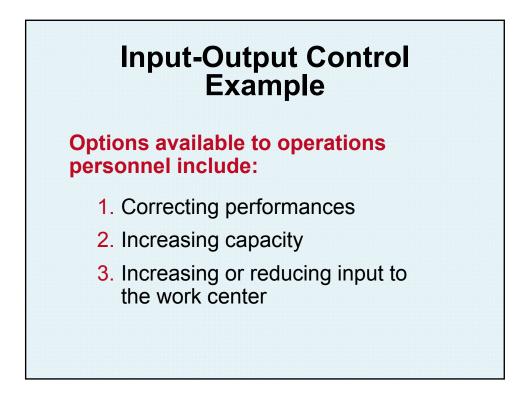
TABLE 15.2

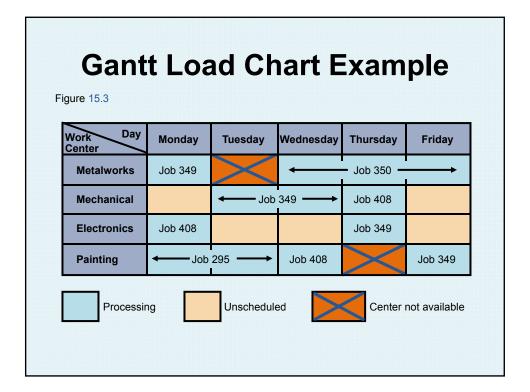
Different Processes Suggest Different Approaches to Scheduling

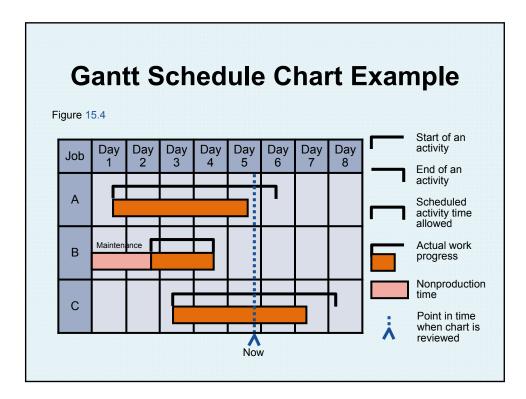

Product-focused facilities (continuous)

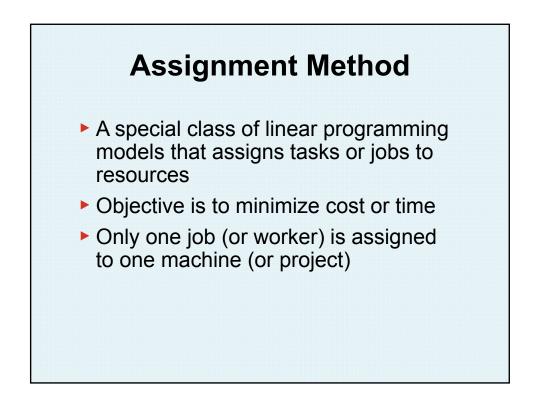

- Schedule high volume finished products of limited variety to meet a reasonably stable demand within existing fixed capacity
- Finite loading with a focus on generating a forward-looking schedule that can meet known setup and run times for the limited range of products
- Examples: huge paper machines at International Paper, beer in a brewery at Anheuser-Busch, and potato chips at Frito-Lay

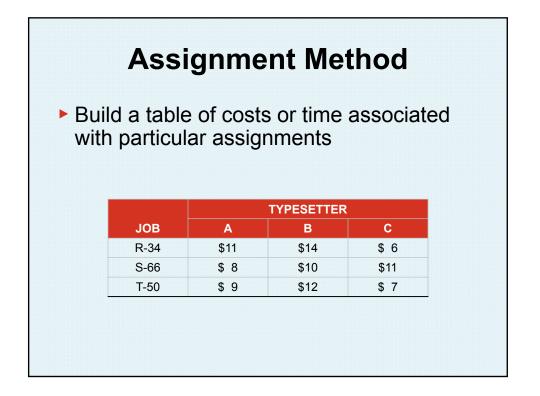

Scheduling Process-Focused Facilities

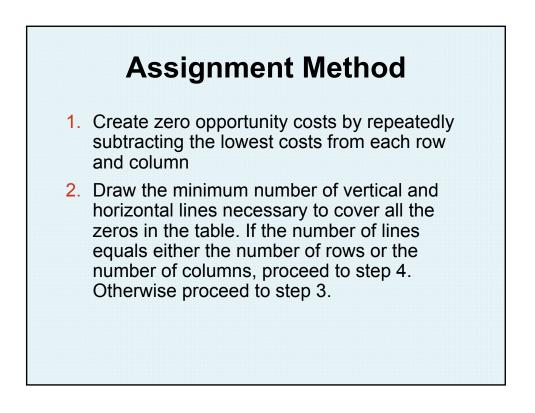

- High-variety, low volume
- Production differ considerably
- Schedule incoming orders without violating capacity constraints
- Scheduling can be complex


Figure 15		Dut Exa	pu am	t C ple	Cor e	htr	ol	
	Work Center D	NC Mi	lling (ir	n stand	lard ho	ours)		
	Week Ending	6/6	6/13	6/20	6/27	7/4	7/11	
	Planned Input	280	280	280	280	280		Z
	Actual Input	270	250	280	285	280		N N
	Cumulative Deviation	-10	-40	-40	-35			N
	Planned Output	320	320	320	320			Z
	Actual Output	270	270	270	270			Z
	Cumulative Deviation	-50	-100	-150	-200			
	Cumulative Change in Backlog	0	-20	-10	+5			





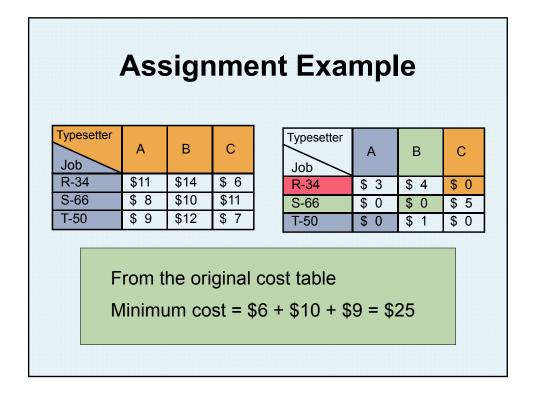


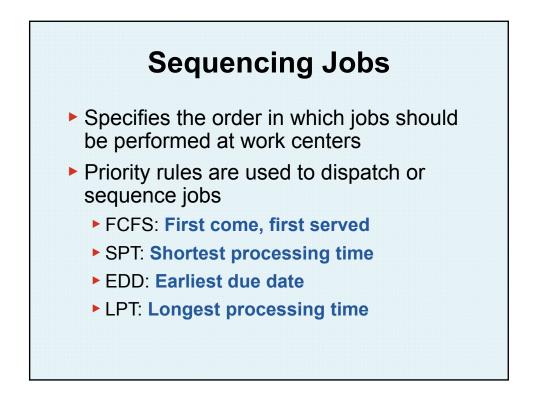

- Load chart shows the loading and idle times of departments, machines, or facilities
- Displays relative workloads over time
- Schedule chart monitors jobs in process
- All Gantt charts need to be updated frequently to account for changes

- 3. Subtract the smallest number not covered by a line from all other uncovered numbers. Add the same number to any number at the intersection of two lines. Return to step 2.
- 4. Optimal assignments are at zero locations in the table. Select one, draw lines through the row and column involved, and continue to the next assignment.

					t Ex		-		
		Typeset Job	tter	A	В	С			
		R-34		\$11	\$14	\$6			
		S-66		\$8	\$10	\$11			
		T-50		\$9	\$12	\$7			
Step	1a - Rov	vs			S	Step 1	o - Colur	mns	
Typesetter Job	A	В	с		Typese Job	etter	А	В	С
R-34	\$5	\$8	\$ (0	R-34		\$5	\$6	\$ 0
S-66	\$0	\$2	\$ 3	3	S-66		\$ 0	\$ 0	\$ 3
T-50	\$2	\$5	\$ (0	T-50		\$2	\$3	\$ 0

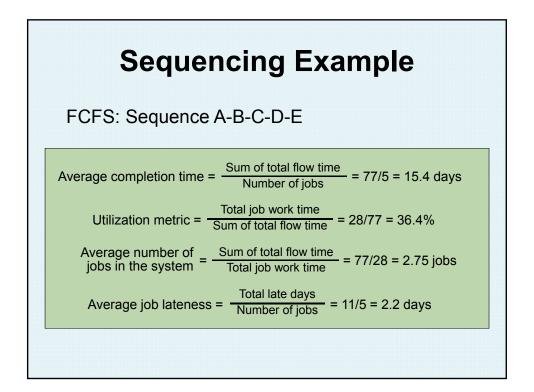
	Ste	p 2 ·	- Line	es			
Types Job	etter	Þ	۹.	E	3	С	;
R-34		\$	5	\$	6	\$	D
S-66	-	\$	0	\$	0	¢	2
T-50		\$	2	\$	3	\$)
			/				L

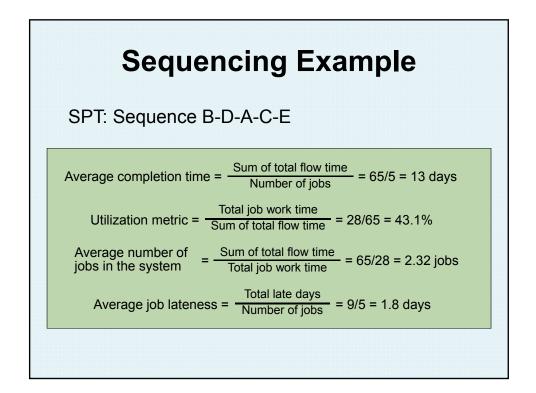

Smallest uncovered number

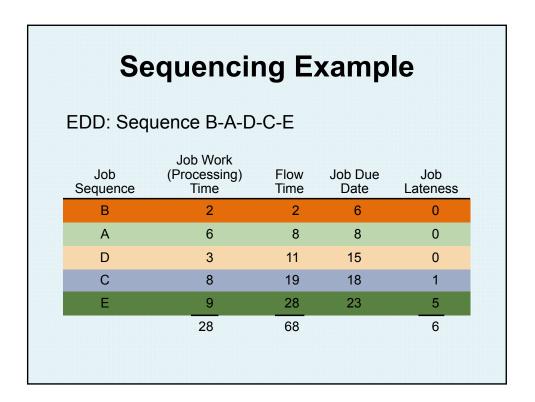

Because only two lines are needed to cover all the zeros, the solution is not optimal The smallest uncovered number is 2 so this is subtracted from all other uncovered numbers and added to numbers at the intersection of lines

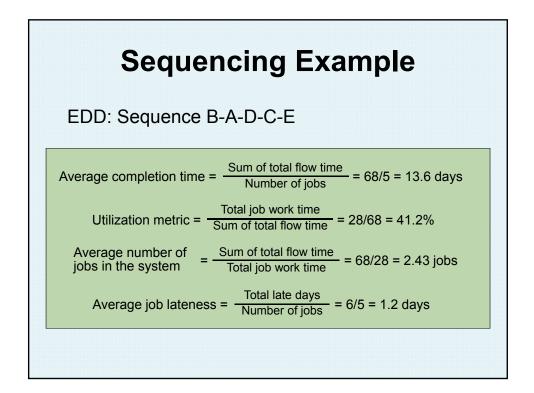
Step 3 - Subtraction

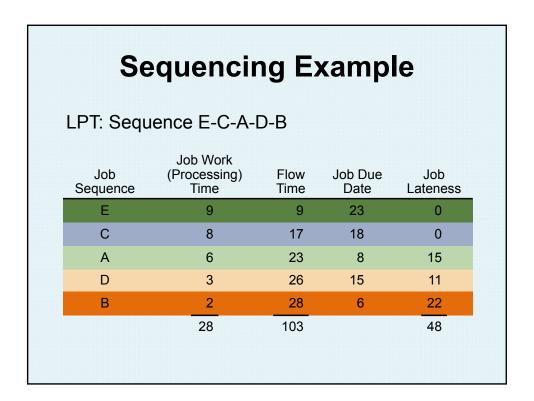
Typesetter Job	A	В	С	
R-34	\$3	\$4	\$0	
S-66	\$0	\$0	\$5	
T-50	\$0	\$ 1	\$0	

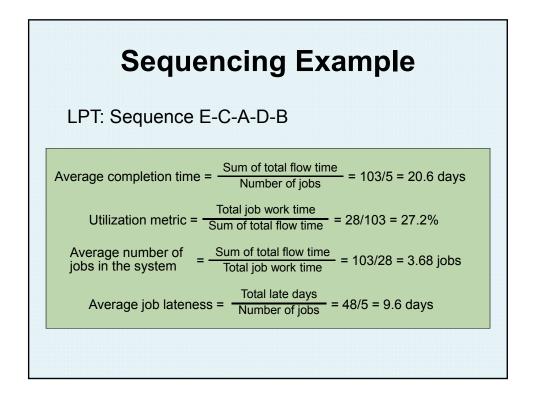

Step) 2 - L	_ine	s			Start by assig this is the only worker C			
Typesetter Job	А		В		С	worker A as w	orker C i		ý
R-34	\$:	3	\$ ·		\$0	assigned. This B.	sieaves	S-66 for	worker
S-66	\$)	\$)	\$ 5				
T-50	\$)	\$		\$ O	Step 4 - /	Assignme	ents	
Because t the solutic assignme	on is d	optii	mal a	ind	eded,	Typesetter Job	А	В	с
						R-34	\$3	\$4	\$ 0
						S-66	\$0	\$ 0	\$5
						T-50	\$ 0	\$ 1	\$ 0

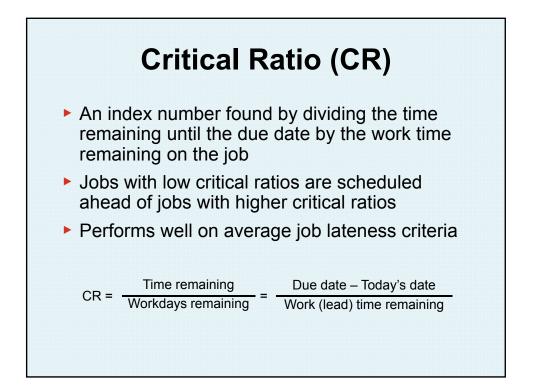



Sec	uencing Exa	mple	
pply the lese five	four popular sequencir jobs	ng rules to	
Job	Job Work (Processing) Time (Days)	Job Due Date (Days)	
А	6	8	
В	2	6	
С	8	18	
D	3	15	
Е	9	23	

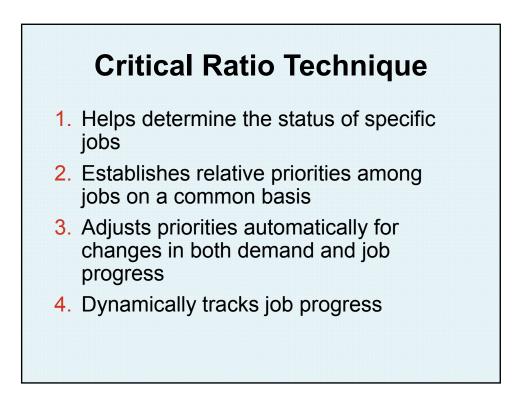

Se	equencir	ng E	xamp	le
FCFS: Se	quence A-B-C	C-D-E		
Job Sequence	Job Work (Processing) Time	Flow Time	Job Due Date	Job Lateness
А	6	6	8	0
В	2	8	6	2
С	8	16	18	0
D	3	19	15	4
E	9	28	23	5
	28	77		11



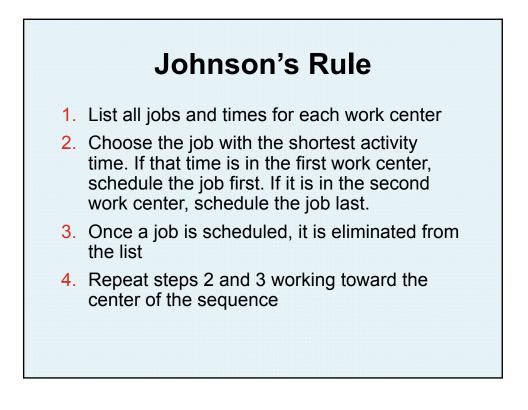

	quencir	•	xamp	le
SPT: Sequ	ience B-D-A-	C-E		
Job Sequence	Job Work (Processing) Time	Flow Time	Job Due Date	Job Lateness
В	2	2	6	0
D	3	5	15	0
А	6	11	8	3
С	8	19	18	1
Е	9	28	23	5
	28	65		9


	Seque	ncing	Examp	le
Sumr	mary of Rule	es		
Rule	Average Completion Time (Days)	Utilization Metric (%)	Average Number of Jobs in System	Average Lateness (Days)
FCFS	15.4	36.4	2.75	2.2
SPT	13.0	43.1	2.32	1.8
EDD	13.6	41.2	2.43	1.2
LPT	20.6	27.2	3.68	9.6

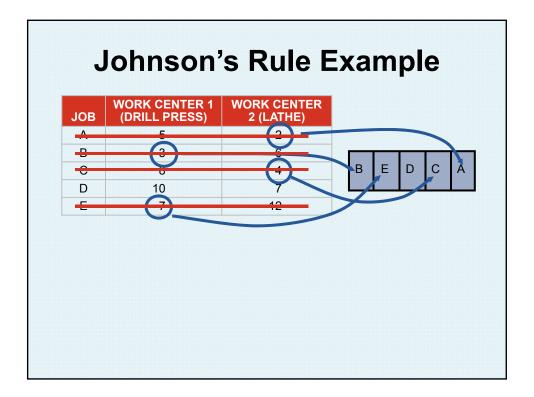
Comparison of Sequencing Rules

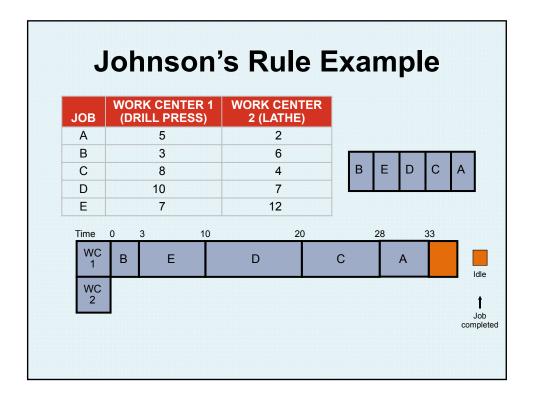

No one sequencing rule excels on all criteria

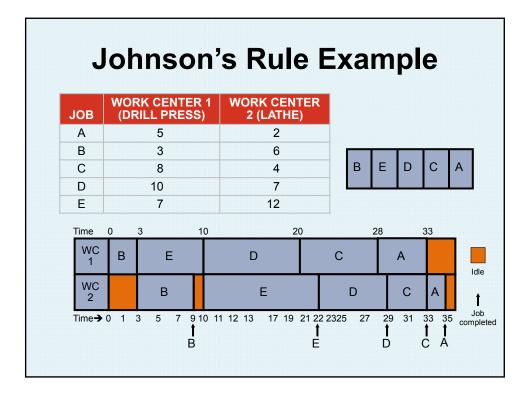
- 1. SPT does well on minimizing flow time and number of jobs in the system
 - But SPT moves long jobs to the end which may result in dissatisfied customers
- FCFS does not do especially well (or poorly) on any criteria but is perceived as fair by customers
- 3. EDD minimizes maximum lateness



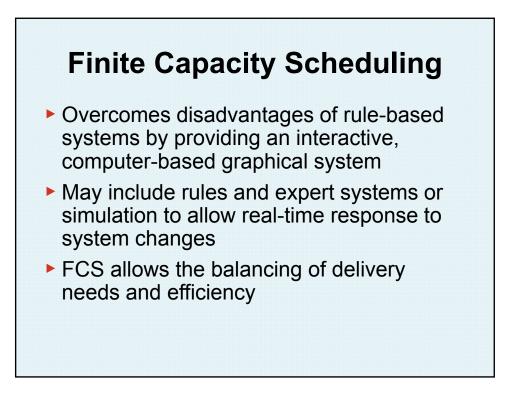
rrently Day	/ 25	
JOB	DUE DATE	WORKDAYS REMAINING
А	30	4
В	28	5
С	27	2
JOB	CRITICAL RATIO	PRIORITY ORDER
А	(30 - 25)/4 = 1.25	3
В	(28 - 25)/5 = .60	1
С	(27 - 25)/2 = 1.00	2

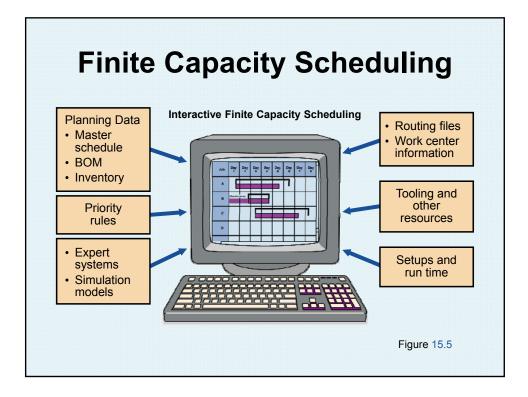


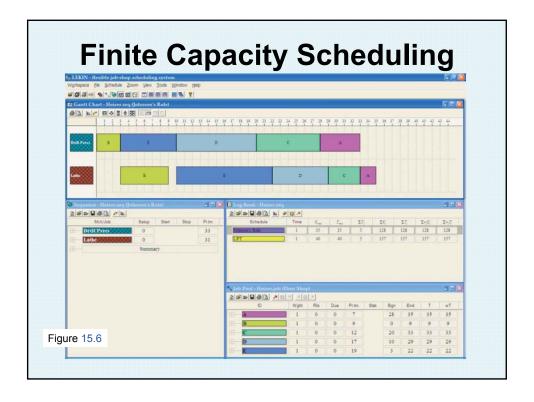

Sequencing *N* Jobs on Two Machines: Johnson's Rule


- Works with two or more jobs that pass through the same two machines or work centers
- Minimizes total production time and idle time
- An N/2 problem, N number of jobs through 2 workstations

JOB A	(DRILL PRESS) 5	2 (LATHE) 2		
В	3	6	-	-
С	8	4		
D	10	7		
Е	7	12		

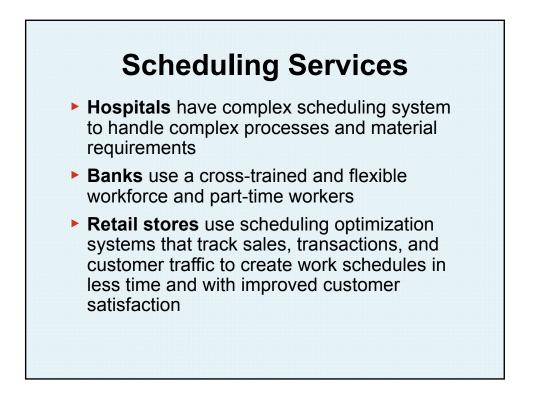






Limitations of Rule-Based Dispatching Systems

- Scheduling is dynamic and rules need to be revised to adjust to changes
- Rules do not look upstream or downstream
- 3. Rules do not look beyond due dates

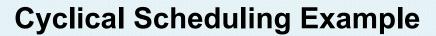


30

Scheduling Services

Service systems differ from manufacturing

MANUFACTURING	SERVICES
Schedules machines and materials	Schedule staff
Inventories used to smooth demand	Seldom maintain inventories
Machine-intensive and demand may be smooth	Labor-intensive and demand may be variable
Scheduling may be bound by union contracts	Legal issues may constrain flexible scheduling
Few social or behavioral issues	Social and behavioral issues may be quite important



Scheduling Services

- Airlines must meet complex FAA and union regulations and often use linear programming to develop optimal schedules
- 24/7 operations like police/fire departments, emergency hot lines, and mail order businesses use flexible workers and variable schedules, often created using computerized systems

Scheduling Service Employees With Cyclical Scheduling

- Objective is to meet staffing requirements with the minimum number of workers
- Schedules need to be smooth and keep personnel happy
- Many techniques exist from simple algorithms to complex linear programming solutions

- 1. Determine the staffing requirements
- 2. Identify two consecutive days with the lowest total requirements and assign these as days off
- 3. Make a new set of requirements subtracting the days worked by the first employee
- 4. Apply step 2 to the new row
- 5. Repeat steps 3 and 4 until all requirements have been met

DAY	М	Т	W	Т	F	S	S
Staff required	5	5	6	5	4	3	3
	М	т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Capacity (Employees)							

Cyclical Scheduling Example

Staff required	5	5	•	<u> </u>			
		5	6	5	4	3	3
	М	т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Employee 2	4	4	5	4	3	3	3
Capacity (Employees)							
Excess Capacity							

Cyclical Scheduling Example

5 M 5 4	5 T 5 4	6 W 6	5 T 5	4 F 4	3 S (3)	3 S
5 4	5	6				
4			5	4		
-	4	_			3	(3)
-		5	4	3	3	3
3	3	4	3	2	3	3

Cyclical Scheduling Example

DAY	М	Т	W	Т	F	S	S
Staff required	5	5	6	5	4	3	3
	М	т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Employee 2	4	4	5	4	3	3	3
Employee 3	3	3	4	3	2	3	3
Employee 4	2	2	3	2	2	3	2
Capacity (Employees)							
Excess Capacity							

DAY	M	T	W	Т	F	S	S
Staff required	5	5	6	5	4	3	3
	М	Т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Employee 2	4	4	5	4	3	3	3
Employee 3	3	3	4	3	2	3	3
Employee 4	2	2	3	2	2	3	2
Employee 5	(1)	1	2	2	2	2	1

Cyclical Sche	duling E	Example
----------------------	----------	---------

DAY	Μ	т	W	Т	F	S	S
Staff required	5	5	6	5	4	3	3
	М	т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Employee 2	4	4	5	4	3	3	3
Employee 3	3	3	4	3	2	3	3
Employee 4	2	2	3	2	(2)	3	2
Employee 5			2	2	2	2	1
Employee 6	1	1	1	1	1		0
Capacity (Employees)							
Excess Capacity							

DAY	M	Т	W	Т	F	S	S
Staff required	5	5	6	5	4	3	3
	М	т	W	т	F	S	S
Employee 1	5	5	6	5	4	3	3
Employee 2	4	4	5	4	3	3	3
Employee 3	3	3	4	3	2	3	3
Employee 4	2	2	3	2	2	3	2
Employee 5			2	2	2	2	1
Employee 6	1	1	1	1	1		0
Employee 7						1	
Capacity (Employees)	5	5	6	5	4	3	3
Excess Capacity	0	0	0	0	0	1	0