=...=

Note 1: The students must submit the PDF file of completed homework through email to the respective class teachers within 2 days from its assignment date; in their own handwritings with signatures.

Problem 1: Throughout this problem 1, let $x_1x_2x_3x_4x_5x_6x_7x_8x_9$ be your present university ID. [for example, if your ID is 423897615 $x_1 = 4$, $x_2 = 2$, $x_3 = 3$, $x_4 = 8$, $x_5 = 9$, $x_6 = 7$, $x_7 = 6$, $x_8 = 1$, $x_9 = 5$.]

- (a) If $\mathbf{A} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{bmatrix}$, then find: (i). rank (A) (ii). nullity (A^T). (b) If $_{\mathbf{S}}\mathbf{P}_{\mathbf{B}} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{0} & \mathbf{2} \\ \mathbf{3} & x_5 & \mathbf{5} \end{bmatrix}$ is the transition matrix from the basis $\mathbf{B} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ of \mathbb{R}^3 to its

standard basis $S = \{e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\}, then find [v_2]_S$.

- (c) For the Euclidean inner product space \mathbb{R}^3 :
 - (i). Find $\cos \theta$, where θ is the angle between the vectors (x_1, x_2, x_3) and (x_2, x_4, x_5) .
 - (ii). Use the Gram-Schmidt process to obtain an orthonormal basis from the given basis
 - $\{(x_3, 0, 0), (1, 1, 0), (1, x_9, 1)\}$ for \mathbb{R}^3 .

(d) Let T: $\mathbb{R}^3 \to \mathbb{R}$ be the transformation defined by: T(v) = $\langle v, (x_2, x_4, x_6) \rangle$ for all $v \in \mathbb{R}^3$, where

- "< , >" denotes the Euclidean inner product on \mathbb{R}^3 . Then:
- (i) Show that **T** is a linear transformation with $Im(\mathbf{T}) = \mathbb{R}$.
- (ii) Find a basis of Ker(T).

Problem 2: (a) Determine a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ such that:

- $Ker(T) = span\{(1, 1, -2, 3), (-1, 2, 0, 1)\}.$
- (b) Determine a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that:

 $Im(\mathbf{T}) = span\{(1, 1, -1, 4, 3), (-2, 1, 5, 1, 0)\}.$

Problem 3: Let V be a real inner product space and $B = \{v_1, v_2, v_3, v_4\}$ be an orthogonal basis for V such that $||v_1|| = 2$, $||v_2|| = 3$, $||v_3|| = 5$ and $||v_4|| = 2$. Suppose T: V \rightarrow V is a linear transformation such that:

 $T(v_1) = v_1 - v_2 + v_3 - v_4;$ $T(v_2) = v_2 + 2 v_3 + 2v_4;$ $T(v_2) + T(v_3) = -v_1 + 2v_2 + 4v_3 + 2v_4;$ $T(v_4) = v_1 - v_2 + 4v_3 - 2v_4.$

Then:

```
(a) Calculate:
        (i) \langle u, v_4 \rangle
        (ii) \langle u, T(v_3) \rangle
where u \in V and [u]_{B} = (2, -2, -1, 3).
(b) Find a basis for Ker(T).
(c) Show that \{T(v_1), T(v_2), T(v_3)\} is a basis for Im(T).
(d) Show that v_2 \notin Im(T).
(e) Find w \in V such that T(w) = v_2 + 5v_3 + v_4.
```