Homework - II
 KSU / Math-244 / Semester-II (1440-1441H)

Note 1: The students must submit the PDF file of completed homework through email to the respective class teachers within 2 days from its assignment date; in their own handwritings with signatures.

Problem 1: Throughout this problem 1, let $\boldsymbol{x}_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9}$ be your present university ID. [for example, if your ID is $423897615 \boldsymbol{x}_{1}=4, \boldsymbol{x}_{2}=2, \boldsymbol{x}_{3}=3, \boldsymbol{x}_{4}=8, \boldsymbol{x}_{5}=9, \boldsymbol{x}_{6}=7, \boldsymbol{x}_{7}=6, \boldsymbol{x}_{8}=1, \boldsymbol{x}_{9}=5$.]
(a) If $\mathbf{A}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ x_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} \\ \boldsymbol{x}_{4} & x_{5} & x_{6} \\ \boldsymbol{x}_{7} & \boldsymbol{x}_{\mathbf{8}} & x_{9}\end{array}\right]$, then find: (i). rank (A) (ii). nullity $\left(\mathbf{A}^{\mathrm{T}}\right)$.
(b) If $\mathbf{S}_{\mathbf{B}}=\left[\begin{array}{ccc}\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{0} & \mathbf{2} \\ \mathbf{3} & \boldsymbol{x}_{\mathbf{5}} & \mathbf{5}\end{array}\right]$ is the transition matrix from the basis $\mathbf{B}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \boldsymbol{v}_{\mathbf{3}}\right\}$ of \mathbb{R}^{3} to its standard basis $\mathbf{S}=\left\{\boldsymbol{e}_{1}=(1,0,0), \boldsymbol{e}_{2}=(0,1,0), \boldsymbol{e}_{3}=(0,0,1)\right\}$, then find $\left[\boldsymbol{v}_{2}\right]_{\mathbf{s}}$.
(c) For the Euclidean inner product space \mathbb{R}^{3} :
(i). Find $\boldsymbol{c o s} \boldsymbol{\theta}$, where $\boldsymbol{\theta}$ is the angle between the vectors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right)$.
(ii). Use the Gram-Schmidt process to obtain an orthonormal basis from the given basis $\left\{\left(\boldsymbol{x}_{\mathbf{3}}, \mathbf{0}, \mathbf{0}\right),(\mathbf{1}, \mathbf{1}, \mathbf{0}),\left(\mathbf{1}, \boldsymbol{x}_{\mathbf{9}}, \mathbf{1}\right)\right\}$ for \mathbb{R}^{3}.
(d) Let $\mathbf{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the transformation defined by: $\mathbf{T}(\boldsymbol{v})=<\boldsymbol{v},\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6}\right)>$ for all $\boldsymbol{v} \in \mathbb{R}^{3}$, where " $<,>$ " denotes the Euclidean inner product on \mathbb{R}^{3}. Then:
(i) Show that \mathbf{T} is a linear transformation with $\operatorname{Im}(\mathbf{T})=\mathbb{R}$.
(ii) Find a basis of $\operatorname{Ker}(\mathbf{T})$.

Problem 2: (a) Determine a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ such that:

$$
\operatorname{Ker}(T)=\operatorname{span}\{(1,1,-2,3),(-1,2,0,1)\} .
$$

(b) Determine a linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ such that:

$$
\operatorname{Im}(T)=\operatorname{span}\{(1,1,-1,4,3),(-2,1,5,1,0)\}
$$

Problem 3: Let V be a real inner product space and $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be an orthogonal basis for V such that $\left\|v_{1}\right\|=2,\left\|v_{2}\right\|=3,\left\|v_{3}\right\|=5$ and $\left\|v_{4}\right\|=2$. Suppose $T: V \rightarrow V$ is a linear transformation such that:

$$
\begin{aligned}
& T\left(v_{1}\right)=v_{1}-v_{2}+v_{3}-v_{4} ; \\
& T\left(v_{2}\right)=v_{2}+2 v_{3}+2 v_{4} ; \\
& T\left(v_{2}\right)+T\left(v_{3}\right)=-v_{1}+2 v_{2}+4 v_{3}+2 v_{4} \\
& T\left(v_{4}\right)=v_{1}-v_{2}+4 v_{3}-2 v_{4}
\end{aligned}
$$

Then:
(a) Calculate:
(i) $\left\langle u, v_{4}\right\rangle$
(ii) $\left\langle u, T\left(v_{3}\right)\right\rangle$
where $u \in V$ and $[u]_{B}=(2,-2,-1,3)$.
(b) Find a basis for $\operatorname{Ker}(T)$.
(c) Show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is a basis for $\operatorname{Im}(\mathrm{T})$.
(d) Show that $v_{2} \notin \operatorname{Im}(T)$.
(e) Find $w \in V$ such that $T(w)=v_{2}+5 v_{3}+v_{4}$.

