DIOPHANTINE EQUATIONS AND BEYOND

GERD FALTINGS

1. INTRODUCTION

This article gives an overview of my research. My most important results was
the proof of the Mordell conjecture, but this naturally led to other fields and I trie
to explain how this happened.

2. DIOPHANTINE EQUATIONS

Diophantine problems deal with solutions of algebraic equations in rational num-
bers. Recall that the natural numbers {1,2,3...} are obtained by simple counting,
and they suffice for some purposes. However for applications one usually has to con-
struct more complicated numbers: First one needs the zero and negative numbers
{0,—1, ...}, then rational numbers a/b where a and b are integers with b different
from 0. The real numbers R are obtained as limits of rational numbers, as for
example the squareroot /2 or the number 7. Finally for complex numbers C one
has to add a squareroot ¢ of —1, that is they are linear combinations a + bi. with a
and b real numbers. For many purposes the complex numbers suffice. For example
any algebraic equation has a root in C. However sometimes one has to replace the
real numbers by different completions of the rationals. For any prime p consider
two rationals a/b and a’/b as p-adically close if the integer a — o’ is divisible by a
big power of p. Then adding p-adic limits extends the rationals Q to the field Q,
of p-adic numbers. For example the series

1422424, =1-) (=2)"(1-3-(2n—1))/(1-..n)

n>1

has a limit in Q2 which is equal to V5.

Q, has some similarity to the reals R but is also quite different in certain as-
pects. For example it does not suffice to add one element (like 4) to it to make it
algebraically closed. Instead one has to adjoin infinitely many elements and add a
further completion to extend Q, to a complete algebraically closed field C,.

Diophantine geometry deals with solutions of algebraic equations in integers
or rational numbers. Examples are Pythagorean triples (solutions in integers of
a? +b? = 2, or in rationals of 2% 4+ y? = 1), or the Fermat equation (a" + b" = c",
or z" + y® = 1, n > 3). In general an algebraic variety is the set of common
solutions of finitely many polynomial equations. Examples are 22 — y?> = 1 or
22 + 93+ 25 = 0, but not 3% — 2¥ = 1 (it involves nonalgebraic functions). The
algebraic variety is defined over Q if the polynomials defining it have coefficient in
Q. Tt then has points (that is common solutions of the equations) in any overfield
of Q, that there are Q-rational, R-rational and C-rational points. For example the
algebraic variety given by z? +y? = —1 is defined over Q but has no rational points
over Q or even over R. On the other hand over C it is isomorphic to 2% 4+ y? =1
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(multiply « and y by ) and has many C-rational points. This illustrates that over
the complex numbers C many things become simpler. An algebraic variety is called
smooth if the complex points form a manifold. The variety given by 22 + ¢ =1
is smooth while y? — 2% = 0 defines a nonsmooth variety (it has a singularity at
x=y=0).

An important invariant of an algebraic variety is its dimension. It roughly says on
how many complex parameters the C-rational points depend. Varieties of dimension
zero are finite sets. In the next case of dimension one the varieties are called curves.
Such a curve has an important invariant, the genus. Rational points on curves of
genus zero can be parametrised. For example rational solutions to 2% 4+ y? = 1 are
of the form x = (1 — t2)/(1 + t?),y = 2t/(1 + t?). For curves of genus one Mordell
showed that rational points form a finitely generated abelian group. That is they
are much rarer than for genus zero, but there still may be infinitely many of them.
He conjectured that for genus bigger than one the set of rational points is finite.

Important concepts in the study of diophantine equations are height and the
notion of good reduction. The height of a rational number a/b is the maximum of
the sizes of the numerator a and the denominator b (assumed to be coprime). The
height of an n-tuple (x1, ..., ) of rational numbers is the maximum of the height of
the coordinates x;. The height is important for proving finiteness theorems because
it suffices to give an upper bound for the height of solutions. Of course this tends
to be difficult for interesting problems.

Good reduction at a prime p means in the simplest case that for a rational
number a/b p does not divide the denominator. This can fail only for finitely
many primes which are called the primes of bad reduction. Another example: An
equation defines a smooth algebraic variety if some discriminant is nonzero. If the
equation has integers as coefficients this discriminant is also an integer, and thus
only divisible by finitely many primes. These are the primes of bad reduction for
this property.

In more generality one may enlarge the rationals by adding solutions of algebraic
equations to obtain algebraic numberfields. An example is the field Q(v/2) which
consists of all linear combinations a+bv/2 with rationals a,b. Note that this field has
a symmetry by sending a + bv/2 to a — bv/2, quite similar to complex conjugation
on C. So if an equation has coefficients in Q its solutions in Q(v/2) admit this
symmetry. Another example is obtained by adjoining to Q all cube roots of 2, that
is 21/3 ¢21/3 ¢221/3 with ¢ = €2™/3 a third root of unity. This field has degree 6
and the symmetry group consists of all permutations of the three roots. A version
of it exists for all numberfields and is called the Galois-group. One of the most
powerful tools in diophantine geometry consists in passing from rational points to
representations of the Galois-group.

As an example we illustrate this in the case of the Fermat equation a™ + 0" = ¢™:
We want to show that it has no nontrivial solutions in integers if n > 3. It suffices
to consider the cases where n = 4 or where n is an odd prime. Then we consider
the auxiliary Frey elliptic curve, that is solutions of the equation

v = x(x —a™)(z +b").

If we add a point at infinity the (say) complex solution (z,y complex numbers)
form a commutative group, that is we can define an addition of two such points.
The group law is determined by the fact that the three intersection points of the
curve with any straight line (in the (z, y)-plane) add up to zero. The height of such
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an elliptic curve is given by the size of the discriminant which is 4a™b"c", and the
primes of bad reduction are the primes which divide a, b or ¢. The n-division points
(adding the point n-times to itself gives zero) form a subgroup of order n?. As the
group law is given by algebraic equation with coefficients in Q these division points
lie in algebraic numberfields and thus admit an action of the Galois-group. This
Galois-action has certain special properties:

Namely at the primes of bad reduction one would expect that the representation
notices them (it ”ramifies”). In our case (the Frey-curve for a Fermat equation)
the primes of bad reduction are those dividing one of the numbers a, b, c. However
because they occur as n-th powers these primes of bad reduction are not seen by
the n-torsion points. In Wiles solution of the Fermat problem the key step is
to show that this implies that the elliptic curve is ”congruent modulo n” to an
elliptic curve with no primes of bad reduction. Actually one has to work with a
generalisation of elliptic curves (modular forms), but nevertheless one shows that no
such object without primes of bad reduction exists, and thus the Fermat equation
has no nontrivial solution.

For more complicated diophantine equations one sometimes can still associated
to solutions a Frey elliptic curve. However this construction would help only if
one could bound the height of this curve. To achieve this one has to solve the
”abc-conjecture”, one of the most important open problems in the theory.

For more general diophantine equations we cannot hope for no solutions, but
only for qualitative statements like finiteness of solutions, for special types of alge-
braic varieties. To achieve this for curves (that is to show the Mordell conjecture)
the method of Parshin-Arakelov associated to each solution a new curve and its Ja-
cobian, which is a generalisation of the elliptic curves which we encountered for the
Fermat problem. They and Szpiro could show the Mordell conjecture over function
fields, which are similar to numberfields but where additional tools are available.
Also Szpiro emphasized the importance of Arakelov theory which allows to carry
over some techniques from function to numberfields. However one important tool
(Kodaira-Spencer classes) was missing.

Quite unexpectedly this difficulty was resolved. namely associated to the auxil-
iary curves are their Jacobians and the Galois action on the torsion points of the
Jacobians. This Galois action again has primes of bad reduction, and this set of
primes is not empty but al least predetermined by the curve and not by the ratio-
nal point on it. By the general theory (the Weil conjectures) there are only finitely
many such representations. If we show that only finitely many points can give rise
to the same representation we derive finiteness of rational points.

Now if two points give rise to the same representation the corresponding Jaco-
bians are not the same but at least they are similar. The technical term is that
they are isogenous. I could show in 1983 that in a given isogeny class the height of
the Jacobian (a measure for its complexity) is bounded, and derives that there can
be only finitely many Jacobians in this isogeny class. Thus there are only finitely
many rational points.

The proof of the Mordell conjecture led me to further work in two fields where
the necessary results could be obtained in an adhoc manner but where a fully
satisfactory treatment required further work. One was the need to define heights
for abelian varieties. These correspond to rational points on a certain moduli space,
but to get a good theory one has to compactify that space, that is to add certain
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degenerate abelian varieties. Over the complex numbers compactifications had
been defined by Baily-Borel, Shimura, and Mumford, but they had no arithmetic
interpretation, nor did the construction allow to bound the primes of bad reduction.
However Mumford also had found a construction of degenerate abelian varieties,
and I could show that Mumford’s construction gives all such degenerations, and
allows to define local coordinates at the boundary of the compactifications. The
resulting arithmetic compactification is called the toroidal compactificationy. I
wrote a book about that in collaboration with C.L.Chai.

Another development was the local theory of p-adic Galois representations. What
was necessary for Mordell had already been done by Tate in the one dimensional
case. It turned out that his method generalises to higher dimensions and yields
a "p-adic Hodge decomposition”. Moreover the method allowed to attack the
comparison between etale and crystalline cohomology which had been conjectured
by J.M.Fontaine. The whole theory now has been put on a conceptual basis by
P.Scholze.

Another (in fact historically earlier) approach to diophantine equtions has been
via diophantine approximation. We illustrate that for the example of Roth’s theo-
rem: If o is an algebraic number (that is it satisfies a polynomial equation) then «
cannot be too well approximated by a rational numbers. Namely for any exponent
r > 2 there are only finitely many rationals a/b with

| —a/b] < 1/0".

For r = 2 the theory of continuous fractions gives (for real irrational numbers)
infinitely many solutions. For the proof of Roth’s theorem one assumes that the
assertion is wrong and derives a contradiction. If the assertion is wrong there are
infinitely many fractions a/b satisfying the inequality. Among them the denomi-
nators b can become arbitrarily large, so one can find e sequence a;/b; with the b;
rapidly increasing (which can be made precise but this requires some technicalities).
Then one constructs an auxiliary polynomial F' in variables T7, ..., Ts of multide-
gree (di,...,ds) (with d; approximately proportional to the invers of log(b;)) which
vanishes to high order at (a,...,«). Finally one derives a contradiction if s is big
enough (depending on how close r is to 2) and if the d; increase rapidly enough.
Thue was the first to apply this method to diophantine geometry. He was fol-
lowed by Siegel. However only Vojta succeeded much later to give a proof for the
Mordell conjecture along these lines. Trying to understand his proof I developed a
geometric approach which allowed to generalise it to higher dimensional varieties.
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