5

Hilbert Spaces

The basic concepts of finite-dimensional vector spaces introduced in Chapter 1 can
readily be generalized to infinite dimensions. The definition of a vector space and
concepts of linear combination, linear independence, basis, subspace, span, and so
forth all carry over to infinite dimensions. However, one thing is crucially different
in the new situation, and this difference makes the study of infinite-dimensional
vector spaces both richer and more nontrivial: In a finite-dimensional vector space
we dealt with finite sums; in infinite dimensions we encounter infinite sums. Thus,
we have to investigate the convergence of such sums.

3.1 The Question of Convergence

The intuitive notion of convergence acquired in calculus makes use of the idea of
closeness. This, in turn, requires the notion of distance.! We considered such a
notion in Chapter 1 in the context of a norm, and saw that the inner product had
an associated norm. However, it is possible to introduce a norm on a vector space
without an inner product.

One such norm, applicable to C" and R®, was

7 i/p
lall, = (Z Iot;-l”) ;
i=1

where p is an integer. The “patural” norm, i.e., that induced on C* (or B") by
the usual inner product, corresponds to p = 2. The distance between two points

Ut is possible to introduce the idea of closeness abstractly, without resort to the notion of distance, as is done in topology.
However, distance, as applied in vector spaces, is as abstract as we want to get.
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depends on the particular norm used. For example, consider the “point™ (or vector)
|6} = (0.1, 0.1, ...,0.1) in a 1000-dimensional space (r = 1000). One can easily
check that the distance of this vector from the origin varies considerably with p:
Closenessisa  [|[[s = 100, ||B]l2 = 3.16, [i&]|10 = 0.2. This variation may give the impression
relative concept!  that there is no such thing as “closeness”, and it all depends on how one defines the
norm. This is not true, because closencss is a relative concept: One always compares
distances. A norm with large p shrinks aff distances of a space, and a norm with
small p stretches them. Thus, although it is impossible (and meaningless) to say
that “|a) is close to |b)” because of the dependence of distance on p, one can

always say “|a) is closer to |b) than |c} is to |d),” regardless of the value of p.
Now that we have a way of telling whether vectors are close together or far
apart, we can talk about limits and the convergence of sequences of vectors. Let

us begin by recalling the definition of a Cauchy sequence

Cauchy sequence  5.1.1. Definition. An infinite sequence of vectors {|a;)}?2, in a normed linear

defined  space V is called a Cauchy sequence if lim;_, o [la; — a;|| = 0.
Jj—=0co

A convergent sequence is necessarily Cauchy. This can be shown using the
triangle inequality (see Problem 5.2). However, there may be Cauchy sequences
in a given vector space that do not converge to any vector in that space (see the
example below). Such a convergence requires additional properties of' a vector
space summarized in the following definition.

complete vector  5.1.2. Definition, A complete vector space V is a normed linear space for which
space defined  every Cauchy sequence of vectors in 'V has a limit vector in V. In other words,
if {lai)}2, is a Cauchy sequence, then there exists a vector |a) € V such that

lim; o0 lla; — all = 0.

5.1.3. Example. 1. R is complete with respect to the absolute-value norm [la|| = |/. In
other words, every Cauchy sequence of real numbers has a limit in R. This is proved in real
analysis,

2. C is complete with respect to the nomm ||| = |a| = +/(Re a)? 4 (Imo)2. Using
|| < |Rew| + |Ime|, one can show that the completeness of C follows from that of R.
Details are left as an exercise for the reader.

3. The set of rational numbers § is not complete with respect to the absolute-value norm.
In fact, {(1 + 1/ k)k}]‘:‘;l is a sequence of rational numbers that is Cauchy but does not
converge to a rational number; it converges to ¢, the base of the natural logarithm, which is
known to be an irrational number. B

Let {la;}}72, be a Canchy sequence of vectors in a finite-dimensional vec-
tor space V. Choose an orthonormal basis {Iek)}}f:l in Vy such that? |g;} =

- 2Recall that one can always define an inner product on a finite-dimensional vector space. So, the existence of orthonormal
-bases is guaranteed.
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all finite-dimensional
vector spaces are
complete

Zg=1 a}Ei) ler) and |a;) = Z]lf=1 tx,Ej) lex}. Then
2

N .
la: — a;1 = (@ —ajla; —a;) = | 3 (e — ) lex)
2

. : N
=D @~ oy — o) (er] &) = > e - o .
ki=1 -

The LHS goes to zero, because the sequence is assumed Cauchy. Furthermore, all
terms on the RHS are positive. Thus, they too must go to zero as £, j — oo. By

the completeness of C, there must exist oy € C such that lim,_, o a,i")
k=1,2,..., N.Now consider |a} € Vy givenby la) = ch\;l oy, [ex). We claim
that |a) is the limit of the above sequence of vectors in Vy. Indeed,

= oy, for

N N
tim [l —al? = lim Y |o a2 =" lim [of —agl? =0
I—00 I—=C0 oy —1 I—>00_

We have proved the following:

5.1.4. Proposition. Every Cauchy sequence in a finite-dimensional inner product
space over C (or R ) is convergent. In other words, every finite-dimensional complex
(or real) inner product space is complete with respect to the norm induced by its
inner product.

The next example shows how important the word “finite” is.

5.1.5. Example, Consider {;)7° ;, the infinite sequence of continuous functions defined
in the interval [—1, 4+1] by

1 if l/k<x<l,
file) = kx+1)/2 if -1/k <x <1/k,
0 if —-1<x<-1/k

This sequence belongs to @%(—1, 1), the inner product space of continuous functions with
its usual inner product: { f|g) = f_ll FH(x)g(x) dx. Tt is siraightforward to verify that

Ifi — fil% = f_ll | fee) — f5(x)%dx m 0. Therefore, the sequence is Cauchy.

However, the limit of this sequence is (see Figure 5.1)

1 if 0<x<l,

JFUC):{O i Tk,

which is discontinuous at x = 0 and therefore does not belong to the space in which the
original sequence lies. -]
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Figure 5.1 The limit of the sequence of the continuous functions f, is a discontinuous
function that is 1 for x > 0 and 0 forx < 0.

We see that infinite-dimensional vector spaces are not generally complete. It is
a nontrivial task to show whether or not a given infinite-dimensional vector space
is complete.

Any vector space (finite- or infinite-dimensional} contains all finite linear com-
binations of the form }_;_; oy |a;} when it contains all the |a;)’s. This follows from
the very definition of a vector space. However, the situation is different when n
goes to infinity. For the vector space io contain the infinite sum, firstly, the mean-
ing of such a sum has to be clarified, i.e., 2 norm and an associated convergence
criterion needs to be put in place. Secondly, the vector space has to be complete
with respect to that norm. A complete normed vector space is called a Banach

Banach space  space. We shall not deal with a general Banach space, but only with those spaces
whose norms arise naturally from an inner product. This leads to the following
definition:

Hilberi space defined  5.1.6. Definition. A complete inner product space, commonly denoted by J{, is
called a Hilbert space.

Thus, all finite-dimensionat real or complex vector spaces are Hilbert spaces.
However, when we speak of a Hilbert space, we shall usually assume that it is
infinite-dimensional.

It is convenient to use orthonormal vectors in studying Hilbert spaces. So, let
us consider an infinite sequence {|e;)}72, of orthonormal vectors all belonging to
a Hilbert space 3. Next, take any vector | f} € J{, construct the complex numbers
Ji = {e&i| £}, and form the sequence of vectors®

)= file) forn=1,2,... G.1)
i=1

3We can consider | f) as an“approximation” fo | £}, because both share the same componenis along the same set of orthonormal
vectors, The sequence of orthonormal vectors acts very much as a basis. However, to be a basis, an extra condition must be met.
‘We shall discuss this condition shortly.
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Parseval inequality

Bessel inaquality

complete
orthonormal
sequence of vectors

For the pair of vectors | f} and | £;,}, the Schwarz inequality gives

L1 Fad < CFLEY (ful £ = CFLF) (Z|ﬁ|2), (5.2)
i=l1 1

where Equation (5.1) has been used to evaluate { f;,] f,,). On the other hand, taking
the inner product of (5.1) with { f| yields

(Flf =) Filfley=) fiff =Y Al
i=1 i=1 i=1

Substitution of this in Equation (5.2) yields the Parseval inequality:
n
SIS, (5.3)
i=1

This conclusion is true for arbitrarily large n and can be stated as follows:

5.1.7, Proposition. Let {fe,-)}?g1 be an infinite set of orthonormal vectors in a

Hilbert space, J{. Let | f) € H and define complex numbers f; = {e;| f). Then
the Bessel inequality holds: 32, | fif* < (F| f).

The Bessel inequality shows that the vector

o0 n
D filey=lim 3 file:)
= i=1
converges; that is, it has a finite norm. However, the inequality does not say whether
the vector converges to | f). To make such a statement we need completeness:

3.1.8. Definition. A sequence of orthonormal vectors {|e;)}° | in a Hilbert space
H is called complete if the only vector in H that is orthogonal to all the |e;) is the
zero vector.

This completeness property is the extra condition alluded to (in the footnote)
above, and is what is required to make a basis.

5.1.9. Proposition. Let {|e;)}2, be an orthonormal sequence in 3. Then the

following statements are equivalent:
1. {le;}}i2, is complete.
21 =XZle) el f)  VYIfleX
3 X% e el =1.
4. (fle) =2 (fledlelg) VY If),lg) e
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Parseval equality;
generalized Fourier
coefficients

completeness
relation

basis for Hilbert
spaces

SANFP=2 Hal£2 Y eH

Proagf. We shall prove the implications 1 = 2 = 3 = 4 = 5=1
1 = 2: Tt is sufficient to show that the vector |¢) = — 3% les) {es] £ is
orthogonal to all the |e;}:

(ejl ) = (el fY =D _lejlen) (el fY =10
i=1

2 = 3:8ince |f} =1|f) = Yo (le:) {ei]) | f) is true for all | £} € H, we must
have 1 =372, le;} (eil.

3 4(flg)={fl1lg) = IS le) leD 1g) = 152, { fle) (el g).

4 = 5:Let |g} = | f) in statement 4 and recall that { f]e;}) = {e;] f)*.

5 = 1:Let [f) be orthogonal to all the |e;). Then all the terms in the sum are
zero implying that || f||* = 0, which in turn gives | f) = 0, because only the zero

vector has a zero norm. O
The equality
IFIP=(F1 A =) el AP ZmF fi={el ), (5.4)
i=1

is called the Parseval equality, and the complex numbers f; are called generalized
Fourier coefficients. The relation

1= lei) (el (5.5)

i=l
is called the completeness relation.

5.1.10. Definition. A complete orthonormal sequence {|e;)}S2 | in a Hilbert space ‘
H is called a basis of H.

5.2 The Space of Square-Integrable Functions

Chapter 1 showed that the collection of all continuous functions defined on an
interval [a, b] forms a linear vector space. Example 5.1.5 showed that this space
is not complete. Can we enlarge this space to make it complete? Since we are
interested in an inner product as well, and since a natural inner product for func-
tions is defined in terms of integrals, we want to make sure that our functions
are integrable. However, integrability does not require continuity, it only requires
piecewise continuity. In this section we shall discuss conditions under which the
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square-integrable
functions

space of functions becomes complete. An important class of functions has already
been mentioned in Chapter 1. These functions satisfy the inner product given by

b
tal F) = f () W) dx.

If g(x) = f(x), we obtain

b
LFl.f = f | f ) Pw(x) dx. (5.6)

Functions for which such an integral is defined are said to be square-integrable.

David Hilbert (1862-1943), the greatest mathematician of this
century, received his Ph.D. from the University of Konigsberg
and was a member of the staff there from 1886 to 1895, In 1895
he was appointed to the chair of mathematics at the University
of Géttingen, where he continued to teach for the rest of his life.

Hilbert is one of that rare breed of late 19th-century math-
ematicians whose spectrum of expertise covered a wide range,
with formal set theory at one end and mathematical physics at the
other. He did superb work in geometry, algebraic geometry, alge-
braic number theory, integral equations, and operator theory. The
seminal two-volume book Methoden der mathematische Physik
by R. Gourant, still one of the best books on the subject, was greatly influenced by Hilbert.

Hilbert’s work in geometry had the greatest influence in that area since Euclid. A system-
atic study of the axioms of Euclidean geometry led Hilbert to propose 21 such axioms, and
he analyzed their significance. He published Grundlagen der Geometrie in 1899, putting
geometry on a formal axiomatic foundation. His famous 23 Paris problems challenged (and
still today challenge) mathematicians to solve fundamental questions.

It was late in his career that Hilbert turned to the subject for which he is most famous
among physicists. A lecture by Erik Holmgren in 1901 on Fredholm’s work on integral
equations, which had already been published in Sweden, aroused Hilbert’s interest in the
subject. David Hilbert, having established himself as the leading mathematician of his time
by his work on algebraic numbers, algebraic invariants, and the foundations of geometry,
now turned his attention to integral equations. He says that an investigation of the subject
showed him that it was important for the theory of definite integrals, for the development of
arbitrary functions in series (of special functions or trigonometric functions), for the theory
of linear differential equations, for potential theory, and for the calculus of variations. He
wrote a series of six papers from 1904 to 1910 and reproduced them in his book Grundziige
einer allgemeinen Theorie der linearen Integralgleichungen (1912). During the latter part
of this work he applied integral equations to problems of mathematical physics.

It is said that Hilbert discovered the correct field equation for general relativity in 1915
(one year before Einstein) using the variational principle, but never claimed priority.

Hilbert claimed that he worked best out-of-doors. He accordingly attached an 18-foot
blackboard to his neighbor’s wall and built a covered walkway there so that he conld work
ontside in any weather. He would intermittently interrupt his pacing and his blackboard
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L2 (a, b) Is complete

all Hiibert spaces are
alike

computations with a few turns around the rest of the yard on his bicycle, or he would pull
some weeds, or do some garden trimming. Once, when a visitor called, the maid sent him
to the backyard and advised that if the master wasn’t readily visible at the blackboard to
lock for him up in cne of the trees.

Highly gifted and highly versatile, David Hilbert radiated over mathematics a catching
optimism and a stimulating vitality that can only be called “the spirit of Hilbert.” Engraved
on a stone marker set over Hilberi’s grave in Gottingen are the master’s own optimistic
words: *“Wir miissen wissen. Wir werden wissen.” (“We must know. We shall know.”}

The space of square-integrable functions over the interval [a, b] is denoted by
Lfv {(a, b). In this notation £ stands for Lebesgue, who generalized the notion of
the ordinary Riemann integral to cases for which the integrand could be highly
discontinuous; 2 stands for the power of f(x) in the integral; @ and b denote the
limits of integration; and w refers to the weight function (a strictly positive real-
valued function). When w(x)} = 1, we use the notation L2 (a, b). The significance
of L,z,, (a, b) lies in the following theorem (for a proof, see [Reed 80, Chapter ITT]):

5.2.1. Theorem. (Riesz-Fischer theorem) The space L2 (a, b) is complete.

A complete infinite-dimensional inner product space was earlier defined to be
a Hilbert space. The following theorem shows that the number of Hilbert spaces
is severely restricted. (For a proof, see [Frie 82, p. 216].)

5.2.2, Theorem. Al infinite-dimensional complete inner product spaces are i.s;o-
morphic to Lﬁ (a, b).

Lﬁ, (a, b) is defined in terms of functions that satisfy Equation (5.6). Yetaninner
product involves integrals of the form f : g*(x) f (x)w(x) dx: Are such integrals
well-defined and finite? Using the Schwarz inequality, which holds for any inner
product space, finite or infinite, one can show that the integral is defined. The

* isomorphism of Theorem 5.2.2 makes the Hilbert space more tangible, because it

identifies the space with a space of functions, objects thai are more familiar than
abstract vectors. Nonetheless, a faceless function is very little improvement over
an abstract vector. What is desirable is a set of concrete functions with which we
can calculate. The following theorem provides such functions (for a proof, see
[Simm 83, pp. 154-161]).

5.2.3. Theorem. (Stone-Weierstrass approximation theorem) The sequence of
functions (monomials) {x*}, where k =0,1,2, ..., forms a basis of L% (a, b).

Thus, any function f can be written as f(x) = Y ;g o x*. Note that the
{x*} are not orthonormal but are linearly independent. If we wish to obtain an
orthonormal—or simply orthogonal—linear combination of these vectors, we can
use the Gram-Schmidt process. The result will be certain polynomials, denoted by
Cy(x), that are orthogonal to one another and span Lﬁ, (a,b).
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Such orthogonal polynomials satisfy very useful recurrence relations, which
we now derive. In the following discussion p.;(x)} denotes a generic polynomial .
of degree less than or equal to k. For example, x5 —dx? 4 5,2x +1, —24x* +
3x3 — x2 - 6, and 2 are all denoted by p<5(x) or pg(x) or p.so(x) because they
all have degrees less than or equal to 5, 8, and 59. Since a polynomial of degree
less than 7 can be written as a linear combination of Cy(x) with k£ < #n, we have
the obvious property

b
f Ca(X)pan—1{x)wix)dx = 0. (5.7)

Let &, and k:,n denote, respectively, the coefficients of x™ and 2V in Cp (),
and let

b
om = f [Con ()P0 (x) dix. 5.8)

The polynomial Cyy(x) — (kni1/kn)xCy (x) has degree less than or equal to n, .
and therefore can be expanded as a linear combination of the C; (x):

kn 2
Crt(6) = S22 Calx) = 3 25 C (). (5.9)
(1 ]=0

Take the inner product of both sides of this equation with Cp,(x):

b b
f Cart D Cn ) dr — 2L f Ca(R)Cn (B 0(x) dx

(3

B b
=2 4 f C;(x)Cmix)w(x) dx.
. e e

The first integral on the LHS vanishes as long as m < n; the second integral
vanishes if m < n — 2 [if m < n — 2, then xC,,(x) is a polynomial of degree
# — 1]. Thus, we have
n b
Za,-f Ci(X)Cnx)w(x)dx =0  form <n—2.
MR

The integral in the sum is zero unless j = m, by orthogonality. Therefore, the sum
reduces to

b
amf [Cn () Pw(x)dx =0 form<n—2.

Since the integral is nonzero, we conclude thata,, = Oform =0,1,2,...,n—2,
and Equation (5.9) reduces to

Cat1 (%) — k’;j*xc,,(x) = 81-1Crm1 (%) + @, Co (%), | (5.10)

1]
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It can be shown that if we define

knv1 k:a+1 k:: bn o4
- , = _ny. =— , 5.11
o ky bn = O (kn-f-l kn v Bp—1 Op—1 ¢ )
arecurrence relation  then Equation (5.10) can be expressed as
for orthogonal
polynomials  Cpy1(x) = (@nx + Br)Cn(x) + YaCro1(x), (.12)
or
1
XCa(x) = = Cra @) = 22Ca0) — 220y (), (513)
oty oy Uy

Other recurrence relations, involving higher powers of x, can be obtained from
the one above. For example, a recurrence relation involving x? can be obtained
by multiplying both sides of Equation (5.13) by x and expanding each term of the
RHS using that same equation. The result will be

22Cy(x) = Crialx) — ( Bt + %) Cnt1(x)

nllpy 41 Oyl n

2
__( Vn+1 —‘B—g+ Va )Cn(x)
Oplpy1 O Gl

+ (ﬁn VYu . Brn-1V¥n

(5.14)
Yn-1Vn
Cplin—1

Cr—a(x)..

5+
O!n K1

) Co—1(x} +
5.2.4. Example. As an application of the recurrence relations above, let us evaluate

b
0 Ef XCm{XC(w(x)dx.

Substituting (5.13) in the integral gives

I 1 b B b
1= a[z Cin(x)Cpq1(x}wix) dx — a_L Cin (x)Cr(x)w(x) dx

n

Vn b
—— | Ca{x)Ch_1(x)wix)dx.

Qn Ja
‘We now use the orthogonality relations among the Cy (x) to obtain

=y
—_——

1 b b -
I = —bmnit f c,ﬁ(x)w(x)dx—ﬁlamn f C% (xyw(x) dx
[+47) a [£4] a
b
~Lps [ Cwuinax
[+ 4] a -

1 Bm Ym+1 -
= 5 sy — YL )h ,
(a'm—l a1 am mn P m.n—1] tm
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or

B [0t if m=n+1,

¥ = —Bmbum /o if m=n,
—Ymi1hmfopy f m=n-—1, ]
0 otherwise.

5.2.5. Example. Let us find the orthogonal polynomials forming a basis of £2(~1, +1),
which we denote by Py (x), where  is the degree of the polynomial. Let Py(x) = 1. To find
Py (x), write P (x) = ax + b, and determine g and b in such a way that P; (x) is orthogonal
to Pp(x):

i 1
0 =f Py (x) Po(x) dx =f (ax +bydx = Lax?|L | + 25 =2p,
-1 -1

So one of the coefficients, b, is zero. To find the other one, we need some standardization
procedure. We “standardize” Py (x) by requiring that Pp(1) = 1 ¥&. Fork = 1 this yields
ax1l=1,org =1,so0that Pi(x) = x.

We can calculate P (x) similarly: Write Py(x) = ax® +bx + ¢, impose the condition
that it be orthogonal to both Py (x) and Py(x), and enforce the standardization procedure.
All this will yield

1 ) 1 2
0=f Pz(x)Pg(x)dx=§a+2c, 0=f Pg(x)Pl(x)dx=§b,

and Pp(1) =a+b+c=1. These three equations have the unique solutiong = 3/2,b =0,
¢ = —1/2. Thus, P(x) = 3 (3x — 1), These arc the first three Legendre polynomials,
which are part of a larger group of polynomials to be discussed in Chapter 7. -

5.2.1 Orthogonal Polynomials and Least Squares

The method of least squares is no doubt familiar to the reader. In the simplest

procedure, one tries to find a linear function that most closely fits a set of data.

By definition, “most closely” means that the sum of the squares of the differences

between the data points and the corresponding values of the linear function is

minimum. More generally, one seeks the best polynomial fit to the data.

We shall consider a related topic, namely least-square fitting of a given function

- with polynomials. Suppose f (x) is a function defined on (a, ). We want to find a

polynomlal that most closely approximates f. Write such a polynomial as p(x) =

3 i=0 ayx*, where the ag’s are to be determined such that

b
Stap, a1, ..., a,) Ef [f(x) —ap—arx — -+ —apx" PP dx

is aminimum. Differentiating § with respect to the a;’s and setting the result equal
1o ZeTo gives

0= ;: fz(—xf) |:f(x) Zakx:ldx,

k=0
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@ If gl =111+ llell-

®) If +22+1F —gl* =2(1£1 + llgh?.
(c) Using parts (a), (b), and Theorem 1.2.8, show that L1(R) is not an inner

product space. This shows that not all norms arise from an inner product.

5.6. Use Equation (5.10) to derive Equation (5.12). Hint: To find a,, equate the
coefficients of x® on both sides of Equation (5.10). To find a,_;, multiply both
sides of Equation (5.10) by C,—1w(x) and integrate, using the definitions of k&,
Kk, and hy.

5.7. Bvaluate the integral [ x2Cp (¥)Cp(x)w (x) dx.
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presentation.
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application-oriented book on Hilbert spaces suitable for a physics audience.



