
Write the recursive static method SearchStack, that takes a Stack s and an element e and look

for the element e in the stack. It found return true. Otherwise, return false. Don’t use auxiliary

data structures. s should not change at the end of the method.

The function’s signature: public static <T> boolean SearchStack(Stack<T> s, T e)

Write the recursive static method CopyStack, that takes two Stacks s1 and s2 and copies all the

elements in s1 into s2 in the same order. Don’t use auxiliary data structures. s1 should not

change at the end of the method.

The function’s signature: public static <T> void CopyStack(Stack<T> s1, Stack<T> s2)

Write the recursive method Power that takes two integers (base and exponent) and calculate

the base to the power of exponent.

The function’s signature: public static int Power(int base, int exponent)

Example: Power(2, 4) is 16.

Write the recursive method search member of the class Linkedlist. That search for an element e

and return true if found. False otherwise. Don’t use auxiliary data structures and don’t call any

of the LinkedList methods.

The function’s signature: public Boolean search(T e)

Write the static recursive method SearchList. That search for an element e in a List l and return

true if found. False otherwise. Don’t use auxiliary data structures.

The function’s signature: public static <T> boolean SearchList(List<T> l, T e)

Write the static recursive method PrintQueue. That prints the elements of the Queue q. Don’t

use auxiliary data structures. q should not change at the end of the method.

The function’s signature: public static <T> void PrintQueue(Queue<T> q)

Write the static recursive method ReversePrintQueue. That prints the elements of the Queue q

in reverse order. Don’t use auxiliary data structures. q should not change at the end of the

method.

The function’s signature: public static <T> void ReversePrintQueue(Queue<T> q)

Write the static recursive method ReverseQueue. That changes the order of the elements in

Queue q and put them in reverse order. Don’t use auxiliary data structures.

Write a static method replace (user of ADT) that takes as input a stack st and two elements x

and y. The method replaces all the occurrences of the element x in st with y.

The function’s signature: public static<T> void replace (Stack<T> st, T x, T y)

Write a static method insertAfter (user of ADT) that takes a stack st, an index i, and an element

e as inputs. It should insert the element e after the element at position i in the stack st. You can

assume i is within the range of the stack, and that the top element has an index of 0.

The function’s signature: public static<T> void insertAfter(Stack<T> st, int i, T e)

Write the static method removeLast (user of ADT) that takes a stack st as input, and removes

the last element of st.

The function’s signature: public static<T> void removeLast(Stack<T> st)

Write the method PrintQueue part of the ArrayQueue ADT.

