IE-352

Section 3, CRN: 48706/7/8
Section 4, CRN: 58626/7/8
Second Semester 1438-39 H (Spring-2018) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Monday, March 26, 2018 (09/07/1439H)
Quiz 3 [10 Points] ANSWERS

Name:	Student Number:	Section (circle):
	43	M-W ; S-M-T-W

Answer the following question.

During a turning operation, a workpiece is being cut at $V=100 \mathrm{~m} / \mathrm{min}$. The machining power is found to be 3 kW . The feed is $0.2 \mathrm{~mm} / \mathrm{rev}$, and depth of cut is 0.5 mm . The bar is machined to a diameter of 50 mm and its length is 250 mm .
a) What is the material removal rate in $\mathrm{mm}^{3} / \mathrm{s}$? [1 Point]
b) What is the initial bar diameter? [1 Point]
c) What is the rotational speed of the workpiece in rev/min? [1 Point]
d) What is the feed rate in $\mathrm{mm} / \mathrm{min}$? [1 Point]
e) What is the main cutting force in Newtons? [1 Point]
f) What is the specific cutting energy in both N / mm^{2} and $W \cdot \mathrm{~s} / \mathrm{mm}^{3}$? [2 Points]
g) What is the torque on the spindle in $N \cdot m$? [1 Point]
h) Estimate the necessary machining time. [1 Point]
i) If this process was to be presented as an orthogonal model, what would be the values of w and t_{o} ? [1 Point]

Given:

- Process: turning
- $V=100 \mathrm{~m} / \mathrm{min}$
- Power $=3 \mathrm{~kW}$
- $f=0.2 \mathrm{~mm} / \mathrm{rev}$ (note that this is not the linear speed, v)
- $d=0.5 \mathrm{~mm}$
- $D=50 \mathrm{~mm}$ (note, this is D_{f}, since problem is stating machined to)
- $l=250 \mathrm{~mm}$

Solution:
a) material-removal rate, $M R R=d f V$

$$
\begin{array}{rl}
\Rightarrow M R R=d & d V=(0.5 \mathrm{~mm})(0.2 \mathrm{~mm})(100,000 \mathrm{~mm} / \mathrm{min}) \\
& =\left(10,000 \mathrm{~mm}^{3} / \mathrm{min}\right)(1 \mathrm{~min} / 60 \mathrm{~s})=166.67 \mathrm{~mm}^{3} / \mathrm{s}
\end{array}
$$

$$
-\quad M R R=167 \mathrm{~mm}^{3} / \mathrm{s}
$$

b) initial bar diameter, D_{o}

$$
\begin{aligned}
& d=\frac{D_{o}-D_{f}}{2} \\
& \Rightarrow D_{o}=2 d+D_{f}=2(0.5 \mathrm{~mm})+50 \mathrm{~mm}=51 \mathrm{~mm}
\end{aligned}
$$

$D_{o}=51 \mathrm{~mm}$
c) rotational speed, $N[\mathrm{rev} / \mathrm{min}]$

$$
\begin{aligned}
& V=\pi D_{a v g} N \\
& D_{a v g}=\frac{D_{o}+D_{f}}{2}=\frac{51 \mathrm{~mm}+50 \mathrm{~mm}}{2}=50.5 \mathrm{~mm} \\
& \Rightarrow N=\frac{V}{\pi D_{\text {avg }}}=\frac{100,000 \mathrm{~mm} / \mathrm{min}}{(\pi \mathrm{rad} / \mathrm{rev})(50.5 \mathrm{~mm})}=630.32 \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

d) feed rate, $v[\mathrm{~mm} / \mathrm{min}]$

$$
\begin{aligned}
v=f N=(0.2 \mathrm{~mm} / \mathrm{rev})(630.32 \mathrm{rev} / \mathrm{min})= & 126.06 \mathrm{~mm} / \mathrm{min} \\
& \quad v=\mathbf{1 2 6} \mathbf{~ m m} / \mathbf{m i n}
\end{aligned}
$$

e) main cutting force, $F_{c}[N]$

$$
\text { Power }=F_{c} \cdot V
$$

King Saud University - College of Engineering - Industrial Engineering Dept.

$$
\begin{array}{r}
\Rightarrow F_{c}=\frac{\text { Power }}{V}=\frac{3,000 \mathrm{~W}}{100 \mathrm{~m} / \mathrm{min}}=\frac{3,000 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{100 \mathrm{~m} / \mathrm{min}} * \frac{60 \mathrm{~s}}{\min }=1,800 \mathrm{~N} \\
\rightarrow \quad \boldsymbol{F}_{c}=\mathbf{1} . \mathbf{8 0} \mathbf{k N}
\end{array}
$$

f) specific cutting energy, $u_{t}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$ and $\left[\mathrm{W} \cdot \mathrm{s} / \mathrm{mm}^{3}\right]$

$$
\begin{aligned}
u_{t}=\frac{\text { Power }}{M R R} & =\frac{3,000 \mathrm{~W}}{166.67 \mathrm{~mm}^{3} / \mathrm{s}}=\frac{3,000 \mathrm{~W}}{166.67 \mathrm{~mm}^{3} / \mathrm{s}}=18.0 \mathrm{~W} \cdot \mathrm{~s} / \mathrm{mm}^{3} \\
& =18.0 \frac{\mathrm{~N} \cdot \frac{\mathrm{~m}}{\mathrm{~s}}}{\frac{\mathrm{~mm}^{32}}{\mathrm{~s}}} \cdot \frac{1000 \mathrm{~mm}}{1 \mathrm{~m}}=18,000 \mathrm{~N} / \mathrm{mm}^{2} \\
& \quad u_{t}=\mathbf{1 8 . 0} \mathbf{W} \cdot \mathbf{s} / \mathbf{m m}^{3}=\mathbf{1 8 , 0 0 0 ~ N} / \mathrm{mm}^{2}
\end{aligned}
$$

g) torque on the spindle, Torque $[\mathrm{N} \cdot \mathrm{m}$]

$$
\begin{aligned}
\text { Torque }=\frac{\text { Power }}{\omega}=\frac{3000 \mathrm{~W}}{2 \pi \mathrm{~N}}=\frac{3000 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}}{(2 \pi)(630.32) \mathrm{rad} / \min } * \frac{60 \mathrm{~s}}{\min } \\
=45.45 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Another solution (also good way to check your answer):

$$
\begin{aligned}
\text { Torque }= & F_{c} \cdot D_{\text {avg }} / 2=(1800 \mathrm{~N}) \cdot(50.5 \mathrm{~mm} / 2)(1 \mathrm{~m} / 1000 \mathrm{~mm}) \\
& =45.45 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\text { Torque }=45.5 \mathrm{~N} \cdot \mathrm{~m}
$$

h) cutting time, t

$$
t=\frac{l}{f N}=\frac{250 \mathrm{~mm}}{(0.2 \mathrm{~mm} / \mathrm{rev})(630.32 \mathrm{rev} / \mathrm{min})}=1.983 \mathrm{~min}
$$

$$
t=1.98 \mathrm{~min}
$$

| TABLE $21.1 \quad$ Conversion key: turning operation
 vs. orthogonal cutting. |
| ---: | :--- |
| Turning Operation Orthogonal Cutting Model |
| Feed $f=$ Chip thickness before cut t_{o}
 Depth $d=$ Width of cut w
 Cutting speed $v=$ Cutting speed v
 Cutting force $F_{c}=$ Cutting force F_{c}
 Feed force $F_{f}=$ Thrust force F_{t} |

$$
\begin{aligned}
& \text { i) } w, t_{o} \\
& w=d=0.5 \mathrm{~mm} \\
& t_{o}=f=0.2 \mathrm{~mm}
\end{aligned}
$$

Summary of Turning Parameters and Formulas

$N=$ Rotational speed of the workpiece, rpm
$f=$ Feed, $\mathrm{mm} / \mathrm{rev}$
$v=$ Feed rate, or linear speed of the tool along workpiece length, $\mathrm{mm} / \mathrm{min}$

$$
=f N
$$

$V=$ Surface speed of workpiece, $\mathrm{m} / \mathrm{min}$
$=\pi D_{o} N$ (for maximum speed)
$=\pi D_{\text {avg }} N$ (for average speed)
$l=$ Length of cut, mm
$D_{o}=$ Original diameter of workpiece, mm
$D_{f}=$ Final diameter of workpiece, mm
$D_{\text {avg }}=$ Average diameter of workpiece, mm
$=\left(D_{o}+D_{f}\right) / 2$
$d=$ Depth of cut, mm
$=\left(D_{0}-D_{f}\right) / 2$
$t=$ Cutting time, s or min
$=l / f N$
$\mathrm{MRR}=\mathrm{mm}^{3} / \mathrm{min}$
$=\pi D_{\text {avg }} d f N$
Torque $=\mathrm{N} \cdot \mathrm{m}$
$=F_{c} D_{\text {avg }} / 2$
Power $=\mathrm{kW}$ or hp
$=($ Torque $)(\omega)$, where $\omega=2 \pi N \mathrm{rad} / \mathrm{min}$
Note: The units given are those which are commonly used; however, appropriate units must be used and checked in the formulas.

