1.3 Propositional Equivalences 25

Propositional Equivalences

DEFINITION 1

EXAMPLE 1

Demo

DEFINITION 2

Introduction

An important type of step used in a mathematical argument is the replacement of a statement
with another statement with the same truth value. Because of this, methods that produce propo-
sitions with the same truth value as a given compound proposition are used extensively in the
construction of mathematical arguments. Note that we will use the term “compound proposi-
tion” to refer to an expression formed from propositional variables using logical operators, such
as p Agq.

We begin our discussion with a classification of compound propositions according to their
possible truth values.

A compound proposition that is always true, no matter what the truth values of the proposi-
tional variables that occur in it, is called a tautology. A compound proposition that is always
false is called a contradiction. A compound proposition that is neither a tautology nor a
contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning. Example 1 illus-
trates these types of compound propositions.

We can construct examples of tautologies and contradictions using just one propositional vari-
able. Consider the truth tables of p vV —=p and p A —p, shown in Table 1. Because p vV —p is
always true, it is a tautology. Because p A —p is always false, it is a contradiction.

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically
equivalent. We can also define this notion as follows.

The compound propositions p and g are called logically equivalent if p <> g is a tautology.
The notation p = g denotes that p and g are logically equivalent.

Remark: The symbol = is not a logical connective, and p = ¢ is not a compound proposition
but rather is the statement that p <> ¢ is a tautology. The symbol <> is sometimes used instead
of = to denote logical equivalence.

One way to determine whether two compound propositions are equivalent is to use a truth
table. In particular, the compound propositions p and g are equivalent if and only if the columns

TABLE 1 Examples of a Tautology
and a Contradiction.

-pP pvY-p pA—p

F T F
F T T F

26

1/ The Foundations: Logic and Proofs

Extra g2
Examples <

EXAMPLE 2

EXAMPLE 3

TABLE 2 De
Morgan’s Laws.

—(pAg)=—pV—q
—(pVvg)=—-pA—gq

giving their truth values agree. Example 2 illustrates this method to establish an extremely
important and useful logical equivalence, namely, that of —=(p Vv ¢) with —=p A —q. This logical
equivalence is one of the two De Morgan laws, shown in Table 2, named after the English
mathematician Augustus De Morgan, of the mid-nineteenth century.

Show that =(p Vv ¢g) and —p A —q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table 3. Because
the truth values of the compound propositions —(p Vv ¢) and —p A —g agree for all possible
combinations of the truth values of p and g, itfollowsthat—(p Vv q¢) <> (—p A —q) is atautology
and that these compound propositions are logically equivalent. <

TABLE 3 Truth Tables for =(p Vv ¢) and =p A —gq.
P q PVyq VAKX)) -p —q “PATq
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Show that p — ¢ and —p V ¢ are logically equivalent.

Solution: We construct the truth table for these compound propositions in Table 4. Because the
truth values of —=p Vv g and p — ¢ agree, they are logically equivalent. <

TABLE 4 Truth Tables for =p Vv ¢ and
p—4q.
p q -p X p—4q
T T F T T
T F F F F
F T T T T
F F T T T

We will now establish a logical equivalence of two compound propositions involving three
different propositional variables p, g, and r. To use a truth table to establish such a logical
equivalence, we need eight rows, one for each possible combination of truth values of these
three variables. We symbolically represent these combinations by listing the truth values of p,
q, and r, respectively. These eight combinations of truth values are TTT, TTF, TFT, TFF, FTT,
FTF, FFT, and FFF; we use this order when we display the rows of the truth table. Note that we
need to double the number of rows in the truth tables we use to show that compound propositions
are equivalent for each additional propositional variable, so that 16 rows are needed to establish
the logical equivalence of two compound propositions involving four propositional variables,
and so on. In general, 2" rows are required if a compound proposition involves n propositional
variables.

EXAMPLE 4

The identities in Table 6
are a special case of
Boolean algebra identities
found in Table 5 of
Section 12.1. See Table 1
in Section 2.2 for
analogous set identities.

1.3 Propositional Equivalences 27

TABLE 5 A Demonstration That p v (g Ar) and (p V q) A (p V r) Are Logically

Equivalent.
p q r qnr pVI(gAr) rvyq pvr (pvg)An(pvr)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Show that p v (g Ar) and (p Vv g) A (p V r) are logically equivalent. This is the distributive
law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table 5. Because
the truth values of p vV (¢ Ar) and (p V g) A (p V r) agree, these compound propositions are
logically equivalent. <

Table 6 contains some important equivalences. In these equivalences, T denotes the com-
pound proposition that is always true and F denotes the compound proposition that is always

TABLE 6 Logical Equivalences.

Equivalence Name

pAT=p Identity laws
pvF=p

pvT=T Domination laws
pAF=F

pPvVpPp=p Idempotent laws
PADP=P

—(=p)=p Double negation law
pvVqg=qVp Commutative laws
PANG=qAp

(pvg)Vr=pvigVvr) Associative laws

(pAg) Ar=pA(gAT)

pN@Ar)=(pVg@ APV Distributive laws
pA@Vr)=(pPAg)V(pAT)

~(pAg)=—pV—q De Morgan’s laws
—~(pVvg) =—-pA—q

pV(pAg)=p Absorption laws
pA(pVg)=p

pv—p=T Negation laws

pA—-p=F

28 1/ The Foundations: Logic and Proofs

When using De Morgan’s
laws, remember to change
the logical connective
after you negate.

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

TABLE 7 Logical Equivalences
Involving Conditional Statements.

p—>qg=-pVyq
P> qg=—g— —p p<qg=((p—>q) ANqg—p)
pegqg=-po g

p<q=(pArq)V(—pA—qg)

pPVqg=—p—>4q

pAg=—(p—>—q)
—(p<q)=p<—q

—(p—>q@ =pAr—q
p—=>Np—>r)=p—>(@qAr)

(p—=>rN(g—>r)=(pVg) —r
(p—>q)vV(p—>r)=p—>(qVr)
(p—>r)v@g—>r)=((pnrqg)—>r

false. We also display some useful equivalences for compound propositions involving condi-
tional statements and biconditional statements in Tables 7 and 8, respectively. The reader is
asked to verify the equivalences in Tables 6—8 in the exercises.

The associative law for disjunction shows that the expression p Vv g V r is well defined,
in the sense that it does not matter whether we first take the disjunction of p with ¢ and then
the disjunction of p Vv g with r, or if we first take the disjunction of ¢ and r and then take the
disjunction of p withg V r. Similarly, the expression p A g A r is well defined. By extending this
reasoning, it follows that p; vV p2 V --- VvV pyand p; A p2 A --- A p, are well defined whenever
P1, P2, - - -, Pn are propositions.

Furthermore, note that De Morgan’s laws extend to

=(p1V p2V---Vpn)=(EpLATp2A - ATpy)
and
—|(p1/\p2/\..-/\pn)E(—|pl\/—|p2\/...\/—.pn)'

We will sometimes use the notation V'j=1 pj for pi Vp2V eV py and Nj=i pj for
pP1 A p2A--- A py. Using this notation, the extended version of De Morgan’s laws can be
written concisely as —-(\/;f:1 pj} = /'\;f:1 —pj and ~(Aj=i pj) = V'j=1 ~pj- Methods for
proving these identities will be given in Section 5.1.)

Using De Morgan’s Laws

The two logical equivalences known as De Morgan’s laws are particularly important. They tell
us how to negate conjunctions and how to negate disjunctions. In particular, the equivalence
—(p VvV q) = —p A —q tells us that the negation of a disjunction is formed by taking the con-
junction of the negations of the component propositions. Similarly, the equivalence —=(p A q¢) =
—p V —q tells us that the negation of a conjunction is formed by taking the disjunction of the
negations of the component propositions. Example 5 illustrates the use of De Morgan’s laws.

1.3 Propositional Equivalences 29

EXAMPLE 5 Use De Morgan’s laws to express the negations of “Miguel has a cellphone and he has a laptop
computer” and ‘“Heather will go to the concert or Steve will go to the concert.”

Solution: Let p be “Miguel has a cellphone” and ¢ be “Miguel has a laptop computer.” Then
Assessment D “Miguel has a cellphone and he has a laptop computer” can be represented by p A g. By the
first of De Morgan’s laws, —(p A g) is equivalent to —p V —¢g. Consequently, we can express
the negation of our original statement as “Miguel does not have a cellphone or he does not have
a laptop computer.”
Let r be “Heather will go to the concert” and s be “Steve will go to the concert.” Then
“Heather will go to the concert or Steve will go to the concert” can be represented by r V s.
By the second of De Morgan’s laws, —(r V s) is equivalent to —r A —s. Consequently, we can
express the negation of our original statement as “Heather will not go to the concert and Steve
will not go to the concert.” <

Constructing New Logical Equivalences

The logical equivalences in Table 6, as well as any others that have been established (such as
those shown in Tables 7 and 8), can be used to construct additional logical equivalences. The
reason for this is that a proposition in a compound proposition can be replaced by a compound
proposition that is logically equivalent to it without changing the truth value of the original
compound proposition. This technique is illustrated in Examples 6—8, where we also use the
fact that if p and ¢ are logically equivalent and g and r are logically equivalent, then p and r
are logically equivalent (see Exercise 56).

EXAMPLE 6 Show that =(p — ¢) and p A —¢ are logically equivalent.

Solution: We could use a truth table to show that these compound propositions are equivalent

Extra (similar to what we did in Example 4). Indeed, it would not be hard to do so. However, we want
Examples to illustrate how to use logical identities that we already know to establish new logical identities,
something thatis of practical importance for establishing equivalences of compound propositions

with a large number of variables. So, we will establish this equivalence by developing a series of

Q

Links

AUGUSTUS DE MORGAN (1806-1871) Augustus De Morgan was born in India, where his father was a
colonel in the Indian army. De Morgan’s family moved to England when he was 7 months old. He attended
private schools, where in his early teens he developed a strong interest in mathematics. De Morgan studied
at Trinity College, Cambridge, graduating in 1827. Although he considered medicine or law, he decided on
mathematics for his career. He won a position at University College, London, in 1828, but resigned after the
college dismissed a fellow professor without giving reasons. However, he resumed this position in 1836 when
his successor died, remaining until 1866.

De Morgan was a noted teacher who stressed principles over techniques. His students included many famous
mathematicians, including Augusta Ada, Countess of Lovelace, who was Charles Babbage’s collaborator in his
work on computing machines (see page 31 for biographical notes on Augusta Ada). (De Morgan cautioned the countess against
studying too much mathematics, because it might interfere with her childbearing abilities!)

De Morgan was an extremely prolific writer, publishing more than 1000 articles in more than 15 periodicals. De Morgan also
wrote textbooks on many subjects, including logic, probability, calculus, and algebra. In 1838 he presented what was perhaps the first
clear explanation of an important proof technique known as mathematical induction (discussed in Section 5.1 of this text), a term
he coined. In the 1840s De Morgan made fundamental contributions to the development of symbolic logic. He invented notations
that helped him prove propositional equivalences, such as the laws that are named after him. In 1842 De Morgan presented what
is considered to be the first precise definition of a limit and developed new tests for convergence of infinite series. De Morgan was
also interested in the history of mathematics and wrote biographies of Newton and Halley.

In 1837 De Morgan married Sophia Frend, who wrote his biography in 1882. De Morgan’s research, writing, and teaching left
little time for his family or social life. Nevertheless, he was noted for his kindness, humor, and wide range of knowledge.

30 1/ The Foundations: Logic and Proofs

EXAMPLE 7

EXAMPLE 8

logical equivalences, using one of the equivalences in Table 6 at a time, starting with —(p — q)
and ending with p A —g. We have the following equivalences.

=(p—>q)=—(—=pVgq) byExample3

—(—p) A—q by the second De Morgan law

pN—g by the double negation law

Show that —=(p V (—=p A g)) and —p A —q are logically equivalent by developing a series of
logical equivalences.

Solution: We will use one of the equivalences in Table 6 at a time, starting with —(p V (—p A q))
and ending with = p A —q. (Note: we could also easily establish this equivalence using a truth
table.) We have the following equivalences.

—(pV(=pAg)=—-pA—-(—=pAq) by the second De Morgan law
==p A [=(=p)V —q] by the first De Morgan law
==-pA(pV—q) by the double negation law
= (=p A p)V(=p A—g) by thesecond distributive law
=FV(—pA—gq) because =p A p =F
=(—-pA—q)VF by the commutative law for disjunction
=—-pA—q by the identity law for F

Consequently =(p V (—p A g)) and —p A —q are logically equivalent. <

Show that (p A g) — (p V q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences to demon-
strate that it is logically equivalent to T. (Note: This could also be done using a truth table.)

(prg)—> (pvg) =—(prg)V(pVg) byExample3
=(—pV—q)V(pVg) bythefirst De Morgan law
= (—pV p)V(—gVg) bytheassociative and commutative
laws for disjunction
=TvT by Example 1 and the commutative
law for disjunction

T by the domination law

Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth values to its variables that
makes it true. When no such assignments exists, that is, when the compound proposition is false
for all assignments of truth values to its variables, the compound proposition is unsatisfiable.
Note that a compound proposition is unsatisfiable if and only if its negation is true for all
assignments of truth values to the variables, that is, if and only if its negation is a tautology.
When we find a particular assignment of truth values that makes a compound proposition
true, we have shown that it is satisfiable; such an assignment is called a solution of this particular

1.3 Propositional Equivalences 31

satisfiability problem. However, to show that a compound proposition is unsatisfiable, we need
to show that every assignment of truth values to its variables makes it false. Although we can
always use a truth table to determine whether a compound proposition is satisfiable, it is often
more efficient not to, as Example 9 demonstrates.

EXAMPLE 9 Determine whether each of the compound propositions (pV —g)A(gV —r)A
(rv=p), (pVvgvr)A(=pVv—ogVv=-r), and (pV=g)A(gV—r)A{FrV-p)A
(pVvgVvr)A(—pV—gV-r)issatisfiable.

Solution: Instead of using truth table to solve this problem, we will reason about truth values.
Note that (p vV —g) A (g V —r) A (r V —p) is true when the three variable p, ¢, and r have
the same truth value (see Exercise 40 of Section 1.1). Hence, it is satisfiable as there is at
least one assignment of truth values for p, ¢, and r that makes it true. Similarly, note that
(pVgvVvr)A(—pV—gV-r)istrue when at least one of p, ¢, and r is true and at least one
is false (see Exercise 41 of Section 1.1). Hence, (p V g V r) A (—p V —g V —r) is satisfiable,
as there is at least one assignment of truth values for p, g, and r that makes it true.

Finally, note that for (p V =g) A(gV =) A(rvV=p)A(pNVgVr)A(—pV—gV —r)
to be true, (pVvV—-g)A(gV —-r)A @V —-p)and (pVgVr)A(—pV—gV-r) must both
be true. For the first to be true, the three variables must have the same truth values, and
for the second to be true, at least one of three variables must be true and at least one must
be false. However, these conditions are contradictory. From these observations we conclude
that no assignment of truth values to p, ¢, and r makes (p Vv —g) A (g V —r) A(r V=p) A
(pVvgVvr)A(=pV—g Vv -—r)true. Hence, it is unsatisfiable. <

Links

AUGUSTA ADA, COUNTESS OF LOVELACE (1815-1852) Augusta Ada was the only child from the
marriage of the famous poet Lord Byron and Lady Byron, Annabella Millbanke, who separated when Ada
was 1 month old, because of Lord Byron’s scandalous affair with his half sister. The Lord Byron had quite a
reputation, being described by one of his lovers as “mad, bad, and dangerous to know.” Lady Byron was noted for
her intellect and had a passion for mathematics; she was called by Lord Byron “The Princess of Parallelograms.”
Augusta was raised by her mother, who encouraged her intellectual talents especially in music and mathematics,
to counter what Lady Byron considered dangerous poetic tendencies. At this time, women were not allowed to
attend universities and could not join learned societies. Nevertheless, Augusta pursued her mathematical studies
independently and with mathematicians, including William Frend. She was also encouraged by another female
mathematician, Mary Somerville, and in 1834 at a dinner party hosted by Mary Somerville, she learned about Charles Babbage’s
ideas for a calculating machine, called the Analytic Engine. In 1838 Augusta Ada married Lord King, later elevated to Earl of
Lovelace. Together they had three children.

Augusta Ada continued her mathematical studies after her marriage. Charles Babbage had continued work on his Analytic
Engine and lectured on this in Europe. In 1842 Babbage asked Augusta Ada to translate an article in French describing Babbage’s
invention. When Babbage saw her translation, he suggested she add her own notes, and the resulting work was three times the
length of the original. The most complete accounts of the Analytic Engine are found in Augusta Ada’s notes. In her notes, she
compared the working of the Analytic Engine to that of the Jacquard loom, with Babbage’s punch cards analogous to the cards used
to create patterns on the loom. Furthermore, she recognized the promise of the machine as a general purpose computer much better
than Babbage did. She stated that the “engine is the material expression of any indefinite function of any degree of generality and
complexity.” Her notes on the Analytic Engine anticipate many future developments, including computer-generated music. Augusta
Ada published her writings under her initials A.A.L. concealing her identity as a woman as did many women at a time when women
were not considered to be the intellectual equals of men. After 1845 she and Babbage worked toward the development of a system
to predict horse races. Unfortunately, their system did not work well, leaving Augusta Ada heavily in debt at the time of her death
at an unfortunately young age from uterine cancer.

In 1953 Augusta Ada’s notes on the Analytic Engine were republished more than 100 years after they were written, and after
they had been long forgotten. In his work in the 1950s on the capacity of computers to think (and his famous Turing Test), Alan
Turing responded to Augusta Ada’s statement that “The Analytic Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform.” This “dialogue” between Turing and Augusta Ada is still the subject of controversy.
Because of her fundamental contributions to computing, the programming language Ada is named in honor of the Countess of
Lovelace.

32

1/ The Foundations: Logic and Proofs

Links

219 4
5 1
4
412
6 7
5
7 3 5
1 9
6

FIGURE 1 A9 x 9 Sudoku puzzle.

Applications of Satisfiability

Many problems, in diverse areas such as robotics, software testing, computer-aided design,
machine vision, integrated circuit design, computer networking, and genetics, can be modeled
in terms of propositional satisfiability. Although most of these applications are beyond the
scope of this book, we will study one application here. In particular, we will show how to use
propositional satisfiability to model Sudoku puzzles.

SUDOKU A Sudoku puzzle is represented by a 9 x 9 grid made up of nine 3 x 3 subgrids,
known as blocks, as shown in Figure 1. For each puzzle, some of the 81 cells, called givens,
are assigned one of the numbers 1, 2, ..., 9, and the other cells are blank. The puzzle is solved
by assigning a number to each blank cell so that every row, every column, and every one of the
nine 3 x 3 blocks contains each of the nine possible numbers. Note that instead of usinga 9 x 9
grid, Sudoku puzzles can be based on n> x n? grids, for any positive integer n, with the n> x n?
grid made up of n? n x n subgrids.

The popularity of Sudoku dates back to the 1980s when it was introduced in Japan. It
took 20 years for Sudoku to spread to rest of the world, but by 2005, Sudoku puzzles were a
worldwide craze. The name Sudoku is short for the Japanese suuji wa dokushin ni kagiru, which
means “the digits must remain single.” The modern game of Sudoku was apparently designed
in the late 1970s by an American puzzle designer. The basic ideas of Sudoku date back even
further; puzzles printed in French newspapers in the 1890s were quite similar, but not identical,
to modern Sudoku.

Sudoku puzzles designed for entertainment have two additional important properties. First,
they have exactly one solution. Second, they can be solved using reasoning alone, that is, without
resorting to searching all possible assignments of numbers to the cells. As a Sudoku puzzle is
solved, entries in blank cells are successively determined by already known values. For instance,
in the grid in Figure 1, the number 4 must appear in exactly one cell in the second row. How
can we determine which of the seven blank cells it must appear? First, we observe that 4 cannot
appear in one of the first three cells or in one of the last three cells of this row, because it already
appears in another cell in the block each of these cells is in. We can also see that 4 cannot appear
in the fifth cell in this row, as it already appears in the fifth column in the fourth row. This means
that 4 must appear in the sixth cell of the second row.

Many strategies based on logic and mathematics have been devised for solving Sudoku
puzzles (see [Dal0], for example). Here, we discuss one of the ways that have been developed
for solving Sudoku puzzles with the aid of a computer, which depends on modeling the puzzle as
a propositional satisfiability problem. Using the model we describe, particular Sudoku puzzles
can be solved using software developed to solve satisfiability problems. Currently, Sudoku
puzzles can be solved in less than 10 milliseconds this way. It should be noted that there are
many other approaches for solving Sudoku puzzles via computers using other techniques.

S

It is tricky setting up the
two inner indices so that
all nine cells in each
square block are
examined.

1.3 Propositional Equivalences 33

To encode a Sudoku puzzle, let p(i, j, n) denote the proposition that is true when the number
n is in the cell in the ith row and jth column. There are 9 x 9 x 9 = 729 such propositions, as
i, j,and n all range from 1 to 9. For example, for the puzzle in Figure 1, the number 6 is given
as the value in the fifth row and first column. Hence, we see that p(5, 1, 6) is true, but p(5, j, 6)
is false for j =2,3,...,9.

Given a particular Sudoku puzzle, we begin by encoding each of the given values. Then,
we construct compound propositions that assert that every row contains every number, every
column contains every number, every 3 x 3 block contains every number, and each cell contains
no more than one number. It follows, as the reader should verify, that the Sudoku puzzle is solved
by finding an assignment of truth values to the 729 propositions p(i, j, n) with i, j, and n each
ranging from 1 to 9 that makes the conjunction of all these compound propositions true. After
listing these assertions, we will explain how to construct the assertion that every row contains
every integer from 1 to 9. We will leave the construction of the other assertions that every column
contains every number and each of the nine 3 x 3 blocks contains every number to the exercises.

B For each cell with a given value, we assert p(i, j, n) when the cell in row i and column
J has the given value n.

B We assert that every row contains every number:

9 9 9
AVARYR 2N D

i=ln=1j=1

B We assert that every column contains every number:

9
AV pa.j.n)

j=ln=li=1

B We assert that each of the nine 3 x 3 blocks contains every number:

2 2 9 3 3
ANNVV pGr+i3s+j.n)

r=0s=0n=1i=1 j=1

B To assert that no cell contains more than one number, we take the conjunction over all
values of n, n’, i, and j where each variable ranges from 1 to 9 andn # n’ of p(i, j, n) —

=p(@, j,n").

We now explain how to construct the assertion that every row contains every number.
First, to assert that row i contains the number n, we form \/?:1 p(i, j,n). To assert that
row i contains all n numbers, we form the conjunction of these disjunctions over all nine
possible values of n, giving us /\3: 1 \/?: 1 p(i, j, n). Finally, to assert that every row contains

every number, we take the conjunction of /\2: 1 \/?: 1 p(i, j, n) over all nine rows. This gives

us A\j_y Ao, \/3:1 p(i, j, n). (Exercises 65 and 66 ask for explanations of the assertions that
every column contains every number and that each of the nine 3 x 3 blocks contains every
number.)

Given a particular Sudoku puzzle, to solve this puzzle we can find a solution to the satisfia-
bility problems that asks for a set of truth values for the 729 variables p(i, j, n) that makes the
conjunction of all the listed assertions true.

34

1/ The Foundations: Logic and Proofs

Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 — 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 2!°%° (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound

links propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises
1. Use truth tables to verify these equivalences. b) (pAg)Ar=pA(gAr).
a) pAT=p b) pvF=p 5. Use a truth table to verify the distributive law
¢ pAF=F d pvT=T pA@V)=(QPAQV(pAr).
e) pVp=p f) pAp=p 6. Use a truth table to verify the first De Morgan law
2. Show that —=(—p) and p are logically equivalent. —~(pAg)=—-pV —q.
3. Use truth tables to verify the commutative laws 7. Use De Morgan’s laws to find the negation of each of the
a) pvg=qVp. b) pAg=gqnp. following statements.
4. Use truth tables to verify the associative laws a) Jan is rich and happy.
a) (pvgvr=pvigVvr). b) Carlos will bicycle or run tomorrow.
Links
= HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western

Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
— remained at Harvard until his retirement in 1952.

. Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.

11.
12.

13.

14.

715,

¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

. Show that each of these conditional statements is a tau-

tology by using truth tables.
a) (pAg) = p

¢ —p—>(p—>q)

e ~(p—>q)—>p

b) p—> (pVva)
d) (prg)—> (p—>q)
f) =(p—q) = —q

. Show that each of these conditional statements is a tau-

tology by using truth tables.

a) [-pA(pVPl— g

b) [(p = q) A (g —1)]— (p—71)

o) [pA(p—>q@l—q
dDpVvaOA(p—>r)n(g—>r)]—r

Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

Use truth tables to verify the absorption laws.

a) pv(pAg)=p by pA(pVg)=p
Determine whether (—p A (p — q)) — —¢q is a tautol-
ogy.

Determine whether (—g A (p — ¢)) — —p is a tautol-
ogy.

Each of Exercises 16-28 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).

16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.

28.

Show that p <> g and (p A q) V (—p A —gq) are logically
equivalent.

Show that =(p <> ¢) and p <> —q are logically equiva-
lent.

Show that p — g and —~g — —p arelogically equivalent.
Show that —p <> g and p <> —q are logically equivalent.
Show that —(p @ ¢) and p <> ¢ are logically equivalent.
Show that —(p <> ¢) and —p < ¢ are logically equiva-
lent.

Show that (p — ¢) A (p — r)and p — (q A r) arelog-
ically equivalent.

Show that (p — r) A (g — r)and (p VvV q) — r are log-
ically equivalent.

Show that (p — ¢q) V (p — r)and p — (g V r) arelog-
ically equivalent.

Show that (p — r) vV (g — r)and (p A q) — r are log-
ically equivalent.

Show that—p — (¢ — r)andg — (p V r) arelogically
equivalent.

Show that p <> g and (p — q) A (¢ — p) are logically
equivalent.

Show that p <> g and —p <> —q are logically equivalent.

29.

5= 30,
31.

32.

33.

1.3 Propositional Equivalences 35

Show that (p — g) A (g — r) — (p — r) is a tautol-
ogy.

Show that (p V q) A (—p vV r) — (g Vv r) is atautology.
Show that (p — ¢) — r and p — (¢ — r) are not log-
ically equivalent.

Show that (p A g) — r and (p — r) A (¢ — r) are not
logically equivalent.

Show that (p > ¢q)—> (r—s) and (p —>r)—
(g — s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators V, A, and — is the compound proposition
obtained by replacing each Vv by A, each A by Vv, each T
by F, and each F by T. The dual of s is denoted by s*.

34.

35.

36.
. Show that (s*)*
38.

*%39,

40.

41.

Find the dual of each of these compound propositions.
a) pV—q b) pA(gV(rAT))

¢ (pA—q)V (g AF)

Find the dual of each of these compound propositions.
a) pA—g A-r b) (pAgATF)VsS

¢ (pvE)A(@VvT

When does s* = s, where s is a compound proposition?

s when s is a compound proposition.

Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators A, Vv, and —?

Find a compound proposition involving the propositional
variables p, g, and r that is true when p and ¢ are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

Find a compound proposition involving the propositional
variables p, g, and r that is true when exactly two of p, ¢,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

. Suppose that a truth table in n propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-

tors.
43.

Show that —, A, and Vv form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]

36

*44,

*485,

1/ The Foundations: Logic and Proofs

Show that — and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p Vv g is logically equivalent to
—(=p A —q).]

Show that — and Vv form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND g is true when either p
or g, or both, are false; and it is false when both p and ¢ are
true. The proposition p NOR q is true when both p and g are
false, and it is false otherwise. The propositions p NAND g
and p NOR q are denoted by p | ¢ and p | g, respectively.
(The operators | and | are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46.
47.
48.
49.
50.

*51.
52.
53.
54.

*55.

56.

57.

Predicates and Quantifiers

Construct a truth table for the logical operator NAND.

Show that p | g is logically equivalent to —=(p A q).

Construct a truth table for the logical operator NOR.

Show that p | g is logically equivalent to =(p V ¢q).

In this exercise we will show that {]} is a functionally

complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Show that (p | ¢) | (p | ¢) is logically equivalent
topVyg.

¢) Conclude from parts (a) and (b), and Exercise 49, that
{l} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator |.

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | g and g | p are equivalent.

Show that p | (¢ |) and (p | ¢) | r are not equivalent,

so that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and ¢?

Show that if p, g, and r are compound propositions such

that p and ¢q are logically equivalent and g and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the system is

not in its initial state.” This specification is hard to under-

58.

59.

60.

61.

62.

63.

64.

65.

*66.

stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

How many of the disjunctions p vV —q, =pV g, qVr,
q Vv —r, and —g V —r can be made simultaneously true
by an assignment of truth values to p, g, and r?

How many of the disjunctions pVv—-gVvs, —-p V
—rvs, —pV-orv-s, —pVgV-s, qgVrV-s,
gV —rNV=-s,mpV—ogV-os,pVrVvs,andp VrVv-s
can be made simultaneously true by an assignment of
truth values to p, g, r, and s?

Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions

is satisfiable.

a) (pV—=g)AN(=pVg)A(=pV—q)

b) (p =) A(p—=> =) N(=p—=> @) N(=p—>—q)

¢ (peogA(-p<q)

Determine whether each of these compound propositions

is satisfiable.

a) (pvgV-r)A(pPV-gV-s)A(pV-rV-s)A
(=P V=gV o)A (pVgVTs)

b) (=pV =g Vr)A(=pVgV=s)A(pV—qV
—“S)AN(—pVrVv-os)A(pVvgyV-r)A(pV
=r VvV —s)

¢) (pvgVvryA(pV—qgV—-s)A(@V-rvVvs) A
(=pVrVsS)A(—pVgV=s)A(pV—gV—r) A
(=pV—=gVs)A(—pV-rV-s)

Show how the solution of a given 4 x 4 Sudoku puzzle

can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 x 9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9 x 9 Sudoku puzzle contains every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 x 3 blocks of a 9 x 9 Sudoku puzzle contains ev-
ery number.

Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”

