104Phys

Chapter 33 Problems

- An inductor (L = 400 mH), a capacitor (C = 4.43 μF), and a resistor (R = 500 Ω) are connected in series. A 50.0-Hz AC source produces a peak current of 250 mA in the circuit. (a) Calculate the required peak voltage ΔV_{max} . (b) Determine the phase angle by which the current leads or lags the applied voltage.
- 20. At what frequency does the inductive reactance of a 57.0- μ H inductor equal the capacitive reactance of a 57.0- μ F capacitor?
- 21. A series AC circuit contains the following components: $R = 150 \,\Omega$, $L = 250 \,\text{mH}$, $C = 2.00 \,\mu\text{F}$ and a source with $\Delta V_{\text{max}} = 210 \,\text{V}$ operating at 50.0 Hz. Calculate the (a) inductive reactance, (b) capacitive reactance, (c) impedance, (d) maximum current, and (e) phase angle between current and source voltage.
- A sinusoidal voltage $\Delta v(t) = (40.0 \text{ V}) \sin(100t)$ is applied to a series *RLC* circuit with L = 160 mH, $C = 99.0 \ \mu\text{F}$, and $R = 68.0 \ \Omega$. (a) What is the impedance of the circuit? (b) What is the maximum current? (c) Determine the numerical values for I_{max} , ω , and ϕ in the equation $i(t) = I_{\text{max}} \sin(\omega t \phi)$.
- An *RLC* circuit consists of a 150- Ω resistor, a 21.0- μ F capacitor, and a 460-mH inductor, connected in series with a 120-V, 60.0-Hz power supply. (a) What is the phase angle between the current and the applied voltage? (b) Which reaches its maximum earlier, the current or the voltage?

P33.19

(a)
$$X_{L} = \omega L = 2\pi (50.0) (400 \times 10^{-3}) = 126 \Omega$$

 $X_{C} = \frac{1}{\omega C} = \frac{1}{2\pi (50.0) (4.43 \times 10^{-6})} = 719 \Omega$
 $Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = \sqrt{500^{2} + (126 - 719)^{2}} = 776 \Omega$
 $\Delta V_{max} = I_{max} Z = (250 \times 10^{-3}) (776) = \boxed{194 \text{ V}}$

(b)
$$\phi = \tan^{-1} \left(\frac{\mathbf{X}_{Z} - \mathbf{X}_{C}}{\mathbf{R}} \right) = \tan^{-1} \left(\frac{126 - 719}{500} \right) = \boxed{-49.9^{\circ}}$$
. Thus, the Current leads the voltage.

P33.20
$$\omega \mathbf{L} = \frac{1}{\omega \mathbf{C}} \rightarrow \omega = \frac{1}{\sqrt{\mathbf{LC}}} = \frac{1}{\sqrt{(57.0 \times 10^{-6})(57.0 \times 10^{-6})}} = 1.75 \times 10^{4} \text{ rad/s}$$

$$\mathbf{f} = \frac{\omega}{2\pi} = \boxed{2.79 \text{ kH z}}$$

FIG. P33.19

Chapter 33 Problems

P33.21 (a)
$$X_L = \omega L = 2\pi (50.0 \text{ s}^{-1}) (250 \times 10^{-3} \text{ H}) = \boxed{78.5 \Omega}$$

(b)
$$X_C = \frac{1}{\omega C} = \left[2\pi \left(50 \,\Omega \text{ s}^{-1} \right) \left(2.00 \times 10^{-6} \text{ F} \right) \right]^{-1} = \boxed{1.59 \text{ k}\Omega}$$

(c)
$$\mathbf{Z} = \sqrt{\mathbf{R}^2 + (\mathbf{X}_L - \mathbf{X}_C)^2} = \boxed{1.52 \text{ k}\Omega}$$

(d)
$$\mathbf{Z}_{\text{max}} = \frac{\Delta \mathbf{V}_{\text{max}}}{\mathbf{Z}} = \frac{210 \text{ V}}{1.52 \times 10^3 \Omega} = \boxed{138 \text{ m A}}$$

(e)
$$\phi = \tan^{-1} \left[\frac{X_L - X_C}{R} \right] = \tan^{-1} (-10.1) = \boxed{-84.3^{\circ}}$$

P33.22 (a)
$$Z = \sqrt{R^2 + (X_z - X_c)^2} = \sqrt{68 \,\Omega^2 + (16 \,\Omega - 101)^2} = \boxed{109 \,\Omega}$$

 $X_z = \omega \, Z = (100)(0 \,160) = 16 \,\Omega$
 $X_C = \frac{1}{\omega \,C} = \frac{1}{(100)(99 \,\Omega \times 10^{-6})} = 101 \,\Omega$

(b)
$$I_{\text{max}} = \frac{\Delta V_{\text{max}}}{Z} = \frac{40.0 \text{ V}}{109 \Omega} = \boxed{0.367 \text{ A}}$$

(c)
$$\tan \phi = \frac{X_L - X_C}{R} = \frac{16.0 - 101}{68.0} = -1.25$$
:
 $\phi = -0.896 \text{ rad} = -51.3^{\circ}$

$$\boxed{I_{\text{n ax}} = 0.367 \text{ A}} \qquad \boxed{\omega = 100 \text{ rad/s}} \qquad \boxed{\phi = -0.896 \text{ rad} = -51.3^{\circ}}$$

P33.23
$$X_L = 2\pi$$
 FL = 2π (60.0)(0.460) = 173 Ω
 $X_C = \frac{1}{2\pi$ FC = $\frac{1}{2\pi$ (60.0)(21.0×10⁻⁶)} = 126 Ω

(a)
$$\tan \phi = \frac{X_z - X_C}{R} = \frac{173 \Omega - 126 \Omega}{150 \Omega} = 0.314$$

 $\phi = 0.304 \text{ rad} = \boxed{17.4^{\circ}}$

(b) Since $X_L > X_C$, ϕ is positive; so voltage leads the current.